
FINITE GROUPS WITH A QUASISIMPLE COMPONENT
OF TYPE PSU(3, 2r’) ON ELEMENTARY ABELIAN FORM

BY

PETER LANDROCK

It is a quite common phenomenon among sporadic simple groups that some
involution has a centralizer with a quasisimple component of even characteristic
which is on elementary abelian form. By this we mean that the centralizer of
the component has an elementary abelian Sylow 2-subgroup. (For definition
of component, quasisimple etc., we refer the reader to for example D.
Gorenstein’s survey article on finite simple groups.) Examples of such sporadic
simple groups are: Janko’s first group Jx (Z2 x PSL(2, 4)), the Mathieu group
Mx2 (22 X $5) the Hall-Janko group J2 (Z2 X Z2 x PSL(2, 4)), the sporadic
Suzuki group Su (Z2 x Z2 x PSL(3, 4)), Held’s group He (a central extension
of PSL(3, 4) by Z2 x Z2), Rudvalis’ group Ru (Z2 x Z2 x Sz(8)), Conway’s
group Cox (Z2 x Z2 x G2(4)) and Fischer’s new simple group F2(? (Z2 x

Z2 x F4(2)).
This gives rise to several classification problems, among which is the following

natural one.

Classify finite (in particular simple) groups with an involution whose central-
izer C is isomorphic to the direct product of an elementary abelian 2-group E
and a group B containing a normal subgroup Bo which is quasisimple of
Bender-type such that CB(Bo) Z(Bo).

However, to deal with this problem we need an additional assumption on the
involutions of E. A natural one, at least when Bo is of Bender-type, seems to
be that C is the centralizer of all the involutions in E (trivially satisfied when
IEI 2.) This is a type of problem which for instance occurs in a recent work
by D. Mason, in which he considers finite simple groups all of whose components
are of Bender-type (and the centralizer of some involution not 2-constrained of
course). Furthermore, J2 and Ru satisfy this assumption.

Exactly this problem has been considered in the following cases when B0 is
isomorphic to one of the simple groups PSL(2, q) or Sz(q), B Bo and G is
simple: E - Z2 and B - PSL(2, 2"), by Z. Janko, B

_
PSL(2, 2n), by F. L.

Smith, B - Sz(q), by U. Dempwolff, and some as special cases in related
problems which have been dealt with by M. Aschbacher and K. Harada.

Here we shall answer the question completely for all groups with B0 quasi-
simple of PSU(3, 2")-type, the third class of groups of Bender-type.
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THEOREM 1. Let G be a finite group with an involution whose centralizer C
satisfies:

(*) C E x U, where E - E2. and U contains a normal subgroup Uo
which is quasisimple ofPSU(3, 2")-type such that Cv(Uo) Z(Uo). Furthermore,
C is the centralizer of every involution in E.

Then either G contains a strongly closed elementary abelian 2-group or E is of
order 2 and has a complement in G.

In particular, by D. Goldschmidt’s classification of groups with a strongly
closed abelian 2-subgroup, G is not simple. In case G does not contain such a
strongly closed elementary abelian 2-group, let H be a complement in G of E.
Now, an obvious question is whether H may be simple. To answer this we first
recall that the unitary groups are groups of so-called "twisted" type due to the
fact that they may be defined as the fixpoint-group of an automorphism of
order two, namely, the product of a graph and a field automorphism, of a simple
group of Chevalley-type, in this case the projective special linear groups. Thus
H
_

PSL(3, 22") is a possibility. Our next theorem states that these are the
only simple groups with that property.

THEOREM 2. Let G be a simple group admitting an automorph&m p oforder 2,
whose centralizer C in Aut (G) satisfies (*). Then p is an outer automorphism,
C - PSU(3, 2n) and G PSL(3, 22n).

We shall obtain this by showing that a Sylow 2-subgroup of G is isomorphic
to that of PSL(3, 22") and then quote a classification theorem due to M. Collins,
which may be found in [1].

Finally, Theorems and 2 together with the theorem by D. Goldschmidt
referred to above (see [2]) give the following.

MAIN THEOREM. Let G be a finite group with an involution whose centralizer
C satisfies (*). Then G/O(G) contains a normal subgroup isomorphic to one of the
fottowina

O) PSU(3, 2"),
(ii) PSU(3, 2") x PSU(3, 2"),
(iii) PSL(3, 22").
Furthermore, O(G) is abelian and equal to Z(Uo) if IEI > 2.

The most interesting fact about the proof of Theorem and 2 is that except
for the application of a few "classical" results (Sylow’s Theorem, Grtin’s First
Theorem and some transfer lemmas) and a result on the automorphism group
of a special class of 2-groups, it is completely self-contained.

In Section we describe those properties of SU(3, 2") that we need and de-
velop a very short method by which to determine the automorphism group of
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a special class of 2-groups, the so-called Suzuki 2-groups. More specifically,
we find the automorphism group of the Sylow 2-subgroups of Sz(q) and
vsv(3, 2).

Section 2 is a characterization of the Sylow 2-subgroups of PSU(3, 2) and
PSL(3, 2") by a certain property of their automorphism group. The situation
we consider seems to appear in several classification problems which is the main
reason why we have stated the result in a special section.

In Section 3 we prove two elementary lemmas. The first gives those natural
bounds that may be put on the elementary abelian component in general
directly from the basic assumptions. The second is a straightforward application
of Grfin’s First Theorem to a configuration that occurs many times whenever
IU/Uol is even.
The last section consists of the proof of our theorems. Our method is merely

to build up the possible structure of Sylow 2-subgroups of groups satisfying our
assumption. The first step, namely when our involution is central, is easily
reduced to the consideration of finite groups with a Sylow 2-subgroup iso-
morphic to a 2-subgroup of U containing a Sylow 2-subgroup of PSU(3, 2").
The idea in this proof will be used several times in what follows. Now, if
S Syl2 (U) and So S c Uo, let W Syl2 (Na(E x So)). Then S is the
semidirect product So. (r/) of So and a cyclic group. Our next step is to see
that W contains a normal subgroup Wo containing E x So, which is a com-
plement in W to (r/) such that Wo/E x So - E2,. Moreover, Wo So.
Cwo(So), and E has a complement in Wo which is a central extension of So by
a homocyclic group F of exponent 2 or 4 such that F c So is equal to Z(So).
If F is of exponent 4, we easily reduce to the case [E[ 2. However, it now
takes a rather involved series of arguments to show that Z(So) is strongly closed
in a Sylow 2-subgroup P containing it. Anyway, we may in the following assume
that F is elementary abelian. Now, a short argument allows us furthermore to
assume that F E (1) for all 9 G, and also that P > W. We proceed
to build up V Nv(Wo). Not surprisingly we obtain that V contains a normal
subgroup Vo > Wo which is a complement to (r/) such that Vo/Wo - Ez,.
Moreover, Vo Cvo(F). E, and Cvo(F)/F Ez,.. Now two different eases
occur, depending on whether f(Cvo(F)) equals F or not. In the former ease
we prove that F is strongly closed, in the latter that Cvo(F) is isomorphic to a
Sylow 2-subgroup of PSL(3, 2zn), using the above characterization of that. We
finish by proving that G contains a normal subgroup L with Cvo(F) as Sylow
2-subgroup. The case where F is strongly closed of course corresponds to the
case when G/O(G) contains a normal subgroup isomorphic to the direct product
of two copies of PSU(3, 2") interchanged by the involution in E.

Discussions with R. I. S. Gow and R. Solomon on parts of this work have
been very helpful.

Finally, the author would like to thank D. Mason for his numerous useful
comments and suggestions throughout the preparation of this paper.



FINITE GROUPS WITH A QUASISIMPLE COMPONENT 201

1. Properties of SU(3, 2n) and Suzuki 2-groups

The unitary group SU(3, q), q 2", is defined over the field of q2 elements.
Its outer automorphism group is formed by the cyclic group of order 2n con-
sisting of field automorphisms and a diagonal automorphism of order 3 when
(3, q + 1) 3. Furthermore,

PSU(3, q) SU(3, q)
Z(SU(3, q))

and Z(SU(3, q)) has order or 3 depending on whether 3 divides q + or not.
On the other hand, SU(3, q) is the only nontrivial perfect central extension of
PSU(3, q). Thus, if Uo is a quasisimple group of PSU(3, q)-type, Uo is iso-
morphic to either SU(3, q) or PSU(3, q).
A Sylow 2-subgroup Sn Sn(q) of SU(3, q) is of Suzuki B-type" [Sn[ q3,

IZ(S)l q, and S Z(Sn) (Sn), which of course also equals fa(Sn)
since Sn is a Suzuki 2-group. Let U be any group such that Uo < U is quasi-
simple of PSU(3, q)-type and Cv(Uo) Z(Uo). Let IU/Uol equal nan2, where
n is odd and n2 is the 2-part. Then a Sylow 2-subgroup of U is isomorphic
to the semidirect product of Sn and a cyclic group of order n2.
Our first result gives the structure of the automorphism group An of Sa. We

shall not use the specific structure of Sn to find An but the important property
that it has a cyclic group of order q2 acting on it (sitting inside Aut (SU(3, q))
and inside SU(3, q) for (3, q + 1)= 1), such that the subgroup of order
q acts trivially on the involutions. This is exactly what makes it of Suzuki
B-type.

THEOREM 1.1. The automorphism group An of Sn has the following structure"
O2(An) is elementary abelian of order 22"’-. An/O2(An) has order 2n(q 2 1)
and is isomorphic to the normalizer of a Singer-cycle in GL(2n, 2).

Proof Let Ba < An consist of those automorphisms acting trivially on
Sn/Z(Sn) and Ca < An of those acting trivially on Z(Sn). Clearly, Bn An
and Ca------ An. Moreover Ba < Ca and as (S) Z(Sn), Ba is a 2-group.
Since ISdZ(S)l 22 and IZ(S)l 2,

Bn = Hom(Z2 x Z x...x Z",Z x Z x...x Z) (1)

where Z - Z2 for all k. Hence Bn is elementary abelian of order 22". Now
An/Bn is isomorphic to a subgroup of GL(2n, 2). We know it contains a sub-
group of order 22" acting irreducibly on Sn/Z(Sn). Hence 02(An/Bn)
(1) and Bn O2(An). By a result of T. O. Hawkes [5], Cn/Bn is isomorphic
to a subgroup of D2q x x D2, where D2q, is a dihedral group of order
2q, q an odd prime power. We know that An/Bn contains a subgroup Dn of
order 2n(22" 1) isomorphic to the normalizer of a Singer-cycle in GL(2n, 2).
Now Dn contains a dihedral subgroup D2+x) of order 2(q + 1), which lies
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inside Cn/Bn. Since the element of order q + acts irreducibly on Sn/Z(Sn),
the normalizer in An/Bn of the subgroup Q of order q + in D2q+ ) is equal
to Dn as well. Hence Q is equal to its centralizer in Cn/Bn, so Cn/Bn D2/ x).
But then D2q+ ) is normal in An/Bn, so An/Bn Dn, and we are done.

