FINITE GROUPS WITH A QUASISIMPLE COMPONENT OF TYPE PSU(3, $\mathbf{2}^{n}$) ON ELEMENTARY ABELIAN FORM

BY
Peter Landrock ${ }^{1}$

It is a quite common phenomenon among sporadic simple groups that some involution has a centralizer with a quasisimple component of even characteristic which is on elementary abelian form. By this we mean that the centralizer of the component has an elementary abelian Sylow 2-subgroup. (For definition of component, quasisimple etc., we refer the reader to for example D . Gorenstein's survey article on finite simple groups.) Examples of such sporadic simple groups are: Janko's first group $J_{1}\left(Z_{2} \times P S L(2,4)\right)$, the Mathieu group $M_{12}\left(Z_{2} \times S_{5}\right)$, the Hall-Janko group $J_{2}\left(Z_{2} \times Z_{2} \times P S L(2,4)\right)$, the sporadic Suzuki group $S u\left(Z_{2} \times Z_{2} \times \operatorname{PSL}(3,4)\right)$, Held's group $H e$ (a central extension of $\operatorname{PSL}(3,4)$ by $\left.Z_{2} \times Z_{2}\right)$, Rudvalis' group $R u\left(Z_{2} \times Z_{2} \times S z(8)\right)$, Conway's group $C o_{1}\left(Z_{2} \times Z_{2} \times G_{2}(4)\right)$ and Fischer's new simple group $F_{2}($? $)\left(Z_{2} \times\right.$ $\left.Z_{2} \times F_{4}(2)\right)$.

This gives rise to several classification problems, among which is the following natural one.

Classify finite (in particular simple) groups with an involution whose centralizer C is isomorphic to the direct product of an elementary abelian 2-group E and a group B containing a normal subgroup B_{0} which is quasisimple of Bender-type such that $C_{B}\left(B_{0}\right)=Z\left(B_{0}\right)$.

However, to deal with this problem we need an additional assumption on the involutions of E. A natural one, at least when B_{0} is of Bender-type, seems to be that C is the centralizer of all the involutions in E (trivially satisfied when $|E|=2$.) This is a type of problem which for instance occurs in a recent work by D. Mason, in which he considers finite simple groups all of whose components are of Bender-type (and the centralizer of some involution not 2-constrained of course). Furthermore, J_{2} and $R u$ satisfy this assumption.

Exactly this problem has been considered in the following cases when B_{0} is isomorphic to one of the simple groups $\operatorname{PSL}(2, q)$ or $S z(q), B=B_{0}$ and G is simple: $E \simeq Z_{2}$ and $B \simeq \operatorname{PSL}\left(2,2^{n}\right)$, by Z. Janko, $B \simeq \operatorname{PSL}\left(2,2^{n}\right)$, by F. L. Smith, $B \simeq S z(q)$, by U. Dempwolff, and some as special cases in related problems which have been dealt with by M. Aschbacher and K. Harada.

Here we shall answer the question completely for all groups with B_{0} quasisimple of $\operatorname{PSU}\left(3,2^{n}\right)$-type, the third class of groups of Bender-type.

[^0]Theorem 1. Let G be a finite group with an involution whose centralizer C satisfies:
(*) $^{*} C=E \times U$, where $E \simeq E_{2 m}$ and U contains a normal subgroup U_{0} which is quasisimple of $\operatorname{PSU}\left(3,2^{n}\right)$-type such that $C_{U}\left(U_{0}\right)=Z\left(U_{0}\right)$. Furthermore, C is the centralizer of every involution in E.

Then either G contains a strongly closed elementary abelian 2-group or E is of order 2 and has a complement in G.

In particular, by D. Goldschmidt's classification of groups with a strongly closed abelian 2-subgroup, G is not simple. In case G does not contain such a strongly closed elementary abelian 2-group, let H be a complement in G of E. Now, an obvious question is whether H may be simple. To answer this we first recall that the unitary groups are groups of so-called "twisted" type due to the fact that they may be defined as the fixpoint-group of an automorphism of order two, namely, the product of a graph and a field automorphism, of a simple group of Chevalley-type, in this case the projective special linear groups. Thus $H \simeq \operatorname{PSL}\left(3,2^{2 n}\right)$ is a possibility. Our next theorem states that these are the only simple groups with that property.

Theorem 2. Let G be a simple group admitting an automorphism ρ of order 2, whose centralizer C in Aut (G) satisfies $\left(^{*}\right)$. Then ρ is an outer automorphism, $C \simeq \operatorname{PSU}\left(3,2^{n}\right)$ and $G \simeq \operatorname{PSL}\left(3,2^{2 n}\right)$.

We shall obtain this by showing that a Sylow 2-subgroup of G is isomorphic to that of $\operatorname{PSL}\left(3,2^{2 n}\right)$ and then quote a classification theorem due to M. Collins, which may be found in [1].

Finally, Theorems 1 and 2 together with the theorem by D. Goldschmidt referred to above (see [2]) give the following.

Main Theorem. Let G be a finite group with an involution whose centralizer C satisfies (*). Then $G / O(G)$ contains a normal subgroup isomorphic to one of the following:
(i) $\operatorname{PSU}\left(3,2^{n}\right)$,
(ii) $\operatorname{PSU}\left(3,2^{n}\right) \times \operatorname{PSU}\left(3,2^{n}\right)$,
(iii) $\operatorname{PSL}\left(3,2^{2 n}\right)$.

Furthermore, $O(G)$ is abelian and equal to $Z\left(U_{0}\right)$ if $|E|>2$.
The most interesting fact about the proof of Theorem 1 and 2 is that except for the application of a few "classical" results (Sylow's Theorem, Grün's First Theorem and some transfer lemmas) and a result on the automorphism group of a special class of 2-groups, it is completely self-contained.

In Section 1 we describe those properties of $S U\left(3,2^{n}\right)$ that we need and develop a very short method by which to determine the automorphism group of
a special class of 2-groups, the so-called Suzuki 2-groups. More specifically, we find the automorphism group of the Sylow 2-subgroups of $S z(q)$ and $\operatorname{PSU}\left(3,2^{n}\right)$.

Section 2 is a characterization of the Sylow 2-subgroups of $\operatorname{PSU}\left(3,2^{n}\right)$ and $\operatorname{PSL}\left(3,2^{n}\right)$ by a certain property of their automorphism group. The situation we consider seems to appear in several classification problems which is the main reason why we have stated the result in a special section.

In Section 3 we prove two elementary lemmas. The first gives those natural bounds that may be put on the elementary abelian component in general directly from the basic assumptions. The second is a straightforward application of Grün's First Theorem to a configuration that occurs many times whenever $\left|U / U_{0}\right|$ is even.

The last section consists of the proof of our theorems. Our method is merely to build up the possible structure of Sylow 2-subgroups of groups satisfying our assumption. The first step, namely when our involution is central, is easily reduced to the consideration of finite groups with a Sylow 2-subgroup isomorphic to a 2 -subgroup of U containing a Sylow 2-subgroup of $\operatorname{PSU}\left(3,2^{n}\right)$. The idea in this proof will be used several times in what follows. Now, if $S \in \operatorname{Syl}_{2}(U)$ and $S_{0}=S \cap U_{0}$, let $W \in \operatorname{Syl}_{2}\left(N_{G}\left(E \times S_{0}\right)\right)$. Then S is the semidirect product $S_{0} \cdot\langle\eta\rangle$ of S_{0} and a cyclic group. Our next step is to see that W contains a normal subgroup W_{0} containing $E \times S_{0}$, which is a complement in W to $\langle\eta\rangle$ such that $W_{0} / E \times S_{0} \simeq E_{2^{n}}$. Moreover, $W_{0}=S_{0}$. $C_{W_{0}}\left(S_{0}\right)$, and E has a complement in W_{0} which is a central extension of S_{0} by a homocyclic group F of exponent 2 or 4 such that $F \cap S_{0}$ is equal to $Z\left(S_{0}\right)$. If F is of exponent 4 , we easily reduce to the case $|E|=2$. However, it now takes a rather involved series of arguments to show that $Z\left(S_{0}\right)$ is strongly closed in a Sylow 2-subgroup P containing it. Anyway, we may in the following assume that F is elementary abelian. Now, a short argument allows us furthermore to assume that $F \cap E^{g}=\langle 1\rangle$ for all $g \in G$, and also that $P>W$. We proceed to build up $V=N_{P}\left(W_{0}\right)$. Not surprisingly we obtain that V contains a normal subgroup $V_{0} \geq W_{0}$ which is a complement to $\langle\eta\rangle$ such that $V_{0} / W_{0} \simeq E_{2 \text { 2n }}$. Moreover, $V_{0}=C_{V_{0}}(F) . E$, and $C_{V_{0}}(F) / F \simeq E_{24 n}$. Now two different cases occur, depending on whether $\Omega_{1}\left(C_{V_{0}}(F)\right)$ equals F or not. In the former case we prove that F is strongly closed, in the latter that $C_{V_{0}}(F)$ is isomorphic to a Sylow 2-subgroup of $\operatorname{PSL}\left(3,2^{2 n}\right)$, using the above characterization of that. We finish by proving that G contains a normal subgroup L with $C_{V_{0}}(F)$ as Sylow 2-subgroup. The case where F is strongly closed of course corresponds to the case when $G / O(G)$ contains a normal subgroup isomorphic to the direct product of two copies of $\operatorname{PSU}\left(3,2^{n}\right)$ interchanged by the involution in E.

Discussions with R. I. S. Gow and R. Solomon on parts of this work have been very helpful.

Finally, the author would like to thank D. Mason for his numerous useful comments and suggestions throughout the preparation of this paper.