COROLLARY. Let R be any 2-group containing some Sn as a subgroup of index
2. Then Z(R) Z(Sn).

Remark. This technique may easily be applied to find the automorphism
group of other types of 2-groups, in particular other Suzuki 2-subgroups.
Among these the most interesting are those of A-type, to which class belong the
Sylow 2-subgroup SA Sa(q) of the simple Suzuki groups Sz(q), q 2.
Analogously we obtain the following (known) structure.

THEOREM 1.2. The automorphism group Aa of SA has the following structure:
02(AA) is elementary abelian of order 2". Aa/O2(Aa) has order n(q 1) and is
isomorphic to the normalizer of a Singer-cycle in GL(n, 2).

We will list those properties of SU(3, q) we are going to use. Of course we
are mostly interested in 2-elements.

Sn(q) can be described in the following way"

Sn(q) "a, b e GF(q2), b + bq + ai+q 0. (2)
0

The cyclic group of order q2 l, which is the complement of Sn(q) in its
normalizer in SU(3, q) is generated by

eq- (3)Uq2
0

where e is a primitive (q2 1)-th root of unity. Let furthermore ao_
(aq_ )q+ and aq+ (%_ )q-. Unless 3 divides q + 1, SU(3, q) is simple
as mentioned earlier. If 3 does divide q + 1, Z(SU(3, q)) has order 3 and is
contained in (aq+ ). In this case the complement in the normalizer of Sn(q)
in PSU(3, q) has order (q2 1)3-. We will use the above notation for the
elements of the complement independently of whether we deal with SU(3, q)
or PSU(3, q). In the latter case, aq_ and aq+ have orders (q2 1)3- and
(q + 1)3- respectively.
Denote by (a, b) the element

(4
0

in S(q). Then

(a, b)(c, d) (a + c, d + ad + b) (5)
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and in particular
(a, b)2 (0, a /q), (a, b)-m (a, bq). (6)

S(q) has one conjugacy class of involutions and one of elements of order 4
under the action of the group of order q2 in its automorphism group. Let
(a, b), (1, c) S(q). Then

(a, b) (1, c)(a, b) (1, c + a / aq) (1, c) (7)

if and only if aq- 1, an equation with q solutions. Of course we do not
get any bound on b since Z(S(q)) consists of elements of the form (0, d) by
(6). Hence it follows that the centralizer of an element of order 4 is of order q2.
It is easy to check that any such group M is normalized by trq_ 1, and O’q_ acts
irreducibly on M/Z(Sn(q)). Hence

M’-’ Z x."x Z2 (8)

where Z - Z4 for all k. S(q) has q + groups of this type, M1, M2,...
Mq, Mo, conjugate under the action of the element of order q + in the
automorphism group. Denote in the following S(q) by So. For any kin, k2,

So Mk, O) Mk2 (9)
Z(So) Z(So) Z(So)

Let be the field automorphism of order 2. We note that acts trivially on
Z(So). Since So contains q 4- maximal abelian subgroups, normalizes at
least one of them, say Mo. However, (9) shows that it does not normalize any
other, since otherwise it would act trivially on So]Z(So), which is not the case.
It is easy to check that Mo is inverted by . Finally, centralizes a_ and
inverts aq+ m, and the centralizer of in PSU(3, q) is isomorphic to PSL(2, q).

2. A characterization of the Sylow 2-subgroups of
PSU(3, 2n) and PSL(3, 2n)

The following situation seems to occur in many classification problems,
including the present one.

(*) Q is a 2-group admitting an automorphism of order 2 and an auto-
morphism p of order 2 such that

(i) and p commute with each other under the action on Q,
(ii) C(00 E2.,
(iii) p acts transitively on Ce() #.

The purpose of this section is to prove the following

THEOREM 2.1. Let Q be a (nonabelian) 2-group satisfying (*). Then Q is
isomorphic to a Sylow 2-subgroup of PSU(3, 2") or PSL(3, 2").
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Remark. We note that is easily verified that in case Q is abelian, then Q is
either homocyclic of rank n or elementary abelian of order 22n.

The first step towards a characterization of such 2-groups has also been
obtained by G. N. Thwaites in [7-1 as a corollary to a general result on p-groups"

LEMMA 2.2. Let Q be a 2-group satisfying (*). Then Q contains a homocyclic
subgroup Qo of rank n such that

(i) inverts Qo,
(ii) p acts transitively on Qo/dP(Qo),
(iii) Old(Q) - E2,. and dp(Q) (Qo).

Proof. See Lemma 2.5 in [7].

We now consider the semidirect product of Q and ( x (p). Let Qo
(rl,..., rn and choose notation such that r r(’-1 for 2,..., n. Let
qQ\Qo, andsetq q-l,i 2,...,n. Then

Q (r,..., r,, q,..., q,. (10)

Since q ?q Qo\(Q), we may as well assume that [, ql-I r. In par-
ticular, it follows that the map r q induces an isomorphism between
Qo/dp(Q) and (q,..., q, (Q))/(Q) which commutes with p. Thus we have

LEMMA 2.3. Q/dp(Q) is the direct sum of two isomorphic p-modules.

The next lemma is due to R. Solomon and occurs in another context. We
include the proof.

LEMMA 2.4 Let Q be a nonabelian group satisfying (*). Then Q is of class 2
and exponent 4.

Proof To see this we will consider the associated Lie ring. Let Q, Qx, Q2,
Qa,... be the lower central series of Q and set L Q/Qx, L+ Qo/QI
(Qo defined as above) and L Qi/Q+x for 1, 2, Let L- be a com-
plement in L under the action of p. Now, by Lemmas 2.2 and 2.3, Q/Q+ -E2. for all > 0, and L+, L-, Lx, L2,... are all vector spaces of dimension
n over Z2 and isomorphic as p-modules. Thus there exists a primitive (2" 1)-th
root of unity 2 such that 2, 22, 222,..., 22" are the eigenvalues of p on L
L- (R)z,_ K, where K Z2(2). Let Lr L (R)z K, L L/ (R)z K and Lr
L (R)z K for 1, 2, Let Uo,..., un- be eigenvectors of p in L with

1corresponding eigenvalue 22‘ It easily follows that Uo + ul,..., u,_l + u,_
form a basis for L and corresponding eigenvalues are 22’. Next, we want a
basis of eigenvectors for Lx. Clearly L1 is generated by vectors of the form

1] ]-u, u], each of which is either 0 or an eigenvector of trq with[Ui Uj or
corresponding eigenvalue 22‘+ 2J. Hence [ui, uj] 0 for all i, j, and [ui, u]
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0 if and only if j, so [Uo, u’],..., [u,_ 1, u’_ 1] form a basis for L1. Finally,
consider L2. A similar calculation shows that L2 is generated by vectors of the
form [[u, u"], uj]. However, by Jacobi’s identity,

u,] + u,]. (11)

so by our calculations above [[u, u"-], uj] 0 unless i= j. But now, as
23.2‘ is never an eigenvalue, [[-u, u"-], ui] 0 as well, i.e. L2 0. Hence Q
is of class at most 2.

LEMMA 2.5. Let P be a group of order 23", class 2 and exponent 4 admitting
an automorphism p of order 2" such that

(i) Z(P) > Z
_

E2., and p acts transitively on Z ,
(ii) P/Z - E22.,

(iii) P/Z is the direct sum of two irreducible p-modules, each of which is
isomorphic to Z as a p-module.

Then P is isomorphic to the Sylow 2-subgroup of PSU(3, 2") or PSL(3, 2").

Proof Identity P and (p) with the corresponding subgroups of P. (p).
Let p P\Z, and let R (p, p) P. Then RZ/Z - E2. by (iii). Moreover,
RZ/Z

_
Z as a p-module. On the other hand, as R is either abelian or a Suzuki

2-group of A-type, it follows from I-6] that R is abelian.
Let ho be an element of order 4 and set H= (h0, p) P. As Pis non-

abelian, fl(H) Z. Next we claim that Ce(h) H for all h H\Z. Suppose
p P\H centralizes h and consider R (php, p)c P. As R is abelian,
[php, pPh’] 1. However, since I-p, pP] as well, this implies that
[p, h] [p, h] 1. Thus p centralizes h’ as well, and it follows by in-
duction that p centralizes H, a contradiction since P is nonabelian.

It now follows that every h H\Z(P) is inverted by exactly one element p
in P modulo H. In particular, if I(P) > Z(P), P contains exactly 2 maximal
elementary abelian subgroups of order 22". Anyway, P is generated by the
subgroups P1 <P, P> c P and P2 (ph, p> P. Now, since [p, p’"h’’]
[p, hO], all commutators are uniquely determined from commutators of type
[p,h], < k_< 2"- 1. However, as <ph’,p> Pis abelian as we have
seen above,

[pho, pPh’] [p, hP][pp, h] 1. (12)

Thus [p, h] [p, hiP= (h2)’, so it follows by induction that all com-
mutators are uniquely determined. Thus there exists at most one such group of
a given order with P1 elementary abelian and at most one with P2 homocyclic
of exponent 4. As both the Sylow 2-subgroup of PSU(3, 2")and that of
PSL(3, 2") satisfy the assumption of the lemma, we are done.
Theorem 2.1 is an immediate consequence of these lemmas.
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3. General results

LEMMA 3.1. Let G be a finite group with an involution al whose centralizer
has the form C(1) C E H where e E, E is elementary abelian and
H is any group. Assume furthermore that for any E #, a Sylow 2-subgroup
of C6() is isomorphic to that of C. Then one of the following occurs"

(i) iscentral,
(ii) r(E) < r(Ilx(Z(S))), where S Syl2 (H)

Proof Assume 1 is not central and let E S < P, where P Syl2 (G).
Furthermore, let p Np(E S)\E S such that p2 E S. Then p acts
on E c Ep, so E c Ep (1) by assumption. On the other hand,

p-p _< f(z( x s)) t x (z(s)). ( 3)

Hence [El z < IE[ ICtx(z(S))l, which proves (ii).

Notation. If K is a group acting on the group H, let H. K denote the semi-
direct product of H and K.

LEMMA 3.2. Let G be a finite group, P Syl2 (G). Suppose P contains a
normal subgroup Po with a complement C E x (c), where E is elementary
abelian (or (1)). Assumefurthermore that ord (c) > exp (Po). Then

P c G’ < Po. (E x (crd(C)/exp(P))).

Proof. This is just a straightforward application of Grfin’s First Theorem
(see [4, p. 252])"

P G’ (P c N(P)’, U P c (P=)’>. (14)

First consider P c N(P)’. Let N be a complement of P in N(P). Let n N,
p P, 1, 2. Then, independently of the present structure of P,

[nPx, n2P2] Pxnpnnnnn2naPn2P2 (15)

belongs to P if and only if nXnnn2 [n, n2] does. Hence it suffices to
consider elements [plna, p2n2] where [n, n2] in order to determine
P c N(P)’, in which case

[nlpx, n2P2] pnapanlnpn2P2 (16)

Before we continue, we note the following elementary fact.
Let P be a p-group, Po a normal subgroup of P with a complement C

E x (c) where E is elementary abelian (or (1)) and ord (c) > exp (Po/P’).
Let p be an automorphism of P and set Pa Po. E. Then

(a) (cp} cP (1),
(b) cp pod for somepo e P’ andj N, (j,p) 1.
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This is easily verified in the following way" Let E7 EP’/P’ and ()
(c)P’/P’. Then

P------J x <E’> x Q (17)
p’

for some Q < Po, QP’/P’, as P’< Po and (a) follows, since by as-
sumption ord (c) > exp (Po/P’) exp (). Hence P’ c (c) (1) as well,
and (b) follows.

This has the following consequence. Let p plick’, where pl e P,
1, 2. Suppose ord (c) > exp (Po/P’). Then

n2 Pin2 p11ck,kl n lp2n1 p12ck2k2 (18)

wherep e P’-, P2 P’ and k’i is odd, 1, 2, by (b). Thus

[nlp, n2P2] p’ck’(-k’)+k2(1-k2’) (19)
for some

p’e <P’, p2> <_ p,. <cord(c)e-t> <_ p<c2>,

where e exp (Po/P’), by assumption. Since I- k’, I, 2, is even,
ude)’ _< e,.

Next let no min (ord (c), exp (P’)). Now the result above together with
our assumption, namely that P P c G’, implies that for some x G there
exists a j N, j odd, Poe Po and E such that p poCj P c (px), <
P1crd ()n-1. But clearly, ord (p) _> ord (c). This proves the lemma.
The following result was first observed by K. Harada.

LEMMA 3.3. Let G be a finite group, P e Syl2 (G), and let Po be a maximal
subgroup of P. Assume that x P\Po belongs to the focal subgroup of P with
respect to G. Then either x is conjugate to an element of Po or x2" is conjugate
to an element of P\Po for some r >_ 1.

Proof. By transfer.

Finally we shall use a transfer lemma due to D. Goldschmidt, which extends
the result of Lemma 3.3 in the special case when ord (c) 2, namely the
following"

Definition. Let G be a finite group, x e P Syl2 (G) an involution. Then
x is said to be extremal in P provided that C,(x) Syl2 (CG(x)).

LEMMA 3.4. Let G be a finite group, P Syl2 (G), and let x e P be an in-
volution which belongs to the focal subgroup of P with respect to G. Assume
x has a complement Po in P. Then x has an extremal conjugate in Po.
Proof See [3].
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4. The classification

Assumption. Let G be a finite group with an involution 1 such that

Ca(al) C= E x U (*)

where E is elementary abelian and U contains a normal subgroup Uo which is
quasisimple of PSU(3, q)-type such that Ct(Uo) Z(Uo). Assume further-
more that C() Ca() for all cz E # (a trivial assumption when IEI 2).

Notation. If H and K are subgroups of the group G such that [H, K] 1,
we denote by H x, K the central product of H and K w.r.t. H c Kin addition
to the standard use.

If G is a finite group, we denote by Gp a p-group isomorphic to a Sylow p-
subgroup of G. Similarly, we denote by IGIp the order of a Sylow p-subgroup
of G.

Otherwise our notation will be standard as in [4].
E= <z,...,
SeSyl2(U), So Uo n S - Sn(q). S= So. <r/>, where ord(r/)

IU/Uol. Let be the involution in (r/> (if r/ # 1). Furthermore, let r/, r/2k-r,
where 2k ord (r/).

Z(So) (ii,..., i,).
To E x So.
T E x S. We note that all maximal elementary abelian subgroups of T

are conjugate to E x Z(So) x () inside of Cr(E x Z(So)).
Let WSyl2 (NG(To)), W0 Cw(So).So, VSyl2 (NG(Wo)) and V <

P Syl2 (G).
Let Mo denote the maximal abelian subgroup of So which is inverted by .
Finally, let aq,_x, try+ and aq_i denote the same elements of Uo as in

Section 1.

We note that the assumption on the centralizers of the involutions in E
implies that E is a T.I.-set and that the automizer of E is of odd order.

Also, since every involution of So is a square, no involution of E is conjugate
to the involutions of So.
LEMMA 4.1. Suppose [El > 2. Let o e E, e E.

to . Then o is not conjuyate

Proof Clearly E x () x Cvo()< C(y), which is isomorphic to
E x U if is conjugate to . Since Cvo() is isomorphic to PSL(2, q), the
assumption IEI > 2 implies that

O2(Ca()) c E # (1).
But this contradicts that E is a T.I.-set.
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LEMMA 4.2. Suppose the weak closure of E x Z(So) in P is contained in T,
and assume that 7 is conjugate to an involution of Z(So) for some y E. Then
there existsfor any z E a fl E such that is conjugate to fl. In particular,

Proof If the weak closure of E Z(So) in P is contained in T, it follows
that whenever (E x Z(So) x ()) P for some # G,

( x Z(So) x ()) x Z(So) x () (20)

for some s o by the remark above. Suppose (7) Z(So) for some
G. As Z(P) Z(So), we may as well assume that Z(P). Then

(E x Z(So) x ())h Co(i),

so for some c Co(i) we have that (E x Z(So) x ()) P. Hence

( Z(So) ()) e x Z(So) x () ()

and (7) for some So Mo with y hcso. But and 7 are not conjugate
in No(C), so E E= (1). Since all involutions of Z(So) x (7) are
conjugate by assumption, gy-1 equals flj or flj for some fl E, j Z(So).
If- equals flj, we are done. If- equals flj, replace y by Yo Y,
where is a power of

_
such that j i. Then yyoy y-1 yfly-7.

Now, if yfly- E x Z(So), fl and in particular IEI > 2. But then
yfly- E x Z(So) by Lemma 4.1, a contradiction. Hence yfly- E x Z(So),
and we are done.

LEMMA 4.3. Let G be a finite group with S (in the above notation) as Sylow
2-subgroup. Then we have the following constraints on S.

(i) Assume So <_ S c G’. Then S c G’ < So.
(ii) If furthermore G contains a subgroup isomorphic to U (in the above

notation), S c G’ So.
Proof By Lemma 3.2, we may as well assume that r/4= 1. Suppose

(r/) < S c G’ and ord (r/) 4. Then, by Lemma 3.3, is conjugate to some
involution in Z(So), say o Z(S) for some 9 G. By Sylow’s Theorem
we may assume that

(Z(So). ())" <_ s.
But then r/ So as (/,/0)2
Thus

and ord (r/) 4, so qo acts trivially on Z(So).

IZ(So)" C(so)(n)l 2. (22)

However, IZ(So)l ICz(so)(rt)l z as ord (r/) 4, and consequently IZ(So)l 4.
On the other hand, as (Z(So) x ())o< S we may as well assume that
(Z(So) x ()) Z(So) x (). Now, as r/ So, r/ r/ mod (Z(So)).
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But then r/ is inverted by , as we have seen in Section 1. This is a contradiction
as q is not inverted by any element in Z(So), and (i) follows.
Next assume that G contains a subgroup isomorphic to U. In order to prove

(ii), we may assume that ord(r/) 2 by (i). IfSc G’ So.(, o it

Z(So) for some 9 G by Lemma 3.4. Thus CG(i) C contains a subgroup
H Ho x (i) such that Z(So) x () is a Sylow Z-subgroup of (i) x Ho
and Ho, where Ho PSL(2, q). Since S < C as well, we obtain O2(C)
(i). Now letsSo such that s s -x ands 2 i. For every element a
(or subgroup A) of C, denote by a (resp. *) the corresponding element (resp.
subgroup) of C Ci/(i). Let h .j Z(So) c Ho for some h Ho. Again
we may assume that ((g) Z(So)-x ())h _< by Sylow’s Theorem.
Hence

((g) x Z(So)- x ())h (gh) X Z(So)- x () (23)

where ch j. Thus

(((s) x, Z(So)). ())h ((Sh) X, Z(So)). (). (24)

But then j {h centralizes sh, a contradiction.

LEMMA 4.4. Suppose 1 is central. Then Z(So) is strongly closed.

Proof Suppose a is central. Then E x Z(So) is strongly closed if IEI > 2
by Lemmas 4.1 and 4.2. But clearly, no element of E x Z(So)\Z(So) is con-
jugate to an involution of Z(So). Hence Z(So) is strongly closed if IEI > 2.
Assume therefore that E (al). By Lemma 3.4, ax is conjugate to some
involution in f(S) if E does not have a complement in G. So in that case
IU/Uol is even and (l) is conjugate to . In particular, is not a square.
But then So. () is a complement in P to 21, so is conjugate to za as
well, and again Z(So) is strongly closed. Hence E is of order 2 and has a com-
plement in G. But then by Lemma 4.3, we are done.,

COROLLARY. m __< n.

Proof By Lemma 3.1.

LEMMA 4.5. f(W) > fx(T).

Proof Suppose not. Let p e N,(W). Then p Nv(Z(fI(W))). But
Z(f(W)) E x Z(So), so p normalizes

Cw(E x Z(So))= E x (So. ()) (25)

and hence also E x So. Thus p W by definition, so P W.
By Lemma 4.2 Z(So) is strongly closed if IEI > 2. So assume E (l).