1. Properties of $S U\left(3,2^{n}\right)$ and Suzuki 2-groups

The unitary group $S U(3, q), q=2^{n}$, is defined over the field of q^{2} elements. Its outer automorphism group is formed by the cyclic group of order $2 n$ consisting of field automorphisms and a diagonal automorphism of order 3 when $(3, q+1)=3$. Furthermore,

$$
\operatorname{PSU}(3, q)=\frac{S U(3, q)}{Z(S U(3, q))}
$$

and $Z(S U(3, q))$ has order 1 or 3 depending on whether 3 divides $q+1$ or not. On the other hand, $S U(3, q)$ is the only nontrivial perfect central extension of $\operatorname{PSU}(3, q)$. Thus, if U_{0} is a quasisimple group of $\operatorname{PSU}(3, q)$-type, U_{0} is isomorphic to either $\operatorname{SU}(3, q)$ or $\operatorname{PSU}(3, q)$.

A Sylow 2-subgroup $S_{B}=S_{B}(q)$ of $S U(3, q)$ is of Suzuki B-type: $\left|S_{B}\right|=q^{3}$, $\left|Z\left(S_{B}\right)\right|=q$, and $S_{B}^{\prime}=Z\left(S_{B}\right)=\Phi\left(S_{B}\right)$, which of course also equals $\Omega_{1}\left(S_{B}\right)$ since S_{B} is a Suzuki 2-group. Let U be any group such that $U_{0} \leq U$ is quasisimple of $\operatorname{PSU}(3, q)$-type and $C_{U}\left(U_{0}\right)=Z\left(U_{0}\right)$. Let $\left|U / U_{0}\right|$ equal $n_{1} n_{2}$, where n_{1} is odd and n_{2} is the 2-part. Then a Sylow 2-subgroup of U is isomorphic to the semidirect product of S_{B} and a cyclic group of order n_{2}.

Our first result gives the structure of the automorphism group A_{B} of S_{B}. We shall not use the specific structure of S_{B} to find A_{B} but the important property that it has a cyclic group of order $q^{2}-1$ acting on it (sitting inside Aut (SU(3,q)) and inside $S U(3, q)$ for $(3, q+1)=1)$, such that the subgroup of order $q-1$ acts trivially on the involutions. This is exactly what makes it of Suzuki B-type.

Theorem 1.1. The automorphism group A_{B} of S_{B} has the following structure: $O_{2}\left(A_{B}\right)$ is elementary abelian of order $2^{2 n^{2}} . A_{B} / O_{2}\left(A_{B}\right)$ has order $2 n\left(q^{2}-1\right)$ and is isomorphic to the normalizer of a Singer-cycle in $G L(2 n, 2)$.

Proof. Let $B_{B} \leq A_{B}$ consist of those automorphisms acting trivially on $S_{B} / Z\left(S_{B}\right)$ and $C_{B} \leq A_{B}$ of those acting trivially on $Z\left(S_{B}\right)$. Clearly, $B_{B} \unlhd A_{B}$ and $C_{B} \unlhd A_{B}$. Moreover $B_{B} \leq C_{B}$ and as $\Phi\left(S_{B}\right)=Z\left(S_{B}\right), B_{B}$ is a 2-group. Since $\left|S_{B} / Z\left(S_{B}\right)\right|=2^{2 n}$ and $\left|Z\left(S_{B}\right)\right|=2^{n}$,

$$
\begin{equation*}
B_{B} \simeq \operatorname{Hom}\left(Z_{2}^{1} \times Z_{2}^{2} \times \cdots \times Z_{2}^{2 n}, Z_{2}^{1} \times Z_{2}^{2} \times \cdots \times Z_{2}^{n}\right) \tag{1}
\end{equation*}
$$

where $Z_{2}^{k} \simeq Z_{2}$ for all k. Hence B_{B} is elementary abelian of order $2^{2 n^{2}}$. Now A_{B} / B_{B} is isomorphic to a subgroup of $G L(2 n, 2)$. We know it contains a subgroup of order $2^{2 n}-1$ acting irreducibly on $S_{B} / Z\left(S_{B}\right)$. Hence $O_{2}\left(A_{B} / B_{B}\right)=$ $\langle 1\rangle$ and $B_{B}=O_{2}\left(A_{B}\right)$. By a result of T. O. Hawkes [5], C_{B} / B_{B} is isomorphic to a subgroup of $D_{2 q_{1}} \times \cdots \times D_{2 q_{k^{\prime}}}$ where $D_{2 q_{i}}$ is a dihedral group of order $2 q_{i}, q_{i}$ an odd prime power. We know that A_{B} / B_{B} contains a subgroup D_{B} of order $2 n\left(2^{2 n}-1\right)$ isomorphic to the normalizer of a Singer-cycle in $G L(2 n, 2)$. Now D_{B} contains a dihedral subgroup $D_{2(q+1)}$ of order $2(q+1)$, which lies
inside C_{B} / B_{B}. Since the element of order $q+1$ acts irreducibly on $S_{B} / Z\left(S_{B}\right)$, the normalizer in A_{B} / B_{B} of the subgroup Q of order $q+1$ in $D_{2(q+1)}$ is equal to D_{B} as well. Hence Q is equal to its centralizer in C_{B} / B_{B}, so $C_{B} / B_{B}=D_{2(q+1)}$. But then $D_{2(q+1)}$ is normal in A_{B} / B_{B}, so $A_{B} / B_{B}=D_{B}$, and we are done.

Corollary. Let R be any 2-group containing some S_{B} as a subgroup of index 2. Then $Z(R) \geq Z\left(S_{B}\right)$.

Remark. This technique may easily be applied to find the automorphism group of other types of 2-groups, in particular other Suzuki 2-subgroups. Among these the most interesting are those of A-type, to which class belong the Sylow 2-subgroup $S_{A}=S_{A}(q)$ of the simple Suzuki groups $S z(q), q=2^{s}$. Analogously we obtain the following (known) structure.

Theorem 1.2. The automorphism group A_{A} of S_{A} has the following structure: $O_{2}\left(A_{A}\right)$ is elementary abelian of order $2^{n^{2}} . A_{A} / O_{2}\left(A_{A}\right)$ has order $n(q-1)$ and is isomorphic to the normalizer of a Singer-cycle in $G L(n, 2)$.

We will list those properties of $S U(3, q)$ we are going to use. Of course we are mostly interested in 2-elements.
$S_{B}(q)$ can be described in the following way:

$$
S_{B}(q) \simeq\left\{\left\{\begin{array}{ccc}
1 & a & b \tag{2}\\
0 & 1 & a^{q} \\
0 & 0 & 1
\end{array}\right\}: a, b \in G F\left(q^{2}\right), \quad b+b^{q}+a^{1+q}=0 .\right\}
$$

The cyclic group of order $q^{2}-1$, which is the complement of $S_{B}(q)$ in its normalizer in $S U(3, q)$ is generated by

$$
\sigma_{q^{2}-1}=\left\{\begin{array}{ccc}
\varepsilon^{-q} & 0 & 0 \tag{3}\\
0 & \varepsilon^{q-1} & 0 \\
0 & 0 & \varepsilon
\end{array}\right\}
$$

where ε is a primitive $\left(q^{2}-1\right)$-th root of unity. Let furthermore $\sigma_{q-1}=$ $\left(\sigma_{q^{2}-1}\right)^{q+1}$ and $\sigma_{q+1}=\left(\sigma_{q^{2}-1}\right)^{q-1}$. Unless 3 divides $q+1, S U(3, q)$ is simple as mentioned earlier. If 3 does divide $q+1, Z(S U(3, q))$ has order 3 and is contained in $\left\langle\sigma_{q+1}\right\rangle$. In this case the complement in the normalizer of $S_{B}(q)$ in $\operatorname{PSU}(3, q)$ has order $\left(q^{2}-1\right) 3^{-1}$. We will use the above notation for the elements of the complement independently of whether we deal with $\operatorname{SU}(3, q)$ or $\operatorname{PSU}(3, q)$. In the latter case, $\sigma_{q^{2}-1}$ and σ_{q+1} have orders $\left(q^{2}-1\right) 3^{-1}$ and $(q+1) 3^{-1}$ respectively.

Denote by (a, b) the element

$$
\left\{\begin{array}{ccc}
1 & a & b \tag{4}\\
0 & 1 & a^{q} \\
0 & 0 & 1
\end{array}\right\}
$$

in $S_{B}(q)$. Then

$$
\begin{equation*}
(a, b)(c, d)=\left(a+c, d+a c^{q}+b\right) \tag{5}
\end{equation*}
$$

and in particular

$$
\begin{equation*}
(a, b)^{2}=\left(0, a^{1+q}\right), \quad(a, b)^{-1}=\left(a, b^{q}\right) \tag{6}
\end{equation*}
$$

$S_{B}(q)$ has one conjugacy class of involutions and one of elements of order 4 under the action of the group of order $q^{2}-1$ in its automorphism group. Let $(a, b),(1, c) \in S_{B}(q)$. Then

$$
\begin{equation*}
(a, b)^{-1}(1, c)(a, b)=\left(1, c+a+a^{q}\right)=(1, c) \tag{7}
\end{equation*}
$$

if and only if $a^{q-1}=1$, an equation with $q-1$ solutions. Of course we do not get any bound on b since $Z\left(S_{B}(q)\right)$ consists of elements of the form $(0, d)$ by (6). Hence it follows that the centralizer of an element of order 4 is of order q^{2}. It is easy to check that any such group M is normalized by σ_{q-1}, and σ_{q-1} acts irreducibly on $M / Z\left(S_{B}(q)\right)$. Hence

$$
\begin{equation*}
M \simeq Z_{4}^{1} \times \cdots \times Z_{4}^{n} \tag{8}
\end{equation*}
$$

where $Z_{4}^{k} \simeq Z_{4}$ for all $k . S_{B}(q)$ has $q+1$ groups of this type, M_{1}, M_{2}, \ldots, M_{q}, M_{0}, conjugate under the action of the element of order $q+1$ in the automorphism group. Denote in the following $S_{B}(q)$ by S_{0}. For any k_{1}, k_{2},

$$
\begin{equation*}
\frac{S_{0}}{Z\left(S_{0}\right)}=\frac{M_{k_{1}}}{Z\left(S_{0}\right)} \oplus \frac{M_{k_{2}}}{Z\left(S_{0}\right)} \tag{9}
\end{equation*}
$$

Let ξ be the field automorphism of order 2 . We note that ξ acts trivially on $Z\left(S_{0}\right)$. Since S_{0} contains $q+1$ maximal abelian subgroups, ξ normalizes at least one of them, say M_{0}. However, (9) shows that it does not normalize any other, since otherwise it would act trivially on $S_{0} / Z\left(S_{0}\right)$, which is not the case. It is easy to check that M_{0} is inverted by ξ. Finally, ξ centralizes σ_{q-1} and inverts σ_{q+1}, and the centralizer of ξ in $\operatorname{PSU}(3, q)$ is isomorphic to $\operatorname{PSL}(2, q)$.