By Lemma 4.4, is not central, so T is a proper subgroup of W. Hence
is conjugate to 1i for all Z(So) by the action of trq_ on w-aw, where
w W\T. If Z(So) is not strongly closed, the involutions of Z(So) are con-
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jugate to 7 for some 7 e E. Hence al is conjugate to 7al by Lemma 4.2.
Now, as in the proof of Lemma 4.2, there exists an h G such that h 7 and

((al) x Z(So)x ())h (a) x Z(So)x (). (26)

On the other hand,
h- ihaq + lh- ih Taq+ Y a-+l (27)

Hence iha+h-mi ha+mh-m. By the structure of U, haa+lh -m does not
belong to Uo then, since haa+mh -m is not real in Uo. Thus haa+mh-m C.
Consequently, a’ E x Z(So), so a] yamj for some j Z(So). Let s Mo
such that s-ms equals j. Then a] yax and hs j. NOW let c be an
arbitrary element in Cvo(). Then

amhscs-Xh-mam hsTacyals-mh-1 hscs-Xh -m (28)

so hsCvo()s-mh-m < C. As Cvo() - PSL(2, q) we deduce that

hsCvo()s- h- < Uo.
Thus

Z(So)-1h-1 < ((am) x Z(So) x ())c Uo Z(So), (29)

a contradiction since h yj.

COROLLARY 1. ’I(W) Np(S0).

Proof. Let e fI(W)\T be an involution. Then acts on

T O2,2,(Ca(E x Z(So))) E x (So. (aq+m))

so acts on T’I So.

COROLLARY 2. ’I(W) Cp(Z(So)).

Proof By Corollary and the corollary of Theorem 1.1.

(30)

LEMMA 4.6. (i) aq_ e Na(f(W)).
(ii) W contains a normal subgroup Wo > To, which is a complement to (rl)

such that Wo/To - E2,. Moreover trq_ actsfaithfully and irreducibly on Wo/To,
and Wo/Z(So) is elementary abelian.

Proof Let z e fm(W)\fm(T) be an involution and a e E #. Then z acts
trivially on Z(So) and on E x Z(So)/Z(So) as well, as E is a T.I.-set and
INa(E): C is odd. Thus xaz ai for some Z(So). So for any k there
exists an r such that zzk mod (C), where p aa_ and r is determined
by iipk= p". Now let zz= v"a, where aeC. As z,z," belong to
C(Z(So)),

a Ca(Z(So)) c Ca(a) E x (So. ((a+ 1)" ()))" (31)
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By Corollary of Lemma 4.5, z acts on So. Suppose [U/Uo[ is odd. Then

a E x (So. (trq+l)).
But zzpk acts trivially on So/Z(So) by Theorem 1.1 as trq_ centralizes . Thus,
as zpr "r’d"a-1, .r,,. acts trivially on So/Z(So), so does z.

If z acts trivially on So/Z(So), independently of whether U/Uol is odd or not,
a does as well, and it follows that a To.

If z acts nontrivially on So/Z(So), U/Uol is even by the remark above. In
particular, as z W, z must act trivially on So/Z(So), again by the structure
of An. Consequently (z)2 Z(To). Hence (z)2 actually belongs to Z(So),
since no element of Z(To)\Z(So) is a square. Let z. It now follows that

a (t)P-’(t)(t)p tP-’t-ltp (32)

is a 2-element, and (i) follows.
To prove (ii), we define Wo as follows. If z acts trivially on So/Z(So), we let

Wo (To, za,..., z-). If z acts nontrivially on So/Z(So), we let Wo
(To, tP,..., t-’). For any w W, clearly w z’to for some z N, to T,
so I4," (Wo, r/). As So < W, it follows from the structure of An that
Wo 14/’. Also, Wo/To acts trivially on To/Z(So). Now, let w Wo. Then
w2 To. On the other hand, as w acts trivially on So/Z(So), w2 Cwo(SO).
Hence w2 e E x Z(So) and it follows that Wo/Z(So) is elementary abelian.
We can now determine the structure of Wo completely.

LEMMA 4.3.7. Wo So. Co(So) and Cwo(So)= F. E, where F c TO
Z(So) and F/Z(So) - E2. Moreover, F W.

Proof It is not difficult to see that a+ acts on Wo. But Wo Wo/E x
Z(So) is elementary abelian, from which it follows that ,o So x E/E x
Z(So) has a complement in Wo under the action of a+ 1, o Fo/E x Z(So).
Once again, E x Z(So)/Z(So) has a complement in Fo/Z(So), say F F/Z(So),
as Fo/Z(So) is elementary abelian by Lemma 4.6(ii). Since a+ acts trivially
on Z(So) and F/Z(So) - Z(So), a+l actually centralizes F. Letf F be any
element outside Z(So). Then [So" Cso(f)[ <- 2". As f centralizes aq+a and
(So, a+ 1)’ So, we deduce immediately that f centralizes So, and the first
part of the lemma follows.

In order to prove the last statement we note that F E is normal in W.
Furthermore, (a_) is normalized by r/. Clearly trq_ acts on F. E and hence
on F. E/Z(So). Therefore E x Z(So)/Z(So) has a complement under the
action of aq_ 1, which we may as well assume to be F itself. It now follows that

((F x, So). (aq_x)). (E x <q))’ < (F x, So). <aq-1) (33)

is normalized by r/and hence that F < W.

LEMMA 4.8. F is homocyclic of exponent 2 or 4.
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Proof. We have seen that F/Z(So) and Z(So) are isomorphic as aq-1-
modules. Also Z(So) < Z(F). Hence all elements in a coset of Z(So) in F
have the same order. If F is not elementary abelian, fI(F) Z(So) and F is
homocyclic of exponent 4 if abelian, otherwise of Suzuki A-type by definition.
However, the last case is impossible, since, by [6-1, this would imply that
F/Z(So) and Z(So) are not isomorphic as aq_ -modules.
LEMMA 4.9. Suppose P W. Then Z(So) is strongly closed in Wo with

respect to G. In particular Z(So) is strongly closed if Wo W.

Proof An involution of Wo\E x Z(So) is of the form vs where v F. E
and s So, and Cwo(VS) > Cso(S) x (vs). If (vs) Z(So) for some # G,
we may as well assume that W contains (Cwo(VS))g by Sylow’s Theorem. But
f(Cso(S)) is equal to Z(So), and every involution in Z(So) is a square in Cso(S),
which contains a maximal abelian subgroup M of So. As W Wo.
M Ma x (m), where Ma < Wo, for some m M. Furthermore,

(vs) x D.aCMa) ZCSo) (34)

as Z(So) ’3a(Wo). Since M x (vs) is abelian,

M < Cw(Z(So))= Wo. (). (35)

As any square in Wo. () lies in So and m2 is an involution, m2 6 Z(So) a
contradiction.

LEMMA 4.10. Suppose P (P c G’, E) and assume furthermore
Z(So) is not strongly closed in P with respect to G.

(i)
(ii)

(iii)
(iv)

that

Suppose [El 2 and P W. Then E has a complement in G.

Suppose [El 2. Then P > W.
Suppose P W. Then ord (r/) < 2.

The weak closure ofE in P is not contained in E x Z(So).

Proof (i) Suppose [El 2 and P W. As F x, So/Z(So) is the direct
sum of three isomorphic try_ a-modules, it follows that if Wo is an involution in
F x, So then Ce ,so(Wo) contains an elementary abelian group of order 22".
In particular, a is not conjugate to any involution in F x, So. Now suppose
E does not have a complement in G. Then fs for somef F\Z(So) #,
s So and # G by Lemma 3.3 since (F x, So). (r/) is a complement in P to

1. But then inverts fs, so s s mod (Z(So)). Thus inverts s (see
Section 1) and hence fs is conjugate to f Supposef 1. If F is elementary
abelian, Cwo(f) > F in contradiction to the assumption that 1 is conjugate to

f If F is of exponent 4, f centralizes the diagonal D of F and Mo, D - E2,.
But f is conjugate to fsl where sa Mo and Sl

2 f2. Hence fsa D and a
conjugate of 1 centralizes D x Z(So), again a contradiction. Thus f
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and 1 is conjugate to . In particular, ord (r/) 2. By the same argument,
1 is conjugate to 1. It now easily follows that all involutions of W\Wo are
conjugate to . Hence Z(So) is strongly closed by Lemma 4.9.

(ii) Let Go be a complement ofE in G by (i). We may as well choose notation
so, that a Sylow 2-subgroup of Go is of the form (F x. So). (r/). Moreover,
we may assume that ord (r/) < 4 by Lemma 3.2, and if ord (r/) 4 that is
conjugate to an involution in Z(So) by Lemma 4.9, again using the fact that if
rn Wo. () is of order 4, then m2

6 Z(So). If on the other hand ord (r/) 2
it follows immediately from Lemma 3.4 that is conjugate to some involution
fs in F x. So. But then Ca() contains subgroups isomorphic to F x. Cso(S)
and ((El) X Z(So) X (), SO is not extremal in e. Furthermore, if 0 p
is extremal, g centralizes some conjugate of 1 lying in P, which, by (i), must
be of the form v for some v (F x. So). (). It is now easy to see, using
Lemma 4.9, that Z(So). Thus, in any case, is conjugate to an involution
of Z(So). Now, let Z(P) <_ Z(So) and Ci Ca(i). Obviously, as is
conjugate to i, O2(Ci) (i), since Ca() contains a subgroup isomorphic to
PSL(2, q). Thus we may use the idea in the proof of Lemma 4.3 (ii). For every
element a (or subgroup A) of Ci, denote by (resp. A) the corresponding element
(resp. subgroup) of C-’ C/(i). Now, ()= j belongs to Z(So)\(i) for
someh Ci, where] Z(W)-. Lets Mo, s 2 i. Then, as (g) x Z(So)- x
() < Ce,(), we may assume by Sylow’s Theorem that ((g) x Z(So)- x
())h < W. Butthen

(((s) , Z(So)). < (F x, So). (36)

so j ()h, a contradiction as inverts s. Now, by Lemma 4.9, we are done.

(iii) By Lemma 4.7, W (F x. So). (E x (r/)). Hence we may assume,
by Lemma 3.2, that ord (r/) < 4. Furthermore, if ord (r/) 4, then, by Lemma
3.3, is conjugate to a square in Wo. (), i.e. to an involution Z(So), say
o Z(W) for some g e G. Now we use the idea of the proof of Lemma
4.3 (i). By Lemma 4.9, Z(So) is strongly closed in Wo w.r.t.G. Thus we may
assume by Sylow’s Theorem that

(Z(So) Z(So) (Wo ) (37)

for some Wo c Wo. Furthermore, since (/0)2 i, rlt Wo. (). Hence qo
centralizes Z(So) and thus n 2. Now, as E is a T.I.-set and ord (q) 4 by
assumption, IEI 2, and, by (ii), we are done.