2. A characterization of the Sylow 2-subgroups of $\operatorname{PSU}\left(3,2^{n}\right)$ and $\operatorname{PSL}\left(3,2^{n}\right)$

The following situation seems to occur in many classification problems, including the present one.
(*) Q is a 2-group admitting an automorphism α of order 2 and an automorphism ρ of order $2^{n}-1$ such that
(i) α and ρ commute with each other under the action on Q,
(ii) $C_{Q}(\alpha) \simeq E_{2^{n}}$,
(iii) ρ acts transitively on $C_{Q}(\alpha)^{\#}$.

The purpose of this section is to prove the following
Theorem 2.1. Let Q be a (nonabelian) 2-group satisfying (*). Then Q is isomorphic to a Sylow 2-subgroup of $\operatorname{PSU}\left(3,2^{n}\right)$ or $\operatorname{PSL}\left(3,2^{n}\right)$.

Remark. We note that is easily verified that in case Q is abelian, then Q is either homocyclic of rank n or elementary abelian of order $2^{2 n}$.

The first step towards a characterization of such 2-groups has also been obtained by G. N. Thwaites in [7] as a corollary to a general result on p-groups:

Lemma 2.2. Let Q be a 2-group satisfying (*). Then Q contains a homocyclic subgroup Q_{0} of rank n such that
(i) α inverts Q_{0},
(ii) ρ acts transitively on $Q_{0} / \Phi\left(Q_{0}\right)$,
(iii) $Q / \Phi(Q) \simeq E_{2^{2 n}}$ and $\Phi(Q)=\Phi\left(Q_{0}\right)$.

Proof. See Lemma 2.5 in [7].
We now consider the semidirect product of Q and $\langle\alpha\rangle \times\langle\rho\rangle$. Let $Q_{0}=$ $\left\langle r_{1}, \ldots, r_{n}\right\rangle$ and choose notation such that $r_{i}=r_{1}^{\rho_{1-1}}$ for $i=2, \ldots, n$. Let $q_{1} \in Q \backslash Q_{0}$, and set $q_{i}=q_{1}^{p_{i-1}}, i=2, \ldots, n$. Then

$$
\begin{equation*}
Q=\left\langle r_{1}, \ldots, r_{n}, q_{1}, \ldots, q_{n}\right\rangle \tag{10}
\end{equation*}
$$

Since $\alpha q_{1}^{-1} \alpha q_{1} \in Q_{0} \mid \Phi(Q)$, we may as well assume that $\left[\alpha, q_{1}\right]=r_{1}$. In particular, it follows that the map $r_{i} \rightarrow q_{i}$ induces an isomorphism between $Q_{0} / \Phi(Q)$ and $\left\langle q_{1}, \ldots, q_{n}, \Phi(Q)\right\rangle / \Phi(Q)$ which commutes with ρ. Thus we have

Lemma 2.3. $\quad Q / \Phi(Q)$ is the direct sum of two isomorphic ρ-modules.
The next lemma is due to R. Solomon and occurs in another context. We include the proof.

Lemma 2.4. Let Q be a nonabelian group satisfying (*). Then Q is of class 2 and exponent 4.

Proof. To see this we will consider the associated Lie ring. Let Q, Q_{1}, Q_{2}, Q_{3}, \ldots be the lower central series of Q and set $L=Q / Q_{1}, L^{+}=Q_{0} / Q_{1}$ (Q_{0} defined as above) and $L=Q_{i} / Q_{i+1}$ for $i=1,2, \ldots$ Let L^{-}be a complement in L under the action of ρ. Now, by Lemmas 2.2 and $2.3, Q_{i} / Q_{i+1} \simeq$ $E_{2^{n}}$ for all $i \geq 0$, and $L^{+}, L^{-}, L_{1}, L_{2}, \ldots$ are all vector spaces of dimension n over Z_{2} and isomorphic as ρ-modules. Thus there exists a primitive ($2^{n}-1$)-th root of unity λ such that $\lambda, \lambda^{2}, \lambda^{2^{2}}, \ldots, \lambda^{2^{n}}$ are the eigenvalues of ρ on $L_{K}^{-}=$ $L^{-} \otimes_{Z_{2}} K$, where $K=Z_{2}(\lambda)$. Let $L_{K}=L \otimes_{Z_{2}} K, L_{K}^{+}=L^{+} \otimes_{Z_{2}} K$ and $L_{i K}=$ $L_{i} \otimes_{Z_{2}} K$ for $i=1,2, \ldots$ Let u_{0}, \ldots, u_{n-1} be eigenvectors of ρ in L_{K}^{-}with corresponding eigenvalue $\lambda^{2 i}$. It easily follows that $u_{0}+u_{0}^{\alpha_{1}}, \ldots, u_{n-1}+u_{n-1}^{\alpha_{1}}$ form a basis for L_{K}^{+}and corresponding eigenvalues are $\lambda^{2^{i}}$. Next, we want a basis of eigenvectors for L_{1}. Clearly L_{1} is generated by vectors of the form [$u_{i}, u_{j}^{\alpha_{1}}$] or $\left[u_{i}, u_{j}\right]$, each of which is either 0 or an eigenvector of σ_{q-1} with corresponding eigenvalue $\lambda^{2^{i+2 j}}$. Hence $\left[u_{i}, u_{j}\right]=0$ for all i, j, and $\left[u_{i}, u_{j}^{\alpha_{1}}\right] \neq$

0 if and only if $i=j$, so $\left[u_{0}, u_{0}^{\alpha_{1}}\right], \ldots,\left[u_{n-1}, u_{n-1}^{\alpha_{1}}\right]$ form a basis for L_{1}. Finally, consider L_{2}. A similar calculation shows that L_{2} is generated by vectors of the form $\left[\left[u_{i}, u_{i}^{\alpha_{1}}\right], u_{j}\right]$. However, by Jacobi's identity,

$$
\begin{equation*}
\left[\left[u_{i}, u_{i}^{\alpha_{1}}\right], u_{j}\right]=\left[\left[u_{i}^{\alpha_{1}}, u_{j}\right], u_{i}\right]+\left[\left[u_{j}, u_{i}\right], u_{i}^{\alpha_{1}}\right] \tag{11}
\end{equation*}
$$

so by our calculations above $\left[\left[u_{i}, u_{i}^{\alpha_{1}}\right], u_{j}\right]=0$ unless $i=j$. But now, as $\lambda^{3 \cdot 2^{t}}$ is never an eigenvalue, $\left[\left[u_{i}, u_{i}^{\alpha_{1}}\right], u_{i}\right]=0$ as well, i.e. $L_{2}=0$. Hence Q is of class at most 2 .

Lemma 2.5. Let P be a group of order $2^{3 n}$, class 2 and exponent 4 admitting an automorphism ρ of order $2^{n}-1$ such that
(i) $Z(P) \geq Z \simeq E_{2^{n}}$, and ρ acts transitively on $Z^{\#}$,
(ii) $P / Z \simeq E_{2^{2 n}}$,
(iii) P / Z is the direct sum of two irreducible ρ-modules, each of which is isomorphic to Z as a ρ-module.

Then P is isomorphic to the Sylow 2-subgroup of $\operatorname{PSU}\left(3,2^{n}\right)$ or $\operatorname{PSL}\left(3,2^{n}\right)$.
Proof. Identity P and $\langle\rho\rangle$ with the corresponding subgroups of $P \cdot\langle\rho\rangle$. Let $p \in P \backslash Z$, and let $R=\langle p, \rho\rangle \cap P$. Then $R Z / Z \simeq E_{2^{n}}$ by (iii). Moreover, $R Z / Z \simeq Z$ as a ρ-module. On the other hand, as R is either abelian or a Suzuki 2-group of A-type, it follows from [6] that R is abelian.

Let h_{0} be an element of order 4 and set $H=\left\langle h_{0}, \rho\right\rangle \cap P$. As P is nonabelian, $\Omega_{1}(H)=Z$. Next we claim that $C_{P}(h)=H$ for all $h \in H \backslash Z$. Suppose $p \in P \backslash H$ centralizes h and consider $R=\left\langle p h^{\rho}, \rho\right\rangle \cap P$. As R is abelian, $\left[p h^{\rho}, p^{\rho} h^{\rho^{2}}\right]=1$. However, since $\left[p, p^{\rho}\right]=1$ as well, this implies that $\left[p, h^{\rho^{2}}\right]=\left[p^{\rho}, h^{\rho}\right]=1$. Thus p centralizes $h^{\rho^{2}}$ as well, and it follows by induction that p centralizes H, a contradiction since P is nonabelian.

It now follows that every $h \in H \backslash Z(P)$ is inverted by exactly one element p in P modulo H. In particular, if $\Omega_{1}(P)>Z(P), P$ contains exactly 2 maximal elementary abelian subgroups of order $2^{2 n}$. Anyway, P is generated by the subgroups $P_{1}=\langle p, \rho\rangle \cap P$ and $P_{2}=\langle p h, \rho\rangle \cap P$. Now, since $\left[p, p^{\rho^{k}} h^{\rho^{k}}\right]=$ [$p, h^{\rho^{k}}$], all commutators are uniquely determined from commutators of type $\left[p, h^{\rho^{k}}\right], 1 \leq k \leq 2^{n}-1$. However, as $\left\langle p h^{\rho}, \rho\right\rangle \cap P$ is abelian as we have seen above,

$$
\begin{equation*}
\left[p h^{\rho}, p^{\rho} h^{\rho^{2}}\right]=\left[p, h^{\rho^{2}}\right]\left[p^{\rho}, h^{\rho}\right]=1 \tag{12}
\end{equation*}
$$

Thus $\left[p, h^{\rho^{2}}\right]=[p, h]^{\rho}=\left(h^{2}\right)^{\rho}$, so it follows by induction that all commutators are uniquely determined. Thus there exists at most one such group of a given order with P_{1} elementary abelian and at most one with P_{2} homocyclic of exponent 4. As both the Sylow 2-subgroup of $\operatorname{PSU}\left(3,2^{n}\right)$ and that of $\operatorname{PSL}\left(3,2^{n}\right)$ satisfy the assumption of the lemma, we are done.