(iv) If the weak closure of E in W w.r.t. G is contained in E x Z(So), then
P W. Hence we may assume, by (iii) and Lemma 4.9, that ord (q) 2 and
after possibly change of notation, by Lemma 3.4, that is conjugate to some
involution of Wo say o= vs, vF.E, sSo, for some gG. But then
Ca() contains subgroups isomorphic to E x Z(So) x () and F x, Cso(S).
This, together with the assumption that the weak closure of E is contained in
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E x Z(So), again implies that is conjugate to an involution of Z(So). This
is a contradiction by Lemma 4.2.

LEMMA 4.11. Suppose F is homocyclic of exponent 4.
strongly closed or [El 2 and al inverts F.

Then either Z(So) is

Proof Assume Z(So) is not strongly closed in P w.r.t.G. Then, by Lemma
4.10 (iv), E x Z(So) is not weakly closed in W. Suppose some a E # does
not invert F. This will occur if [El > 2. Let F (fl,..., f,) andf F\Z(So).
If f ff2i, where Z(So), and s So such that s 2 equals i, fs is an in-
volution. Assume therefore that fs is conjugate to some involution in E. As
Cso(afs) Cso(S) equals some maximal abelian subgroup M (sxx, Stn)
in So we may choose notation such that

Cw(fs) E (lflSll,..., OmfmSlm) E,. (38)

as E is a T.I.-group and Crq_ centralizes F.E. Let M2 ($21,... S2n) be
another maximal abelian subgroup of So. Here we choose notation such that
00ft [S1D S2i]. Then

M3 (fls21,... ,fnS2n) <-- Cw(gfs).

Now fix S2ko for some ko c N. For every j c Z(So)* there exists an sj M
such that (S2koSj)2 j, in particular if j Jko fk" Hence fkoS2koSj is an
involution, so fx((M, M3)) > Z(So) and thus (Ma, M3) is not a Suzuki
2-group. Thus, by Lemma 4.10(iv), an involution of the form fs, f F\Z(So),
s So\Z(So) is conjugate to an element of E. As every noncentral involution
in F x. So belongs to an elementary abelian subgroup of order 22" then
[El 2" and we may reverse the above process. If So So\Cso(S), there exists
an Uo E such that [o, f] [-So, s]. Now let fo e F such that (ofo)2 s.
Then aofoSo is an involution centralizing fs, a contradiction. Since any in-
volution of Wo\E x Z(So) is of the form ofoSo or foSo for suitable o Eg,
fo F\Z(So), we have reached a final contradiction.

LEMMA 4.12.
closed.

Suppose F is homocyclic of exponent 4. Then Z(So) is strongly

Proof We will prove this in a series of steps by way of contradiction. So
assume Z(So) is not strongly closed. By the previous lemma, IEI 2 and 1
inverts F. Moreover, by Lemma 4.10(ii), P > W.
As Wo char W, NG(W)< NG(Wo) and in particular V > W. Now let

v V\W such that vz W. Then, by Lemma 4.11, v-xxv af for some

f F. Furthermore, v-2v2 li for some Z(So), so v acts on

Cwo() c Cwo(D So. (39)
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Hence v acts on Cwo(So) F. (1) as well, so v acts on F. By counting
conjugates of al we obtain

I(W, v, aq-1)" (W, aa_l) q. (40)

Clearly v No(( W, aa_

(1) Suppose Wo < W. Then r(l(V/Wo))> 1.

Proof Suppose not. Then the above remarks and Theorem 1.1 imply that
V/Wo is cyclic. But then (W, v, aa_I)/W has a cyclic Sylow 2-subgroup, a
contradiction since this forces v to lie in

(2) V contains a normal subgroup Vo > Wo which is a complement to
(q). Moreover Vo/Wo E2..

Proof Let v be as above. By (1) we may replace v by Vo such that in addition
we have v Wo. We now use the idea in the proof of Lemma 4.6. Vo acts
trivially on Wolf , So, and E has q conjugates in Wo under the action of
(F, Vo, aa_ a). Moreover we have seen in (39) that Vo acts on So. As in the proof
of Lemma 4.6 we find that Vo acts trivially on So/Z(So) if / 1. If r/ # 1,
either Vo or Vo acts trivially on So/Z(So) by Theorem 1.1. Thus we may as
well assume that Vo acts trivially on So/Z(So). Therefore

I<Wo, Vo, aa-l>" <Wo, vo>l q (41)

and <Wo, Vo, crq-1) has a normal Sylow 2-subgroup Vo. Now (2) follows
easily.

(3) Vo (R x, So). (al> where F < R <_ Cvo(So) and R/F is isomorphic
to E2,.

Proof We first observe that aa+ acts on Vo as

r. (1) <

Moreover, Vo/F. (1) is elementary abelian since v e Cvo(So). Hence Fo
Vo/F is elementary abelian, so

(So (1))- So (1). F
(42)

F

has a complement K R/F under the action of aa+ 1. As K is isomorphic to
E2,, aa+ centralizes R. Now let u e R\F. As u acts trivially on So/Z(So) and
So is of Suzuki B-type, (Cso(U), aa+ 1) -> So and (3) follows.
Thus we have essentially two cases to consider, depending on whether exp (R)

equals 4 or 8.

(4) 1 is not conjugate to any involution of R x, So.
Proof Let u e R x, So be an involution. Suppose that u F x, So. Then
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R x, So/Z(So) is elementary abelian, so O2((/t O’q_l) is of exponent 2 and
thus u is not conjugate to

(5) exp (R) 4 and P > V.

Proof Suppose not. Define V1 V N,(Wo), Vx,o Vo which also
equals Cvl(So) x, So, and in general Vk N,(Vk_ 1,o) and Vk,o Cvk(So) x,
So. Finally, let Ro F.

(a) Assume exp (R)> 4. Then, if Vk < (P G’, T), Vk,o contains a
subgroup Rk such that

(i) Rk is a complement in Cvk(So) to 1 containing Rk-1 and normalized
by O’q_ 1,

(ii) Rk is homocyclic and inverted by

(iii) Vk (Rk , So). (1, ?.
To prove this we use induction on k. The case k has partly been con-

sidered in (3), where (i) and (iii) were proved, while (ii) follows from Theorem
2.1. Suppose (a) has been established for all k _< h and assume P > Vh.
(Note that R R1.) Let v Np(Vh)\Vh such that V2 t Vh. Clearly v acts on

Rh x, So. As exp (Rh) > 8, S c Rh Z(So), and v acts on F U"(Rh x, So)
for some a. Thus So c S > Z(So). Furthermore, if s (So c Sg)\Z(So)
and w e (R x, So). (el, ) is an involution centralizing s, then w e (R x,
So). (el). Thus v acts on (Rh x, So). (el) Vh,o, which is the crucial point
in the proof of (5). Also, I’ elrl for some rl Rh. Now (a) follows easily
by using the arguments proving (1) through (3). v acts on

d

0 Cvh(v-. 2rlV2r) So (43)
r=l

where 2d ord (v), and on Rk for all k < h as well of course. Now, if Wo < W
and r(fl(Vh+l/Vh) 1, Vh+l/Vh is cyclic by Theorem 1.1. Moreover,
fl(Vh+ 1) fl(W) < Wo. () since Rh is homocyclic. As fl(Rh) Z(So)
it is easy to verify as in Lemma 4.9 that Z(So) is strongly closed in Vh/ ,0
Vh,o and we reach a contradiction as in Lemma 4.10(ii), since we have assumed
that Vh+l < (P G’, T). Now (i), (ii) and (iii) follows by exactly the same
argument as was used to prove (2) and (3), while (ii) follows from Theorem 2.1.
Thus we may assume that P Vk for some k. Let Po denote Vk,o and set

Q Rk. Then Q is either homocyclic or of class 2 and exponent 4 (and equal
to R).

(b) 1 has a complement in G.

If not, 1 is conjugate to some involution in (Q x. So). (r/) by Lemma 3.4.
Hence x is conjugate to some involution of the form us, where u Q and
s So, by the same argument that proves (4). Then inverts u and s, so us
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is conjugate to u and inverts H 02((//, O’q_i)), which therefore is homo-
cyclic. If H

_
E2., C,(u) > H x Z(So), a contradiction unless u Z(So).

If exp (H) 4, u centralizes the diagonal D - E2. of H and Mo. But then
u is conjugate to d for some d D and C,(d) > D x Z(So), again a
contradiction. Finally, if exp (H) > 8, inverts F. But then C.(u) > D x
Z(So), where D

_
E2. is the diagonal of F and Mo, a contradiction. Thus

u Z(So) and 1 is conjugate to . In particular ord 0/)= 2. But then
(Q x. So). (1) is a complement in P to cz as well, so by the same argument
st is conjugate to t. Now, letf F\Z(So). Thenf fi for some Z(So).
Suppose # and let s Mo such that s 2 i. Then centralizes fs, so
centralizes the normal Sylow 2-subgroup H of (fs, aq_ ), which is homocyclic.
In particular, exp (H) 4, since otherwise centralizes H x Z(So) E22,
contrary to the fact that is conjugate to cz. But acts on H and Cn(o)
Z(So). Hence a Sylow 2-subgroup of Ca() contains a homocyclic subgroup
of exponent 4 and order 4n, and an involution, conjugate to which acts
nontrivially on H. Thus a similar situation occurs in T Syl2 (C). By inspecting
T we see that the involution in question must be of the form so or zso for
some So So. Conjugating by an element of So we may therefore assume that
the involution has the form or 1. Moreover, the homocyclic subgroup in
question has an intersection with So which contains an element s of order 4.
Hence s is inverted by that involution. Thus zl inverts some element of order
4 in H, a contradiction since inverts F. This shows that 1, so centralizes
F. But then l inverts F, a contradiction since is conjugate to . This
proves (b).
Hence l has a complement in G with (Q x. So). (r/) as Sylow 2-subgroup

(at least we may have chosen notation so). It is now clear that we must proceed
by reaching a contradiction of the same nature as that in the proof of Lemma
4.10(ii). However, we can no longer expect to prove by a short argument that
Z(So) is strongly closed in Q x, So w.r.t. G due to the fact that involutions of
Q x. So may be squares in (Q x. So), even if they do not belong to Z(So).
So we must go the opposite way this time so to speak, namely, prove that
"transfers out", in which case it will be trivial to verify that Z(So) is strongly
closed in Q x. So, and (5) will follow.
Now, let us consider possible conjugates of cz in P. By (b), every conjugate

of 1 in P is of the form zius or cz us for some u Q, s So. Suppose ius is
an involution. Then inverts u and s modulo Z(So), since Q c S Z(So)
and [Q, So-] (1). Hence uF, i.e. u is inverted by 1, so sZ(So). It
follows immediately that

CI,(Oius) (Q x, So) So. (44)

Next, assume that ous is an involution. Then ous is conjugate to czu in P.
Furthermore, el inverts the normal Sylow 2-subgroup H of (u, aq_).
Suppose u Z(So). If ord (u) 2, Cp(zu) > H x Z(So), a contradiction.
If u2 :/: let Ho < H be the subgroup of order 4 and exponent 4. Then
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C,(xu) >_ D x Z(So), where D - E2. is the diagonal of Ho and Mo, again
a contradiction. Thus u Z(So). In this case (x) x Z(So) x () is a max-
imal elementary abelian subgroup of a Sylow 2-subgroup of C(ous), and

f(C,(us)) (Q x, So) Z(So). (45)

(c) is not conjugate to an involution of Z(So).

Suppose i Z(P) < Z(S) for some # G. Let C denote C(i).
Now, Ca(C) contains as a subgroup (l, x L, where L Cvo()"
PSL(2, q). By Sylow’s Theorem we may assume that ((x) x Z(So)) < P.
Clearly, as Z(So) Syl2 (L),

Z(So) c O2(C,) (1). (46)

On the other hand, by our determination of conjugates of in P above,

((i) x Z(So)O (a x, So) Z(So). (47)

Furthermore, since L has one conjugacy class of involutions, it follows that there
exists an h C such that h Z(So). Now we reach a contradiction exactly
as in the second part of the proof of Lemma 4.10(ii).
We may now finish the proof of (5) by "extremal" arguments. It follows

immediately from (c) and Lemma 3.2 that r/4 1. Furthermore, if ord (r/) 4
and r/ P c G’, then, by Lemma 3.3, r/is conjugate to an element of (Q x. So).
() so is conjugate to an element of Q x, So, while if ord (q) 2 and

P G’ this follows from Lemma 3.4. Let in any case a be an extremal
conjugate of in P. Then it follows immediately from our determination of the
conjugates of a in P that Z(So), a contradiction by (c). Thus r/ 1. As
mentioned earlier this implies that Z(So) is strongly closed in P w.r.t. G,
contrary to our assumption.

(6) V (S x, S). (, r/), where So S - S,F < $2o and IP" l/I
2. Furthermore, there exists a x P such that a and (Mo) F, and
a has no conjugate in P\ V.

Proof By (4), is not conjugate to any involution of R x, So. By (5)
there is a p N,(I/)\V such that p2 V. As exp (R) 4, p-czp does not
belong to (R x, So). (ct), although clearly p Ne(R x, So). Furthermore,
if ord (r/) > 2, (R x, So). () is normalized by p, while if ord (r/) 2 we may
assume this to be the case. Thus p-p us for some u R, s So. As
in the proof of (5), this however forces u to lie in Z(So), and xus is conjugate
to cz in P. It now follows that V has the claimed structure and that and
ctl are conjugate in Ne(V) by some x where x2 V. Also, NI,(V) (V, x)
(note that V N,(Vo)). Now, if P > Ne(V), there exists an involution
v Ni(V)\V such that v is conjugate to czl and
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This implies that v centralizes Z(So). Moreover, as F Mo, v centralizes the
diagonal of F and Mo, which is isomorphic to E2,, a contradiction to the
assumption that v is conjugate to l. Thus we have established (6).

(7) Either P/(S x. $2o). (czl> is cyclic or there exists a v e P\ V such that
(X (Xl 2 e (), [q, V] : () and v centralizes Z(So).

Proof Let St2 So x. S and suppose P/S12. (ol) is not cyclic. Then
c2 St2. (l, r/E) We have furthermore chosen rc such that c-llrc
As /(7

2 e V /-2tXlK2 txlf for some f F. Let s e So2 such that
Then (cs)-llOcs) l and 0cs)-Et(cs)2

l. Let tcs be denoted/. Then

’ czl and u . Thus

1
2 N C,(l) c Cp() (l) x Z(So). (r/). (48)

Moreover,/ acts on CG(zl) c CG() which contains a normal subgroup Ha
(l) x L. (r/) of odd index, where L - PSL(2, q). Let H2 Ha. (/),
Ho L. Cnt(L). Then H2/Ho - (r/)/() as the outer automorphism group
of L is cyclic and (r/)/() acts faithfully (as field automorphisms) on L. Hence
/r/" Ho for some r N. However, as/ acts on N and/2 N,

(pr/r)2 : Ho c m (l) x Z(So) x (). (49)

Now all involutions of (t) x Z(So) x ()\Z(So) x () are conjugate to
0l, and therefore

(O e Z(So) x (). (50)

On the other hand, as pr/’ Ho and (/r/’)* 1, pr/’ acts on L as an inner
automorphism of order less than or equal to 2. Thus (/r/,)2 () and (7)
follows with v
We note that w is an involution if v2 .
(8) l has a complement Go in G.

Proof Either P/St2. (ot) is cyclic, in which case (St2, to) is a complement
in P to t, or St2 (r/, v) is a complement. In either case l has a complement
in P with no conjugate, as we have seen in (6), and (7) follows from Lemma 2.4.
Thus a Sylow 2-subgroup Po of Go is either St2. () (in the cyclic case) or

S12. (r/, v), without loss of generality.

(9) is not conjugate to any involution in S12.
Proof Suppose g S12. As acts on S and S as a field automorphism,

Cs12(0 D x Z(So), where D
_

E2, is the diagonal of F and Mo. Now, if
S12\Z(So), Cs2() contains a subgroup Mot x. Mo2 of index q, where

Mot < S is maximal abelian. It follows immediately that is not extremal in
P. Let h e p be extremal. Then C,(h) contains a conjugate of l. However,
by (6) we have that if z’ P for some a G, then ’ i’ for some p P.
Thus we may assume that l e C,(h). Hence he (l) X S. NOW, as is
not extremal in P and any involution in (t) x S is conjugate to either czl,
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or an involution in Z(So), it follows that h Z(So). Let Z(P). As in the
proof of 5(c), which only depends on the determination of possible conjugates
of 1 in P, there exists an h C CG(i) such that h e Z(So). Now, as in the
proof of Lemmas 4.3(ii) and 4.10(ii), for every element a and subgroup A of Ci,
let and . denote the corresponding element and subgroup of
Let s Mo such that s 2 i. Then by Sylow’s Theorem, we may assume that

(() () x Z(So)- x ())h < P. (51)

As s Cl(h), s S2. (r/). However, as Z(So), this implies that
s S2. (). Consequently, ch centralizes s h, a contradiction.

(10) r(f](Po/S2)) > 1.

Proaf. It follows immediately from (9) and Lemma 3.3 that Po]S12 is not
cyclic. Assume in the following that r(f](Po/S2))= 1. Then ord (v)=
ord (r/) 4 since Iv, r/-] e () i.e. (r/, v)

_
Qa. Furthermore, by Lemma 3.3,

r/ is conjugate to an element ( of S12. (1) and by (9), S2. (v) S12o
Then (2 fm for somefe F, m Mo, which is conjugate to in S2, so we
may as well assume that (2 . Let ( vss2, where sl So and s2 S.
Then

(2 (vsls2)2 SSESSl mod Z(So). (52)

Thus s’ s2 mod Z(So). So ( vsis[i for some Z(So). Consequently,

: (vss)" Cssss.
In particular, s sl mod Z(So), i.e. s s-1. But then

s’;(vsls’;i)s(’= vsfsli vi, (53)

i.e. we may assume that ( i. Now, as

Cv() ((Z(So) x D). (rl, v)). (1), (54)
we have

C,(vi) (Z(So) x D1). ((vi) x. C<,o,,>(vi)) (55)

where D < D. Also,

C,(r/) Z. (el) x (r/) (56)

where Z N Z(So) x D is of order 2". Thus r/ is not extremal in P. Since
centralizes z and all conjugates of in P lies in S2 (r/, el) and furthermore
the centralizer of any conjugate of e in P is contained in V, it now follows
easily that r/ e $12. () if r/ is an extremal conjugate of-r/in P. By (9), this
is a contradiction.

(11) Contradiction.

By (7) and (10), either 2 or [r/, v] 1. Moreover, if 12 /= 1, /,/2
by (10). But in the latter case r/2v is an involution where /2 (/’/) is of order 4.
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Thus either v2= and [r/,v-[ , v2= and Po/S12 -() x (v) or
v2 q: and Po/S12 (tl) x (lv). In the latter case q2 q P c G’ by Lemma
3.3 and (9). In the former case we apply Lemma 3.3. Assume q P c G’.
Then r/2 is conjugate to an element of Po\S12 (l2, v), again by (9). But any
element of Po\S12. (q2, v) has order larger than or equal to ord (r/) unless
r/* 1, as (r/v)2 r/2. Thus we may assume in any case that (r/, v) is iso-
morphic to either Z2 x Z2 or D8. Consider the case (r/, v) - Ds. Then is
conjugate to an involution in Po\$12. (,//v) unless 1 6 P c G’. Assume
therefore that is conjugate to vsls2 for some st So. Then s’ s2 mod Z(So),
as v inverts sis2, and sis2 is an involution. Moreover, [Csl,(v)[ 23", and
vsls2 is conjugate to vi by sl, where s[s2 Z(So). Again, is not extremal,
and we easily reach a contradiction. Thus we have reduced to the case
Z2 x Z2. But then has an extremal conjugate in S12. (v) by Lemma 3.4.
However, this forces the extremal conjugate to lie in S12, as no element of
S12. (v)\S12 centralizes any conjugate of ol in P. This final contradiction
proves Lemma 4.12.

LEMMA 4.13. Suppose F is elementary abelian and E c F # (1) for some

9 G. Then Z(So) is strongly closed in P with respect to G.

Proof If E c F :/: (1) for some g G, it follows that E - E2, and in fact
that F E x Z(So), since F- E22,, from our basic assumptions on E.
Furthermore, this implies that ord (r/) < 2, as r/2 acts nontrivially on Z(So).