Theorem 2.1 is an immediate consequence of these lemmas.

3. General results

Lemma 3.1. Let G be a finite group with an involution α_{1} whose centralizer has the form $C_{G}\left(\alpha_{1}\right)=C=E \times H$ where $\alpha_{1} \in E, E$ is elementary abelian and H is any group. Assume furthermore that for any $\beta \in E^{\#}$, a Sylow 2-subgroup of $C_{G}(\beta)$ is isomorphic to that of C. Then one of the following occurs:
(i) α_{1} is central,
(ii) $r(E) \leq r\left(\Omega_{1}(Z(S))\right)$, where $S \in \operatorname{Syl}_{2}(H)$

Proof. Assume α_{1} is not central and let $E \times S \leq P$, where $P \in \operatorname{Syl}_{2}(G)$. Furthermore, let $p \in N_{P}(E \times S) \backslash E \times S$ such that $p^{2} \in E \times S$. Then p acts on $E \cap E^{p}$, so $E \cap E^{p}=\langle 1\rangle$ by assumption. On the other hand,

$$
\begin{equation*}
p^{-1} E p \leq \Omega_{1}(Z(E \times S))=E \times \Omega_{1}(Z(S)) \tag{13}
\end{equation*}
$$

Hence $|E|^{2} \leq|E|\left|\Omega_{1}(Z(S))\right|$, which proves (ii).
Notation. If K is a group acting on the group H, let $H . K$ denote the semidirect product of H and K.

Lemma 3.2. Let G be a finite group, $P \in \operatorname{Syl}_{2}(G)$. Suppose P contains a normal subgroup P_{0} with a complement $C=E \times\langle c\rangle$, where E is elementary abelian (or $\langle 1\rangle$). Assume furthermore that $\operatorname{ord}(c) \geq \exp \left(P_{0}\right)$. Then

$$
P \cap G^{\prime} \leq P_{0} \cdot\left(E \times\left\langle c^{\operatorname{ord}(C) / \exp \left(P_{0}\right)}\right\rangle\right)
$$

Proof. This is just a straightforward application of Grün's First Theorem (see [4, p. 252]):

$$
\begin{equation*}
P \cap G^{\prime}=\left\langle P \cap N_{G}(P)^{\prime}, \bigcup_{x \in G} P \cap\left(P^{x}\right)^{\prime}\right\rangle \tag{14}
\end{equation*}
$$

First consider $P \cap N_{G}(P)^{\prime}$. Let N be a complement of P in $N_{G}(P)$. Let $n_{i} \in N$, $p_{i} \in P, i=1,2$. Then, independently of the present structure of P,

$$
\begin{equation*}
\left[n_{1} p_{1}, n_{2} p_{2}\right]=p_{1}^{-1} n_{1}^{-1} p_{2}^{-1} n_{1} n_{1}^{-1} n_{2}^{-1} n_{1} n_{2} n_{2}^{-1} p_{1} n_{2} p_{2} \tag{15}
\end{equation*}
$$

belongs to P if and only if $n_{1}^{-1} n_{2}^{-1} n_{1} n_{2}=\left[n_{1}, n_{2}\right]$ does. Hence it suffices to consider elements $\left[p_{1} n_{1}, p_{2} n_{2}\right.$] where $\left[n_{1}, n_{2}\right]=1$ in order to determine $P \cap N_{G}(P)^{\prime}$, in which case

$$
\begin{equation*}
\left[n_{1} p_{1}, n_{2} p_{2}\right]=p_{1}^{-1} n_{1}^{-1} p_{2}^{-1} n_{1} n_{2}^{-1} p_{1} n_{2} p_{2} \tag{16}
\end{equation*}
$$

Before we continue, we note the following elementary fact.
Let P be a p-group, P_{0} a normal subgroup of P with a complement $C=$ $E \times\langle c\rangle$ where E is elementary abelian (or $\langle 1\rangle$) and ord $(c)>\exp \left(P_{0} / P^{\prime}\right)$. Let ρ be an automorphism of P and set $P_{1}=P_{0} . E$. Then
(a) $\left\langle c^{\rho}\right\rangle \cap P_{1}=\langle 1\rangle$,
(b) $c^{\rho}=p_{\rho} c^{j}$ for some $p_{\rho} \in P_{1}^{\rho}$ and $j \in \mathbf{N},(j, p)=1$.

This is easily verified in the following way: Let $\bar{E}=E P^{\prime} \mid P^{\prime}$ and $\langle\bar{c}\rangle=$ $\langle c\rangle P^{\prime} \mid P^{\prime}$. Then

$$
\begin{equation*}
\frac{P}{P^{\prime}}=\bar{E} \times\langle\bar{c}\rangle \times \bar{Q} \tag{17}
\end{equation*}
$$

for some $Q \leq P_{0}, \bar{Q}=Q P^{\prime} \mid P^{\prime}$, as $P^{\prime} \leq P_{0}$ and (a) follows, since by assumption ord $(c)>\exp \left(P_{0} / P^{\prime}\right)=\exp (\bar{Q})$. Hence $P_{1}^{\rho} \cap\langle c\rangle=\langle 1\rangle$ as well, and (b) follows.

This has the following consequence. Let $p_{i}=p_{1 i} c^{k_{i}}$, where $p_{1 i} \in P_{1}, i=$ 1,2 . Suppose ord $(c)>\exp \left(P_{0} / P^{\prime}\right)$. Then

$$
\begin{equation*}
n_{2}^{-1} p_{1} n_{2}=p_{11}^{\prime} c^{k_{1} k_{1}}, \quad n_{1}^{-1} p_{2} n_{1}=p_{12}^{\prime} c^{k_{2} k_{2}^{\prime}} \tag{18}
\end{equation*}
$$

where $p_{11}^{\prime} \in P_{1}^{n_{2}}, p_{12}^{\prime} \in P_{1}^{n_{1}}$ and k_{i}^{\prime} is odd, $i=1,2$, by (b). Thus

$$
\begin{equation*}
\left[n_{1} p_{1}, n_{2} p_{2}\right]=p^{\prime} c^{k_{1}\left(1-k_{1}^{\prime}\right)+k_{2}\left(1-k_{2}^{\prime}\right)} \tag{19}
\end{equation*}
$$

for some

$$
p^{\prime} \in\left\langle P_{1}^{n_{1}}, P_{1}^{n_{2}}\right\rangle \leq P_{1} \cdot\left\langle c^{\operatorname{ord}(c) e^{-1}}\right\rangle \leq P_{1}\left\langle c^{2}\right\rangle
$$

where $e=\exp \left(P_{0} / P^{\prime}\right)$, by assumption. Since $1-k_{i}^{\prime}, i=1,2$, is even, $P \cap N_{G}(P)^{\prime} \leq P_{1} \cdot\left\langle c^{2}\right\rangle$.

Next let $n_{0}=\min \left(\operatorname{ord}(c), \exp \left(P^{\prime}\right)\right)$. Now the result above together with our assumption, namely that $P=P \cap G^{\prime}$, implies that for some $x \in G$ there exists a $j \in \mathbf{N}, j$ odd, $p_{0} \in P_{0}$ and $\alpha \in E$ such that $p=p_{0} \alpha c^{j} \in P \cap\left(P^{x}\right)^{\prime} \leq$ $P_{1} c^{\text {ord }(c) n_{0}-1}$. But clearly, ord $(p) \geq$ ord (c). This proves the lemma.

The following result was first observed by K. Harada.
Lemma 3.3. Let G be a finite group, $P \in \operatorname{Syl}_{2}(G)$, and let P_{0} be a maximal subgroup of P. Assume that $x \in P \backslash P_{0}$ belongs to the focal subgroup of P with respect to G. Then either x is conjugate to an element of P_{0} or $x^{2 r}$ is conjugate to an element of $P \backslash P_{0}$ for some $r \geq 1$.

Proof. By transfer.
Finally we shall use a transfer lemma due to D. Goldschmidt, which extends the result of Lemma 3.3 in the special case when ord $(c)=2$, namely the following:

Definition. Let G be a finite group, $x \in P \in \operatorname{Syl}_{2}(G)$ an involution. Then x is said to be extremal in P provided that $C_{P}(x) \in \operatorname{Syl}_{2}\left(C_{G}(x)\right)$.

Lemma 3.4. Let G be a finite group, $P \in \operatorname{Syl}_{2}(G)$, and let $x \in P$ be an involution which belongs to the focal subgroup of P with respect to G. Assume x has a complement P_{0} in P. Then x has an extremal conjugate in P_{0}.

Proof. See [3].

4. The classification

Assumption. Let G be a finite group with an involution α_{1} such that

$$
\begin{equation*}
C_{G}\left(\alpha_{1}\right)=C=E \times U \tag{*}
\end{equation*}
$$

where E is elementary abelian and U contains a normal subgroup U_{0} which is quasisimple of $\operatorname{PSU}(3, q)$-type such that $C_{U}\left(U_{0}\right)=Z\left(U_{0}\right)$. Assume furthermore that $C_{G}(\alpha)=C_{G}\left(\alpha_{1}\right)$ for all $\alpha \in E^{\#}$ (a trivial assumption when $|E|=2$).

Notation. If H and K are subgroups of the group G such that $[H, K]=1$, we denote by $H \times_{*} K$ the central product of H and K w.r.t. $H \cap K$ in addition to the standard use.