First we claim that either Z(So) is strongly closed in P w.r.t. G, or the weak
closure of E in W w.r.t. N(W) is equal to (E, E) F.E. Suppose E _< W
for some a G. Then E < Wo since [E[ > 2. Moreover, either E < F. E
or E" c (F. E) (1). So assume the latter case occurs. Then, if E,

vs for some /3 E, v E and s So. Thus M Cso(S) < Cw(o"),
and consequently

E E (zlVlSx,... o,VoS,) (57)

where E (vl,..., Vn) and M (sl,..., s,), since g is an elementary
abelian subgroup of Wo whose centralizer in Wo is isomorphic to Ez. x Sn(2").
We note that (E, E) is isomorphic to PSL(3, 2")2. Suppose
is of order 2. Now, if furthermore a N(W), ])VaS for some E,
Va E and Sa So. However, as inverts "VaSa, inverts Sa, so we may as well. 2 for all k,assume that s, 1. If V 4: 1, ’/ centralizes F. Then
< k < n, since ?v, centralizes Ea. But then Va belongs to vZ(So) for all

for all k,k, a contradiction since [El > 2. So Va 1, and therefore v vs
,’r v, for all k. But then, centralizes Ffor all k, since e C(%_ ),SO k

again a contradiction. Thus r/ 1. But now, by Lemma 4.9, Z(So) is strongly
closed if P W= Wo so we may assume that V= Ne(Wo)> Wo. Let
v V\Wo such that v2 Wo. Suppose E c (F. E) (1). Then, using the
above notation

E (ovlsa,..., z,v,s,). (58)
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Hence cz= vs for some oE’, vE and sMs. Now, as v2Wo,
VvVsV vsvVs i for some Z(So). But then v v mod Z(So), so
v Ne(F). However, Ne(F) Wo as F E x Z(So), a contradiction. Thus
E < (E, E). Consequently, V P and IV: Wol 2. Finally, let a N6(W)
such that E f (E, Ev) (1). Then, from what we have just seen,

av- Xa- I(E x Z(So))ava- E x Z(So). (59)

LetEa. Thena-la vsfor sometimE, vEva and s So\Z(So)
After possibly replacing a by aq-l-kaa_ for some k we may assume that
v-lvv v. Thus, if [fl, v-] i,

av- a- oava- av- lvsva- avsOia (s- 1sVi)a-1 (60)

which belongs to E x Z(So). Thus ss is of order 4, i.e. v acts nontrivially on
So/Z(So). In particular, s does not lie in the maximal abelian subgroup of So
normalized by v. Since a was arbitrary, aq+ does not act transitively on the
set of maximal abelian subgroups of So. Hence n is odd, and E x Z(So) has
exactly 2((q + 1)3 -1 + 1) conjugate subgroups in W under the action of
NG(W), a contradiction since (q + 1)3-1+ is an even number and
IP" Wl 2.
Assume therefore in the following that the weak closure of E in W w.r.t.

NG(W) is equal to (E, E). It immediately follows that either Z(So) is strongly
closed in G, or IV: WI 2, where V N(W). Assume therefore that the
latter case occurs. Then actually P V, as clearly (E, Eo) x. So is normal in
N,(V). Let P (W, v), where v2 W. We may as well assume without
loss of generality that v centralizes , since v centralizes mod Z(So) for some
?E" v for some yE, vE. But then ?v vmodZ(So), so
(y)v y mod Z(So). Thus, without loss of generality, Cv() () x
(E, v). Every involution of (E, E) is conjugate either to 1 or to il. More-
over, if 6 (E, E) is conjugate to 1, 6 is conjugate to 6i for any Z(So).
In particular 1 is conjugate to czl if is conjugate to an involution in Z(So).
Since v centralizes , it easily follows by Lemma 3.3 that vz Wo. Assume

P c G’. By Lemma 3.4, there exists an extremal conjugate
of for some h G. Clearly h Wo. Moreover, (E, EV>h is normal in

Wo. (h), in fact (E x Z(So))h is normal in Wo. (v) and Cv(h) contains an
element interchanging (E x Z(So))h and (E x Z(So))h. Hence (E, Eo)h <
Wo. As Eh and Evh are of the form considered in (59) this implies that v acts
trivially on So/Z(So). By symmetry, h acts trivially on So/Z(So) as well, a
contradiction. Thus P G’.

Finally suppose v P c G’. First we claim that Z(So) is strongly closed in
Wo w.r.t.G. We only have to consider involutions of the form z czvs for some
Ea vEv# and sSo. But as mentioned earlier, Cwo(Z)
where E1 - E2. and $1 Sn(q) (-So as a 2-group). But if (El x $1) is a
subgroup of P for some G, it follows immediately by the structure of P that

E1 Z(So) (1). Hence zo Z(So) and it follows that Z(So) is strongly
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closed in Wo w.r.t.G. So in order to finish the proof we may assume that v is
an involution conjugate to those of Z(So). Now, tr_xlvtrq_ iv acts trivially on
So/Z(So), and tr-_x:vtrq_ v No(E) as v is an involution. Hence

where pq- C, c C and p acts trivially on Z(So). On the other hand, as
p- acts trivially or as an inner automorphism on Uo, the structure of Aut (U0)
implies that p itself must act as an inner automorphism. Since our only con-
straint on c is that it must lie in C, we may also assume that p- 1. But
then p Ca(Uo), as p Ca(Z(So)). Furthermore, as trva_v acts trivially
on So/Z(So), tr-avtr-xv CoSo for some Co Ca(So) and So e So. Moreover,
as pc CoSo, Co pc for some

c C c C(So) E Z(So).

But then, if c ai, where a E and Z(So), CoSo ps, where p pa
and sl iso. Also p- and p Ca(Uo).

If v acts nontrivially on So/Z(So), v inverts some maximal abelian subgroup
of So by Theorem 1.1. Consider the case when v acts trivially on So/Z(So). If
s Z(So), v and trq_ centralize each other mod Ca(So). As v acts trivially on
So/Z(So), v centralizes some s in So\Z(So). But then v centralizes Cso(S) since
trq_ acts on Cso(S), and we reach a contradiction exactly as in the proof of
Lemma 4.9. Thus s is of order 4. Since v inverts ps, s So and p e
Ca(So), it follows that v inverts both pl and s. In particular, v inverts Cso(S).
Thus v inverts some maximal abelian subgroup M of So. Let H be the homo-

cyclic subgroup of (E, E) of exponent 4 inverted by v. Then v centralizes the
diagonal D

_
E2, ofH and M, and D x Z(So) x (v) is a maximal elementary

abelian subgroup of P. Moreover, if v acts nontrivially on So/Z(So) it follows
immediately that v is conjugate to vd for all d D x Z(So). However, this is
also true if v acts trivially on So/Z(So). Let p (p)2. Then it follows from
the equation try_ Vtrq_ v p sl that

(p-k)20"’_lVO’_ pktr_xlvtr
_

xpxk slt (61)

since p is inverted by v and p Ca(Uo). Then v is conjugate to vs for all
s M. Since on the other hand v is conjugate to vh for all h H in (E, v, the
assertion follows. Now let v Z(So). By Sylow’s Theorem we may assume
that (D x Z(So) x (v)) < P. Then

(D x Z(So) x (v)) Wo Z(So) x D (62)

where D m (E, Ev) (1). Moreover, as IDI > 2, do Wo for some d D.
Hence de (D1 x Z(So))\Z(So), as Z(So) is strongly closed in Wo w.r.t. G,
and do is conjugate to dgi. But this is a contradiction since dgi (dr) is
conjugate to v.

LEMMA 4.14. Suppose F is elementary abelian and assume furthermore that
Z(So) is not stron#ly closed in P. Then:
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(i) V contains a normal subgroup Vo > Wo, which is a complement in V to

(rl), such that Vo/Wo is isomorphic to E22,. Moreover, aq2_l e NG(Vo) and
aq2_ acts irreducibly andfaithfully on Vo/Wo.

(ii) Cvo(F) R is a complement in Vo to E, and R/F is isomorphic to E2,,.
(iii) The weak closure ofE in Vo is contained in Wo.
Proof Let F Zo x Z(So) such that a_ NG(Zo).
(i) By Lemma 4.10(iv), E x Z(So) is not weakly closed in W. Furthermore,

F c E (1) for all y G by the previous lemma. Suppose W P. Then
by Lemma 4.10(ii), IEI is larger than 2. Consequently, if (E x Z(So)) < W,
then actually (E x Z(So)) < Wo. So let (E x Z(So)) be a subgroup of Wo
which is not contained in To for some y G. If E, g zs for some
/ E z e Zo and s So, where S 2 (/Z)2. Let s Ms Cso(S). Then Ms
is contained in Ca(), so

exactly as in (57), where

and

Eo <XIZ1S1,... OmZmSm> (63)

Zo (z,,..., (64)

M <s1,... Sm,..., Sn> (65)

Now, by Lemmas 4.9 and 4.10(iii), we may assume that ord (r/) is equal to 2.
Furthermore, as E x Z(So) < Wo, we may assume I4’g-1 < W, in which case
it immediately follows that W- < Wo. Thus we may assume that g N(Wo).
Now, if Z(So) is not strongly closed in P w.r.t. G, by Lemma 3.4, there exists
an extremal conjugate h, h G, of in Wo. It easily follows that h e Z(So) as
IEI > 2. Furthermore we may assume by Sylow’s Theorem that Eh < P. But
then

(E x ())oh < E x Z(So) (66)
and we reach a contradiction by exactly the same argument which proved
Lemma 4.2, since IEI > 2. Thus V > W, as by assumption Z(So) is not
strongly closed in P.

Let v V\W such that v2 W. Then

E <lzlsl,..., (mZmSm> (67)
where we have used the notation of (63), (64) and (65). First we note that v acts
on F x. So and trivially on Wo/F x. So. If not, let a E a such that av flzs
where fl E\(a), z e Zo and s So. Let aflzls E for suitable zl Zo and
sl So by (67). As ao2 ai for some Z(So), it follows that (flzlsl)
flzlsli (aflzlsl)z for some Zo Zo, a contradiction as aflzlsl is conjugate
to an involution of E. Now, by counting conjugates of E x Z(So) in Wo under
the action of (W, try_ 1, v), we find that

[<W, o’,_t, v>" <W, o-t>l q.

Suppose fl(V/Wo) 1. As v does not normalize <aq-l>. <r/>, a Sylow 2-
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subgroup ) of (W, %_ 1, v)lWo is quaternion, and (f?) WIWo if we
assume W/Wo <_ . In particular, we may assume that v2 . On the other
hand, as q _> 4, f-/is a square in Q as well since (f/) - Q. This is easily seen to
be impossible. Thus r(fl(V/Wo)) > 1. Assume therefore that v2 Wo. As
%-1 Nc.(Wo. ()), %-1 CG() and %+1 NG(Wo) while a+l is inverted

--1
kby , we first replace v by Vo vv which is equal to vq modulo Wo. ()

for some k s N. It is now easy to verify, just as in previous similar cases, that
N (Wo, Vo, %-1) is 2-closed since Vo acts trivially on Wo/F x. So, and we
obtain (i) with Vo V c N, since crq_ acts irreducibly on So/Z(So). Let
a a+ 1. Then O2(Wo, v, %-1)/Wo is elementary abelian and isomorphic
to Z(So) as a a_l-module for any r. It also follows that N/Wo is elementary
abelian. As trq,_ acts irreducibly on So/Z(So), even if 3 divides q + 1, (i)
follows.

(ii) As we have just seen, Vo/Zo x So - E22- E2-. Thus E has a
complement R under the action of %_ containing Zo x So. Now the action
of trq+ and the fact that cry+ centralizes F implies that R _< Cvo(F), and as
E acts nontrivially on F, R actually equals Cvo(F). Moreover, R acts on

Zo x So/Zo -So, so, by Theorem 1.1, R centralizes So mod F. Hence
U2 CR(So) F if u R. In particular, R/F - E24..

(iii) Suppose E _< Vo for some # G. Then E c R is trivial by (ii). Thus
an element of E is of the form u for some E #, u R. Suppose u Zo x
So. Then " is equal to zs for some z Zo and s So\Z(So), so u2 zs,
which contradicts (ii).

COROLLARY. Assume in addition to the assumptions of Lemma 4.14 that
[El > 2. Then V= P.

Proof Suppose IEI > 2. Then, if E < V, it follows that E < Vo. Thus
the corollary follows from (iii).

LEMMA 4.15. Suppose we are in the situation ofLemma 4.14.

(i) Suppose fl(R) F. Then R. (1) - PSU(3, 2")2 Z2.
(ii) Suppose I(R) > F. Then R

_
PSL(3, 22")2

Proof. Let Ko be a complement in of So x Zo/F under the action of

%--1 and Ro Ro/Fsuch that fl(Ro) > Fiffl(R) > F. Let No Ngo(Mo).
Then it easily follows from (67) that [No[ 23". Also we may assume without
loss of generality that Zo Rg if Ro is not elementary abelian. Suppose
fl(Ro) > F. Then Ro Ro/Z(So) is either elementary abelian or isomorphic
to PSL(3, 2")2 by Lemma 2.5. Thus o is either elementary abelian or contains
exactly two maximal elementary abelian subgroups. However, as %,_ acts

irreducibly on o/Zo o, this is impossible. Thus o is elementary abelian.
Since Ro2 _< Zo this implies that Ro is elementary abelian.

If l(Ro) > F it therefore follows, by Lemma 2.5, that No is elementary
abelian and hence that (Mo, No) - E2. PSL(3, 2")2.
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If fl(R) F, let e No be an element of order 4. We may assume without
loss of generality that centralizes s where t zs, z Zo, s So; if s -# s
we replace Ro by a complement containing ts’, where s’ So such that sts’ s.
So in this case (Mo, No) is homocyclic of order 24" and rank 2n, using the
argument in the first part of the proof of Lemma 2.5. Now, as aq2_ acts
irreducibly on Ro, we use the idea in the proof of Lemma 2.5, namely, we show
that all commutators are uniquely determined. If fl(R) > F, Ro is elementary
abelian. If I(R) F, Ro is equal to R1 x Z(So), where fl(R1) Zo, and,
by Lemma 2.5, R1 is isomorphic to PSU(3, 2")2. Finally, if u Ro and E,
let u zs where z e Zo, s So. Then

(up)u zpu spu where P trqk2-1 for any k,

an equation which determines u-lsu uniquely, and the lemma follows.

COROLLARY. Suppose Z(So) is not stron#ly closed. Then IEI 2.

Proof Obvious.

LEMMA 4.16. Suppose I(R) F. Then F is stronyly closed.

Proof First we consider the case when P V. It follows immediately that
F is strongly closed in P w.r.t. G if V Vo. So we may assume that r/ -: and
that Pc G’is not contained in Vo. LetR R1 x R2, where R- So and

R R2. We may assume without loss of generality that r/normalizes
RF/F. In particular, centralizes F. Furthermore, is conjugate to an in-
volution of F unless P c G’ is contained in Vo. () by Lemma 3.3, while if
P c G’= Vo. () this immediately follows from Lemma 3.4, since in that
case Vo is a complement to in P and centralizes F. It follows immediately
that the extremal conjugate of in P lies in Z(So). As we know the structure of
R completely, we easily apply the argument of the proof of Lemma 4.10(ii)
and reach a contradiction.
Assume therefore in the following that V < P. In particular, r/ -#- 1. Le)

V1 N(V), V+I N,(V,). From the structure of R it follows that N(Rt
contains a subgroup Po of index 2 such that Po normalizes Z(R3 and

Ri Ri x Z(R_i)/Z(R_), 1, 2

and that N(R) Po. (x). Also, as r/acts as a field automorphism on So,
we may, after possibly change of notation, assume that r/ Po and that r/acts
as a field automorphism on , 1, 2. It easily follows by induction that
IV,-1" V,I < 2. Let

(1) We may choose 1 in Po such that one of the following cases occurs"

(a) V1 (R. ((r/) x

(b) Ord (r/) 2,

To see this we first observe that R V1 and R. (r/) Po c V1------ V1.
Hence Cv() is not contained in V, so it easily follows that we may choose
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in Cp(O such that 7-7 1, i.e. 71 acts on Co(l) c Co(). This allows
us to assume exactly as in the proof of (7) in Lemma 4.12 that either ?2
or V e <> and IV,, ] e <>. Furthermore, after possibly replacing V, by
V,, we may assume that ? e Po. Hence [, V,] by Theorem 1.1. Finally,
ifv y and ord() > 2, clearly P= V,. But then, by Lemma 3.4, ,
P G’ and consequently, by Lemma 3.2, ?,, V P G’ so we are back to
P V, which has been considered above.

(2) If V_ < P, r 2, then ?, may be chosen in Po such that one of the
following cases occurs"

(a) V, (R. (<q> x <,))). <>, ?,_ , 2, aq,,_ .
(b) (R. {?,)). {), ? ?_ and 77?, ?,_.

The proof of course goes by induction. First we consider case (a). Assume
(2a) has been established for all r h and that P > Vh. In particular, ord ()
2 > ord (?h) 2. Again we may assume without loss of generality that
h+ Po, h+ h+h and that h+ C(h+ ?h). Thus it easily
follows that h+ acts on C6(h+) C6(). This allows us to assume, as
above, either that+ or that+ (h+> X (Yh>. If however+ ,
+ centralizes , so h+ lh is inverted by Yh+ . This is only possible if h 0,
i.e. and we are in case (b). Thus + e <+ x (Vh> and it follows
without loss of generality, using Theorem 1.1, that we may assume that +
Yh and [, ?h+ ] 1, proving (a). Case (b) is even easier, and we leave the proof
to the reader.

Before we continue, we note that any involution of PoR is conjugate either
to or to y. We therefore obtain

(3) F is strongly closed in P0 w.r.t. G, and t G’.

The proof is obtained in the same fashion as many times earlier. If is an
involution, C6(L) by (1), so both and has L in their centralizer and our
method applies to both involutions. That G’ follows immediately from the
fact that fl(Po) Cp(F).

(4) F is strongly closed in P w.r.t.G.

This is clear by (2) and (3) if Po/R is cyclic. Assume therefore that we are in
case (2a). By (3), it suites to prove that

z a. x (68)

Only the following four cases may occur"

Io
II.

III.
IV.
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for suitable kx, rx N, k > rl. Note that tlk,Y,,al is an involution if and only
if k2 =r + 1.

Case II. Suppose k > r. As aay,,ax tl-y x, let

Px (R, qk,- 1, Yr,- 1, qr, + lalYr,) (69)

Then Pa is a maximal subgroup ofP G) not containing qk, and exp (P/R)
2k’-a, while every element in PkPx has order 2k’ mod R. Hence qk, transfers
out by Lemma 3.3 and (4), a contradiction. Thus k ra. Now let

Px R.((,,,) x (y,,_,)) (70)

where this time aaT, Px. As every element of PP has order 2’’+ rood R
in this case, we have reached a contradiction again.

Case III. It easily follows in the same way here that ka rx + 1. If
kx r + 1, let

Then every element of PP has order 2
(q,,+ aa)-) mod R. It now easily follows that is conjugate to 7x in G),
say 0 x, by our remark on conjugacy classes of involutions in Po. Let
a ax,xG). Then

lalXa aaxx, (72)

i.e. yxxx x. Hence a centralizes x, so a centralizes x x. But
then a centralizes x, so centralizes x and consequently x is an involution in
L. (), a contradiction since C(L. ()) while xxx x. Thus
k rx, in which case (68) holds.

Case IV. This case is easily taken care of by referring to Lemma 3.3 unless

kx ra + in which case it immediately follows that (68) holds.

Remark. Lemma 4.16 deals with cases as G U t Z2, where U Uo,
G U Z2, where U U, and the "twisted wreath product" G
(U Z2). Z2,, and variations thereo

LEMMA 4.17. Suppose x(R) > F. Then G contains a normal subgroup H
with R as Sylow 2-subgroup.

Pro& By Lemma 4.14(iii), R does not contain any involution conjugate al,

so the lemma follows immediately if q 1. Assume therefore that q 1.
First we claim that P V. Let Fo x F be a maximal elementary abelian
subgroup of R, which by Theorem 2.1 is isomorphic to PSL(3, 22")2 Now, if
ord (q) > 2, (Fo x F) Fo x F, while iford (q) 2 we may as well assume
this to be the case. Let u Fo such that ua
Mo. Then ss is an element of order 4 in Mo. Moreover, u acts trivially on
MCFoF/F. Thus

uCuaxuu ass mod F. (73)
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But centralizes uCu. It therefore follows that if u F such that uolu izs
where s Mo, then z zs z z 1. Thus 0: centralizes F. In particular,
0 is not conjugate to . Neither is , as ICo()l -> 22. Since all involu-
tions of P\R are conjugate to , 01 or , it follows that P V and that
has a complement in G with R. (r/) as Sylow 2-subgroup without loss of
generality. Finally, if P c G’ is not contained in R, it easily follows that is
conjugate to an involution of Z(So) by Lemma 3.3.
Again we are in a situation, where the argument of Lemma 4.10(ii) may be

applied to reach a contradiction.
Thus we have shown that if G is a finite group with an involution whose

centralizer in G satisfies (*), then either G contains an elementary abelian 2-
group which is strongly closed in G, or G contains a normal subgroup H whose
Sylow 2-subgroup is isomorphic to that of PSL(3, 2zn). This completes the
proof of Theorems and 2 as mentioned in the introduction.
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