If G is a finite group, we denote by G_{p} a p-group isomorphic to a Sylow p subgroup of G. Similarly, we denote by $|G|_{p}$ the order of a Sylow p-subgroup of G.

Otherwise our notation will be standard as in [4].
$E=\left\langle\alpha_{1}, \ldots, \alpha_{m}\right\rangle$.
$S \in \operatorname{Syl}_{2}(U), \quad S_{0}=U_{0} \cap S \simeq S_{B}(q) . \quad S=S_{0} \cdot\langle\eta\rangle, \quad$ where \quad ord $(\eta)=$ $\left|U / U_{0}\right|_{2}$. Let ξ be the involution in $\langle\eta\rangle($ if $\eta \neq 1)$. Furthermore, let $\eta_{r}=\eta^{2^{k-r}}$, where $2^{k}=\operatorname{ord}(\eta)$.
$Z\left(S_{0}\right)=\left\langle i_{1}, \ldots, i_{n}\right\rangle$.
$T_{0}=E \times S_{0}$.
$T=E \times S$. We note that all maximal elementary abelian subgroups of T are conjugate to $E \times Z\left(S_{0}\right) \times\langle\xi\rangle$ inside of $C_{T}\left(E \times Z\left(S_{0}\right)\right)$.

Let $W \in \operatorname{Syl}_{2}\left(N_{G}\left(T_{0}\right)\right), \quad W_{0}=C_{W}\left(S_{0}\right) . S_{0}, \quad V \in \operatorname{Syl}_{2}\left(N_{G}\left(W_{0}\right)\right)$ and $V \leq$ $P \in \operatorname{Syl}_{2}(G)$.

Let M_{0} denote the maximal abelian subgroup of S_{0} which is inverted by ξ.
Finally, let $\sigma_{q^{2}-1}, \sigma_{q+1}$ and σ_{q-1} denote the same elements of U_{0} as in Section 1.

We note that the assumption on the centralizers of the involutions in E implies that E is a T.I.-set and that the automizer of E is of odd order.

Also, since every involution of S_{0} is a square, no involution of E is conjugate to the involutions of S_{0}.

Lemma 4.1. Suppose $|E|>2$. Let $\alpha \in E^{\#}, \gamma \in E$. Then α is not conjugate to $\xi \gamma$.

Proof. Clearly $E \times\langle\xi\rangle \times C_{U_{0}}(\xi) \leq C_{G}(\xi \gamma)$, which is isomorphic to $E \times U$ if $\xi \gamma$ is conjugate to α. Since $C_{U_{0}}(\xi)$ is isomorphic to $\operatorname{PSL}(2, q)$, the assumption $|E|>2$ implies that

$$
O_{2}\left(C_{G}(\xi \gamma)\right) \cap E \neq\langle 1\rangle
$$

But this contradicts that E is a T.I.-set.

Lemma 4.2. Suppose the weak closure of $E \times Z\left(S_{0}\right)$ in P is contained in T, and assume that $\xi \gamma$ is conjugate to an involution of $Z\left(S_{0}\right)$ for some $\gamma \in E$. Then there exists for any $\alpha \in E^{\#} a \beta \in E^{\#}$ such that α is conjugate to $\beta \xi \gamma$. In particular, $|E|=2$.

Proof. If the weak closure of $E \times Z\left(S_{0}\right)$ in P is contained in T, it follows that whenever $\left(E \times Z\left(S_{0}\right) \times\langle\xi\rangle\right)^{g} \leq P$ for some $g \in G$,

$$
\begin{equation*}
\left(E \times Z\left(S_{0}\right) \times\langle\xi\rangle\right)^{g}=E \times Z\left(S_{0}\right) \times\left\langle\xi^{s}\right\rangle \tag{20}
\end{equation*}
$$

for some $s \in M_{0}$ by the remark above. Suppose $(\xi \gamma)^{h}=i \in Z\left(S_{0}\right)$ for some $h \in G$. As $Z(P) \leq Z\left(S_{0}\right)$, we may as well assume that $i \in Z(P)$. Then

$$
\left(E \times Z\left(S_{0}\right) \times\langle\xi\rangle\right)^{h} \leq C_{G}(i)
$$

so for some $c \in C_{G}(i)$ we have that $\left(E \times Z\left(S_{0}\right) \times\langle\xi\rangle\right)^{h c} \leq P$. Hence

$$
\begin{equation*}
\left(E \times Z\left(S_{0}\right) \times\langle\xi\rangle\right)^{g}=E \times Z\left(S_{0}\right) \times\langle\xi\rangle \tag{21}
\end{equation*}
$$

and $(\xi \gamma)^{g}=i$ for some $s_{0} \in M_{0}$ with $g=h c s_{0}$. But i and $\xi \gamma$ are not conjugate in $N_{G}(C)$, so $E \cap E^{g}=\langle 1\rangle$. Since all involutions of $Z\left(S_{0}\right) \times\langle\xi \gamma\rangle$ are conjugate by assumption, $g \alpha g^{-1}$ equals βj or $\xi \beta j$ for some $\beta \in E^{\#}, j \in Z\left(S_{0}\right)$. If $g \alpha g^{-1}$ equals $\xi \beta j$, we are done. If $g \alpha g^{-1}$ equals βj, replace g by $g_{0}=g^{\sigma}$, where σ is a power of σ_{q-1} such that $j^{\sigma}=i$. Then $g g_{0} \alpha g_{0}^{-1} g^{-1}=g \beta g^{-1} \xi \gamma$. Now, if $g \beta g^{-1} \notin E \times Z\left(S_{0}\right), \beta \neq \alpha$ and in particular $|E|>2$. But then $g \beta g^{-1} \in E \times Z\left(S_{0}\right)$ by Lemma 4.1, a contradiction. Hence $g \beta g^{-1} \in E \times Z\left(S_{0}\right)$, and we are done.

Lemma 4.3. Let G be a finite group with S (in the above notation) as Sylow 2-subgroup. Then we have the following constraints on S.
(i) Assume $S_{0} \leq S \cap G^{\prime}$. Then $S \cap G^{\prime} \leq S_{0} \cdot\langle\xi\rangle$.
(ii) If furthermore G contains a subgroup isomorphic to U (in the above notation), $S \cap G^{\prime}=S_{0}$.
Proof. By Lemma 3.2, we may as well assume that $\eta^{4}=1$. Suppose $\langle\eta\rangle \leq S \cap G^{\prime}$ and ord $(\eta)=4$. Then, by Lemma 3.3, ξ is conjugate to some involution in $Z\left(S_{0}\right)$, say $\xi^{g}=i \in Z(S)$ for some $g \in G$. By Sylow's Theorem we may assume that

$$
\left(Z\left(S_{0}\right) \cdot\langle\eta\rangle\right)^{g} \leq S
$$

But then $\eta^{g} \in S_{0}$ as $\left(\eta^{g}\right)^{2}=i$ and ord $(\eta)=4$, so η^{g} acts trivially on $Z\left(S_{0}\right)$. Thus

$$
\begin{equation*}
\left|Z\left(S_{0}\right): C_{Z\left(S_{0}\right)}(\eta)\right|=2 \tag{22}
\end{equation*}
$$

However, $\left|Z\left(S_{0}\right)\right|=\left|C_{Z\left(S_{0}\right)}(\eta)\right|^{2}$ as ord $(\eta)=4$, and consequently $\left|Z\left(S_{0}\right)\right|=4$. On the other hand, as $\left(Z\left(S_{0}\right) \times\langle\xi\rangle\right)^{g} \leq S$ we may as well assume that $\left(Z\left(S_{0}\right) \times\langle\xi\rangle\right)^{g}=Z\left(S_{0}\right) \times\langle\xi\rangle$. Now, as $\eta^{g} \in S_{0}, \quad \xi \eta^{g} \xi=\eta^{g} \bmod \left(Z\left(S_{0}\right)\right)$.

But then η^{g} is inverted by ξ, as we have seen in Section 1. This is a contradiction as η is not inverted by any element in $Z\left(S_{0}\right)$, and (i) follows.

Next assume that G contains a subgroup isomorphic to U. In order to prove (ii), we may assume that ord $(\eta)=2$ by (i). If $S \cap G^{\prime}=S_{0} \cdot\langle\xi\rangle, \xi^{g}=i \in$ $Z\left(S_{0}\right)$ for some $g \in G$ by Lemma 3.4. Thus $C_{G}(i)=C_{i}$ contains a subgroup $H=H_{0} \times\langle i\rangle$ such that $Z\left(S_{0}\right) \times\langle\xi\rangle$ is a Sylow 2-subgroup of $\langle i\rangle \times H_{0}$ and $\xi \in H_{0}$, where $H_{0} \simeq \operatorname{PSL}(2, q)$. Since $S \leq C_{i}$ as well, we obtain $O_{2}\left(C_{i}\right)=$ $\langle i\rangle$. Now let $s \in S_{0}$ such that $\xi s \xi=s^{-1}$ and $s^{2}=i$. For every element a (or subgroup A) of C_{i}, denote by \bar{a} (resp. \bar{A}) the corresponding element (resp. subgroup) of $\bar{C}_{i}=C_{i} /\langle i\rangle$. Let $\xi^{h}=j \in Z\left(S_{0}\right) \cap H_{0}$ for some $h \in H_{0}$. Again we may assume that $\left(\langle\bar{s}\rangle \times Z\left(S_{0}\right)^{-} \times\langle\bar{\xi}\rangle\right)^{h} \leq \bar{S}$ by Sylow's Theorem. Hence

$$
\begin{equation*}
\left(\langle\bar{s}\rangle \times Z\left(S_{0}\right)^{-} \times\langle\bar{\xi}\rangle\right)^{h}=\left\langle\bar{s}^{h}\right\rangle \times Z\left(S_{0}\right)^{-} \times\langle\bar{\xi}\rangle \tag{23}
\end{equation*}
$$

where $\xi^{h}=j$. Thus

$$
\begin{equation*}
\left(\left(\langle s\rangle \times_{*} Z\left(S_{0}\right)\right) \cdot\langle\xi\rangle\right)^{h}=\left(\left\langle s^{h}\right\rangle \times_{*} Z\left(S_{0}\right)\right) \cdot\langle\xi\rangle \tag{24}
\end{equation*}
$$

But then $j=\xi^{h}$ centralizes s^{h}, a contradiction.
Lemma 4.4. Suppose α_{1} is central. Then $Z\left(S_{0}\right)$ is strongly closed.
Proof. Suppose α_{1} is central. Then $E \times Z\left(S_{0}\right)$ is strongly closed if $|E|>2$ by Lemmas 4.1 and 4.2. But clearly, no element of $E \times Z\left(S_{0}\right) \backslash Z\left(S_{0}\right)$ is conjugate to an involution of $Z\left(S_{0}\right)$. Hence $Z\left(S_{0}\right)$ is strongly closed if $|E|>2$. Assume therefore that $E=\left\langle\alpha_{1}\right\rangle$. By Lemma 3.4, α_{1} is conjugate to some involution in $\Omega_{1}(S)$ if E does not have a complement in G. So in that case $|U| U_{0} \mid$ is even and $\left\langle\alpha_{1}\right\rangle$ is conjugate to ξ. In particular, ξ is not a square. But then $S_{0} \cdot\left\langle\xi \alpha_{1}\right\rangle$ is a complement in P to α_{1}, so α_{1} is conjugate to $\xi \alpha_{1}$ as well, and again $Z\left(S_{0}\right)$ is strongly closed. Hence E is of order 2 and has a complement in G. But then by Lemma 4.3, we are done.,

Corollary. $m \leq n$.
Proof. By Lemma 3.1.
Lemma 4.5. $\quad \Omega_{1}(W)>\Omega_{1}(T)$.
Proof. Suppose not. Let $p \in N_{P}(W)$. Then $p \in N_{P}\left(Z\left(\Omega_{1}(W)\right)\right)$. But $Z\left(\Omega_{1}(W)\right)=E \times Z\left(S_{0}\right)$, so p normalizes

$$
\begin{equation*}
C_{W}\left(E \times Z\left(S_{0}\right)\right)=E \times\left(S_{0} \cdot\langle\xi\rangle\right) \tag{25}
\end{equation*}
$$

and hence also $E \times S_{0}$. Thus $p \in W$ by definition, so $P=W$.
By Lemma $4.2 Z\left(S_{0}\right)$ is strongly closed if $|E|>2$. So assume $E=\left\langle\alpha_{1}\right\rangle$. By Lemma 4.4, α_{1} is not central, so T is a proper subgroup of W. Hence α_{1} is conjugate to $\alpha_{1} i$ for all $i \in Z\left(S_{0}\right)$ by the action of σ_{q-1} on $w^{-1} \alpha_{1} w$, where $w \in W \backslash T$. If $Z\left(S_{0}\right)$ is not strongly closed, the involutions of $Z\left(S_{0}\right)$ are con-
jugate to $\gamma \xi$ for some $\gamma \in E$. Hence α_{1} is conjugate to $\gamma \xi \alpha_{1}$ by Lemma 4.2. Now, as in the proof of Lemma 4.2, there exists an $h \in G$ such that $i^{h}=\gamma \xi$ and

$$
\begin{equation*}
\left(\left\langle\alpha_{1}\right\rangle \times Z\left(S_{0}\right) \times\langle\xi\rangle\right)^{h}=\left\langle\alpha_{1}\right\rangle \times Z\left(S_{0}\right) \times\langle\xi\rangle \tag{26}
\end{equation*}
$$

On the other hand,

$$
\begin{equation*}
h^{-1} i h \sigma_{q+1} h^{-1} i h=\xi \gamma \sigma_{q+1} \xi \gamma=\sigma_{q+1}^{-1} \tag{27}
\end{equation*}
$$

Hence $i h \sigma_{q+1} h^{-1} i=h \sigma_{q+1}^{-1} h^{-1}$. By the structure of $U, h \sigma_{q+1} h^{-1}$ does not belong to U_{0} then, since $h \sigma_{q+1} h^{-1}$ is not real in U_{0}. Thus $h \sigma_{q+1} h^{-1} \notin C$. Consequently, $\alpha_{1}^{h} \notin E \times Z\left(S_{0}\right)$, so $\alpha_{1}^{h}=\xi \gamma \alpha_{1} j$ for some $j \in Z\left(S_{0}\right)$. Let $s \in M_{0}$ such that $s^{-1} \xi s$ equals ξj. Then $\alpha_{1}^{h s}=\xi \gamma \alpha_{1}$ and $i^{h s}=\xi \gamma j$. Now let c be an arbitrary element in $C_{U_{0}}(\xi)$. Then

$$
\begin{equation*}
\alpha_{1} h s c s^{-1} h^{-1} \alpha_{1}=h s \xi \gamma \alpha_{1} c \xi \gamma \alpha_{1} s^{-1} h^{-1}=h s c s^{-1} h^{-1} \tag{28}
\end{equation*}
$$

so $h s C_{U_{0}}(\xi) s^{-1} h^{-1} \leq C$. As $C_{U_{0}}(\xi) \simeq \operatorname{PSL}(2, q)$ we deduce that

$$
h s C_{U_{0}}(\xi) s^{-1} h^{-1} \leq U_{0}
$$

Thus

$$
\begin{equation*}
Z\left(S_{0}\right)^{s^{-1 h-1}} \leq\left(\left\langle\alpha_{1}\right\rangle \times Z\left(S_{0}\right) \times\langle\xi\rangle\right) \cap U_{0}=Z\left(S_{0}\right), \tag{29}
\end{equation*}
$$

a contradiction since $i^{h s}=\xi \gamma j$.
Corollary 1. $\quad \Omega_{1}(W) \leq N_{P}\left(S_{0}\right)$.
Proof. Let $t \in \Omega_{1}(W) \backslash T$ be an involution. Then t acts on

$$
\begin{equation*}
T_{1}=O_{2,2^{\prime}}\left(C_{G}\left(E \times Z\left(S_{0}\right)\right)\right)=E \times\left(S_{0} \cdot\left\langle\sigma_{q+1}\right\rangle\right) \tag{30}
\end{equation*}
$$

so t acts on $T_{1}^{\prime}=S_{0}$.
Corollary 2. $\quad \Omega_{1}(W) \leq C_{P}\left(Z\left(S_{0}\right)\right)$.
Proof. By Corollary 1 and the corollary of Theorem 1.1.
Lemma 4.6. (i) $\sigma_{q-1} \in N_{G}\left(\Omega_{1}(W)\right)$.
(ii) W contains a normal subgroup $\left.W_{0}\right\rangle T_{0}$, which is a complement to $\langle\eta\rangle$ such that $W_{0} / T_{0} \simeq E_{2^{n}}$. Moreover σ_{q-1} acts faithfully and irreducibly on W_{0} / T_{0}, and $W_{0} / Z\left(S_{0}\right)$ is elementary abelian.

Proof. Let $\tau \in \Omega_{1}(W) \backslash \Omega_{1}(T)$ be an involution and $\alpha \in E^{\#}$. Then τ acts trivially on $Z\left(S_{0}\right)$ and on $E \times Z\left(S_{0}\right) / Z\left(S_{0}\right)$ as well, as E is a T.I.-set and $\left|N_{G}(E): C\right|$ is odd. Thus $\tau \alpha \tau=\alpha i$ for some $i \in Z\left(S_{0}\right)$. So for any k there exists an r such that $\tau \tau^{\rho^{k}}=\tau^{\rho^{r}} \bmod (C)$, where $\rho=\sigma_{q-1}$ and r is determined by $i i^{\rho^{k}}=i^{\rho^{r}}$. Now let $\tau \tau^{\rho^{k}}=\tau^{\rho^{r}} a$, where $a \in C$. As $\tau, \tau^{\rho^{k}}, \tau^{\rho^{r}}$ belong to $C_{G}\left(Z\left(S_{0}\right)\right)$,

$$
\begin{equation*}
a \in C_{G}\left(Z\left(S_{0}\right)\right) \cap C_{G}(\alpha)=E \times\left(S_{0} \cdot\left(\left\langle\sigma_{q+1}\right\rangle \cdot\langle\xi\rangle\right)\right) \tag{31}
\end{equation*}
$$

By Corollary 1 of Lemma 4.5, τ acts on S_{0}. Suppose $\left|U / U_{0}\right|$ is odd. Then

$$
a \in E \times\left(S_{0} \cdot\left\langle\sigma_{q+1}\right\rangle\right)
$$

But $\tau \tau^{\rho^{k}}$ acts trivially on $S_{0} / Z\left(S_{0}\right)$ by Theorem 1.1 as σ_{q-1} centralizes ξ. Thus, as $\tau^{\rho^{r}}=\tau \tau^{\rho^{k}} a^{-1}, \tau^{\rho^{r}}$ acts trivially on $S_{0} / Z\left(S_{0}\right)$, so does τ.

If τ acts trivially on $S_{0} / Z\left(S_{0}\right)$, independently of whether $\left|U / U_{0}\right|$ is odd or not, a does as well, and it follows that $a \in T_{0}$.

If τ acts nontrivially on $S_{0} / Z\left(S_{0}\right),\left|U / U_{0}\right|$ is even by the remark above. In particular, as $\tau \xi \in W, \tau \xi$ must act trivially on $S_{0} / Z\left(S_{0}\right)$, again by the structure of A_{B}. Consequently $(\tau \xi)^{2} \in Z\left(T_{0}\right)$. Hence $(\tau \xi)^{2}$ actually belongs to $Z\left(S_{0}\right)$, since no element of $Z\left(T_{0}\right) \backslash Z\left(S_{0}\right)$ is a square. Let $t=\tau \xi$. It now follows that

$$
\begin{equation*}
a=(t \xi)^{\rho-r}(t \xi)(t \xi)^{\rho^{k}}=t^{\rho-r} t^{-1} t^{\rho^{k}} \xi \tag{32}
\end{equation*}
$$

is a 2 -element, and (i) follows.
To prove (ii), we define W_{0} as follows. If τ acts trivially on $S_{0} / Z\left(S_{0}\right)$, we let $W_{0}=\left\langle T_{0}, \tau^{\rho}, \ldots, \tau^{\rho-1}\right\rangle$. If τ acts nontrivially on $S_{0} / Z\left(S_{0}\right)$, we let $W_{0}=$ $\left\langle T_{0}, t^{\rho}, \ldots, t^{\rho q-1}\right\rangle$. For any $w \in W$, clearly $w=\tau^{\rho^{\rho}} t_{0}$ for some $z \in \mathbf{N}, t_{0} \in T$, so $W=\left\langle W_{0}, \eta\right\rangle$. As $S_{0} \unlhd W$, it follows from the structure of A_{B} that $W_{0} \unlhd W$. Also, W_{0} / T_{0} acts trivially on $T_{0} / Z\left(S_{0}\right)$. Now, let $w \in W_{0}$. Then $w^{2} \in T_{0}$. On the other hand, as w acts trivially on $S_{0} / Z\left(S_{0}\right), w^{2} \in C_{W_{0}}\left(S_{0}\right)$. Hence $w^{2} \in E \times Z\left(S_{0}\right)$ and it follows that $W_{0} / Z\left(S_{0}\right)$ is elementary abelian.

We can now determine the structure of W_{0} completely.
Lemma 4.3.7. $W_{0}=S_{0} . C_{W_{0}}\left(S_{0}\right)$ and $C_{W_{0}}\left(S_{0}\right)=F . E$, where $F \cap T_{0}=$ $Z\left(S_{0}\right)$ and $F / Z\left(S_{0}\right) \simeq E_{2^{n}}$. Moreover, $F \unlhd W$.

Proof. It is not difficult to see that σ_{q+1} acts on W_{0}. But $\bar{W}_{0}=W_{0} / E \times$ $Z\left(S_{0}\right)$ is elementary abelian, from which it follows that $\bar{S}_{0}=S_{0} \times E / E \times$ $Z\left(S_{0}\right)$ has a complement in \bar{W}_{0} under the action of $\sigma_{q+1}, \bar{F}_{0}=F_{0} / E \times Z\left(S_{0}\right)$. Once again, $E \times Z\left(S_{0}\right) / Z\left(S_{0}\right)$ has a complement in $F_{0} / Z\left(S_{0}\right)$, say $\bar{F}=F / Z\left(S_{0}\right)$, as $F_{0} / Z\left(S_{0}\right)$ is elementary abelian by Lemma 4.6(ii). Since σ_{q+1} acts trivially on $Z\left(S_{0}\right)$ and $F / Z\left(S_{0}\right) \simeq Z\left(S_{0}\right), \sigma_{q+1}$ actually centralizes F. Let $f \in F$ be any element outside $Z\left(S_{0}\right)$. Then $\left|S_{0}: C_{S_{0}}(f)\right| \leq 2^{n}$. As f centralizes σ_{q+1} and $\left\langle S_{0}, \sigma_{q+1}\right\rangle^{\prime}=S_{0}$, we deduce immediately that f centralizes S_{0}, and the first part of the lemma follows.

In order to prove the last statement we note that $F . E$ is normal in W. Furthermore, $\left\langle\sigma_{q-1}\right\rangle$ is normalized by η. Clearly σ_{q-1} acts on $F . E$ and hence on $F \cdot E / Z\left(S_{0}\right)$. Therefore $E \times Z\left(S_{0}\right) / Z\left(S_{0}\right)$ has a complement under the action of σ_{q-1}, which we may as well assume to be F itself. It now follows that

$$
\begin{equation*}
\left(\left(F \times_{*} S_{0}\right) \cdot\left\langle\sigma_{q-1}\right\rangle\right) \cdot(E \times\langle\eta\rangle)^{\prime} \leq\left(F \times_{*} S_{0}\right) \cdot\left\langle\sigma_{q-1}\right\rangle \tag{33}
\end{equation*}
$$

is normalized by η and hence that $F \unlhd W$.
Lemma 4.8. \quad is homocyclic of exponent 2 or 4.

Proof. We have seen that $F / Z\left(S_{0}\right)$ and $Z\left(S_{0}\right)$ are isomorphic as $\sigma_{q-1^{-}}$ modules. Also $Z\left(S_{0}\right) \leq Z(F)$. Hence all elements in a coset of $Z\left(S_{0}\right)$ in F have the same order. If F is not elementary abelian, $\Omega_{1}(F)=Z\left(S_{0}\right)$ and F is homocyclic of exponent 4 if abelian, otherwise of Suzuki A-type by definition. However, the last case is impossible, since, by [6], this would imply that $F / Z\left(S_{0}\right)$ and $Z\left(S_{0}\right)$ are not isomorphic as σ_{q-1}-modules.

Lemma 4.9. Suppose $P=W$. Then $Z\left(S_{0}\right)$ is strongly closed in W_{0} with respect to G. In particular $Z\left(S_{0}\right)$ is strongly closed if $W_{0}=W$.

Proof. An involution of $W_{0} \backslash E \times Z\left(S_{0}\right)$ is of the form $v s$ where $v \in F . E$ and $s \in S_{0}$, and $C_{W_{0}}(v s) \geq C_{S_{0}}(s) \times\langle v s\rangle$. If $(v s)^{g} \in Z\left(S_{0}\right)$ for some $g \in G$, we may as well assume that W contains $\left(C_{W_{0}}(v s)\right)^{g}$ by Sylow's Theorem. But $\Omega_{1}\left(C_{S_{0}}(s)\right)$ is equal to $Z\left(S_{0}\right)$, and every involution in $Z\left(S_{0}\right)$ is a square in $C_{S_{0}}(s)$, which contains a maximal abelian subgroup M of S_{0}. As $W=W_{0} \cdot\langle\eta\rangle$, $M^{g}=M_{1} \times\langle m\rangle$, where $M_{1} \leq W_{0}$, for some $m \in M^{g}$. Furthermore,

$$
\begin{equation*}
\langle v s\rangle^{g} \times \Omega_{1}\left(M_{1}\right)=Z\left(S_{0}\right) \tag{34}
\end{equation*}
$$

as $Z\left(S_{0}\right)=\mho^{1}\left(W_{0}\right)$. Since $M \times\langle v s\rangle$ is abelian,

$$
\begin{equation*}
M^{g} \leq C_{W}\left(Z\left(S_{0}\right)\right)=W_{0} \cdot\langle\xi\rangle \tag{35}
\end{equation*}
$$

As any square in $W_{0} \cdot\langle\xi\rangle$ lies in S_{0} and m^{2} is an involution, $m^{2} \in Z\left(S_{0}\right)$, a contradiction.

Lemma 4.10. Suppose $P=\left\langle P \cap G^{\prime}, E\right\rangle$ and assume furthermore that $Z\left(S_{0}\right)$ is not strongly closed in P with respect to G.
(i) Suppose $|E|=2$ and $P=W$. Then E has a complement in G.
(ii) Suppose $|E|=2$. Then $P>W$.
(iii) Suppose $P=W$. Then $\operatorname{ord}(\eta) \leq 2$.
(iv) The weak closure of E in P is not contained in $E \times Z\left(S_{0}\right)$.

Proof. (i) Suppose $|E|=2$ and $P=W$. As $F \times_{*} S_{0} / Z\left(S_{0}\right)$ is the direct sum of three isomorphic σ_{q-1}-modules, it follows that if w_{0} is an involution in $F \times_{*} S_{0}$ then $C_{F \times *} s_{0}\left(w_{0}\right)$ contains an elementary abelian group of order $2^{2 n}$. In particular, α_{1} is not conjugate to any involution in $F \times_{*} S_{0}$. Now suppose E does not have a complement in G. Then $\alpha_{1}^{g}=\xi f s$ for some $f \in F \backslash Z\left(S_{0}\right)^{\#}$, $s \in S_{0}$ and $g \in G$ by Lemma 3.3 since $\left(F \times_{*} S_{0}\right) \cdot\langle\eta\rangle$ is a complement in P to α_{1}. But then ξ inverts $f s$, so $\xi s \xi=s \bmod \left(Z\left(S_{0}\right)\right)$. Thus ξ inverts s (see Section 1) and hence $\xi f s$ is conjugate to ξf. Suppose $f \neq 1$. If F is elementary abelian, $C_{W_{0}}(\xi f) \geq F$ in contradiction to the assumption that α_{1} is conjugate to ξf. If F is of exponent $4, f$ centralizes the diagonal D of F and $M_{0}, D \simeq E_{2^{n}}$. But ξf is conjugate to $\xi f s_{1}$ where $s_{1} \in M_{0}$ and $s_{1}^{2}=f^{2}$. Hence $f s_{1} \in D$ and a conjugate of α_{1} centralizes $D \times Z\left(S_{0}\right)$, again a contradiction. Thus $f=1$
and α_{1} is conjugate to ξ. In particular, ord $(\eta)=2$. By the same argument, α_{1} is conjugate to $\alpha_{1} \xi$. It now easily follows that all involutions of $W \backslash W_{0}$ are conjugate to α_{1}. Hence $Z\left(S_{0}\right)$ is strongly closed by Lemma 4.9.
(ii) Let G_{0} be a complement of E in G by (i). We may as well choose notation so, that a Sylow 2-subgroup of G_{0} is of the form $\left(F \times_{*} S_{0}\right) \cdot\langle\eta\rangle$. Moreover, we may assume that ord $(\eta) \leq 4$ by Lemma 3.2, and if ord $(\eta)=4$ that ξ is conjugate to an involution in $Z\left(S_{0}\right)$ by Lemma 4.9, again using the fact that if $m \in W_{0} \cdot\langle\xi\rangle$ is of order 4 , then $m^{2} \in Z\left(S_{0}\right)$. If on the other hand ord $(\eta)=2$ it follows immediately from Lemma 3.4 that ξ is conjugate to some involution f_{s} in $F \times_{*} S_{0}$. But then $C_{G}(\xi)$ contains subgroups isomorphic to $F \times_{*} C_{S_{0}}(s)$ and $\left\langle\alpha_{1}\right\rangle \times Z\left(S_{0}\right) \times\langle\xi\rangle$, so ξ is not extremal in P. Furthermore, if $\xi^{g} \in P$ is extremal, ξ^{g} centralizes some conjugate of α_{1} lying in P, which, by (i), must be of the form $\alpha_{1} v$ for some $v \in\left(F \times_{*} S_{0}\right) \cdot\langle\xi\rangle$. It is now easy to see, using Lemma 4.9, that $\xi^{g} \in Z\left(S_{0}\right)$. Thus, in any case, ξ is conjugate to an involution of $Z\left(S_{0}\right)$. Now, let $i \in Z(P) \leq Z\left(S_{0}\right)$ and $C_{i}=C_{G}(i)$. Obviously, as ξ is conjugate to $i, O_{2}\left(C_{i}\right)=\langle i\rangle$, since $C_{G}(\xi)$ contains a subgroup isomorphic to $\operatorname{PSL}(2, q)$. Thus we may use the idea in the proof of Lemma 4.3 (ii). For every element a (or subgroup A) of C_{i}, denote by \bar{a} (resp. \bar{A}) the corresponding element (resp. subgroup) of $\bar{C}_{i}=C_{i} /\langle i\rangle$. Now, $(\xi)^{h}=j$ belongs to $Z\left(S_{0}\right) \backslash\langle i\rangle$ for some $h \in C_{i}$, where $j \in Z(W)^{-}$. Let $s \in M_{0}, s^{2}=i$. Then, as $\langle\bar{s}\rangle \times Z\left(S_{0}\right)^{-} \times$ $\langle\bar{\xi}\rangle \leq C_{\bar{C}_{i}}(\bar{\xi})$, we may assume by Sylow's Theorem that $\left(\langle\bar{s}\rangle \times Z\left(S_{0}\right)^{-} \times\right.$ $\langle\bar{\xi}\rangle)^{h} \leq \bar{W}$. But then

$$
\begin{equation*}
\left(\left(\langle s\rangle \times_{*} Z\left(S_{0}\right)\right) \cdot\langle\eta\rangle\right)^{h} \leq\left(F \times_{*} S_{0}\right) \cdot\langle\xi\rangle \tag{36}
\end{equation*}
$$

so $j=(\xi)^{h}$, a contradiction as ξ inverts s. Now, by Lemma 4.9, we are done.
(iii) By Lemma 4.7, $W=\left(F \times_{*} S_{0}\right) \cdot(E \times\langle\eta\rangle)$. Hence we may assume, by Lemma 3.2, that ord $(\eta) \leq 4$. Furthermore, if ord $(\eta)=4$, then, by Lemma $3.3, \xi$ is conjugate to a square in $W_{0} \cdot\langle\xi\rangle$, i.e. to an involution $i \in Z\left(S_{0}\right)$, say $\xi^{g}=i \in Z(W)$ for some $g \in G$. Now we use the idea of the proof of Lemma 4.3 (i). By Lemma 4.9, $Z\left(S_{0}\right)$ is strongly closed in W_{0} w.r.t. G. Thus we may assume by Sylow's Theorem that

$$
\begin{equation*}
\left(Z\left(S_{0}\right) \times\langle\xi\rangle\right)^{g}=Z\left(S_{0}\right) \times\left\langle w_{0} \xi\right\rangle \tag{37}
\end{equation*}
$$

for some $w_{0} \in W_{0}$. Furthermore, since $\left(\eta^{g}\right)^{2}=i, \eta^{g} \in W_{0} \cdot\langle\xi\rangle$. Hence η^{g} centralizes $Z\left(S_{0}\right)$ and thus $n=2$. Now, as E is a T.I.-set and ord $(\eta)=4$ by assumption, $|E|=2$, and, by (ii), we are done.
(iv) If the weak closure of E in W w.r.t. G is contained in $E \times Z\left(S_{0}\right)$, then $P=W$. Hence we may assume, by (iii) and Lemma 4.9, that ord $(\eta)=2$ and after possibly change of notation, by Lemma 3.4 , that ξ is conjugate to some involution of W_{0} say $\xi^{g}=v s, v \in F . E, s \in S_{0}$, for some $g \in G$. But then $C_{G}(\xi)$ contains subgroups isomorphic to $E \times Z\left(S_{0}\right) \times\langle\xi\rangle$ and $F \times_{*} C_{S_{0}}(s)$. This, together with the assumption that the weak closure of E is contained in
$E \times Z\left(S_{0}\right)$, again implies that ξ is conjugate to an involution of $Z\left(S_{0}\right)$. This is a contradiction by Lemma 4.2.

Lemma 4.11. Suppose F is homocyclic of exponent 4. Then either $Z\left(S_{0}\right)$ is strongly closed or $|E|=2$ and α_{1} inverts F.

Proof. Assume $Z\left(S_{0}\right)$ is not strongly closed in P w.r.t. G. Then, by Lemma 4.10 (iv), $E \times Z\left(S_{0}\right)$ is not weakly closed in W. Suppose some $\alpha \in E^{\#}$ does not invert F. This will occur if $|E|>2$. Let $F=\left\langle f_{1}, \ldots, f_{n}\right\rangle$ and $f \in F \backslash Z\left(S_{0}\right)$. If $\alpha f \alpha=f f^{2} i$, where $i \in Z\left(S_{0}\right)^{\#}$, and $s \in S_{0}$ such that s^{2} equals $i, \alpha f s$ is an involution. Assume therefore that $\alpha f s$ is conjugate to some involution in E. As $C_{S_{0}}(\alpha f s)=C_{S_{0}}(s)$ equals some maximal abelian subgroup $M_{1}=\left\langle s_{11}, \ldots, s_{1 n}\right\rangle$ in S_{0} we may choose notation such that

$$
\begin{equation*}
C_{W}(\alpha f s) \geq E_{\alpha}=\left\langle\alpha_{1} f_{1} s_{11}, \ldots, \alpha_{m} f_{m} s_{1 m}\right\rangle \simeq E_{2 m} \tag{38}
\end{equation*}
$$

as E is a T.I.-group and σ_{q-1} centralizes F. E. Let $M_{2}=\left\langle s_{21}, \ldots, s_{2 n}\right\rangle$ be another maximal abelian subgroup of S_{0}. Here we choose notation such that $\alpha \alpha^{f_{i}}=\left[s_{1 i}, s_{2 i}\right]$. Then

$$
M_{3}=\left\langle f_{1} s_{21}, \ldots, f_{n} s_{2 n}\right\rangle \leq C_{W}(\alpha f s)
$$

Now fix $s_{2 k 0}$ for some $k_{0} \in \mathbf{N}$. For every $j \in Z\left(S_{0}\right)^{\#}$ there exists an $s_{j} \in M_{1}$ such that $\left(s_{2 k_{0}} s_{j}\right)^{2}=j$, in particular if $j=j_{k_{0}}=f_{k_{0}}^{2}$. Hence $f_{k_{0}} s_{2 k_{0}} s_{j}$ is an involution, so $\left.\Omega_{1}\left(\left\langle M_{1}, M_{3}\right\rangle\right)\right\rangle Z\left(S_{0}\right)$ and thus $\left\langle M_{1}, M_{3}\right\rangle$ is not a Suzuki 2-group. Thus, by Lemma 4.10(iv), an involution of the form $f s, f \in F \backslash Z\left(S_{0}\right)$, $s \in S_{0} \backslash Z\left(S_{0}\right)$ is conjugate to an element of E. As every noncentral involution in $F \times{ }_{*} S_{0}$ belongs to an elementary abelian subgroup of order $2^{2 n}$ then $|E|=2^{n}$ and we may reverse the above process. If $s_{0} \in S_{0} \backslash C_{S_{0}}(s)$, there exists an $\alpha_{0} \in E$ such that $\left[\alpha_{0}, f\right]=\left[s_{0}, s\right]$. Now let $f_{0} \in F$ such that $\left(\alpha_{0} f_{0}\right)^{2}=s_{0}^{2}$. Then $\alpha_{0} f_{0} s_{0}$ is an involution centralizing $f s$, a contradiction. Since any involution of $W_{0} \backslash E \times Z\left(S_{0}\right)$ is of the form $\alpha_{0} f_{0} s_{0}$ or $f_{0} s_{0}$ for suitable $\alpha_{0} \in E^{\#}$, $f_{0} \in F \backslash Z\left(S_{0}\right)$, we have reached a final contradiction.

Lemma 4.12. Suppose F is homocyclic of exponent 4. Then $Z\left(S_{0}\right)$ is strongly closed.

Proof. We will prove this in a series of steps by way of contradiction. So assume $Z\left(S_{0}\right)$ is not strongly closed. By the previous lemma, $|E|=2$ and α_{1} inverts F. Moreover, by Lemma $4.10(\mathrm{ii}), P>W$.

As W_{0} char $W, N_{G}(W) \leq N_{G}\left(W_{0}\right)$ and in particular $V>W$. Now let $v \in V \backslash W$ such that $v^{2} \in W$. Then, by Lemma 4.11, $v^{-1} \alpha_{1} v=\alpha_{1} f$ for some $f \in F$. Furthermore, $v^{-2} \alpha_{1} v^{2}=\alpha_{1} i$ for some $i \in Z\left(S_{0}\right)$, so v acts on

$$
\begin{equation*}
C_{W_{0}}\left(\alpha_{1}\right) \cap C_{W_{0}}\left(\alpha_{1}^{v}\right)=S_{0} . \tag{39}
\end{equation*}
$$

Hence v acts on $C_{W_{0}}\left(S_{0}\right)=F .\left\langle\alpha_{1}\right\rangle$ as well, so v acts on F. By counting conjugates of α_{1} we obtain

$$
\begin{equation*}
\left|\left\langle W, v, \sigma_{q-1}\right\rangle:\left\langle W, \sigma_{q-1}\right\rangle\right|=q . \tag{40}
\end{equation*}
$$

Clearly $v \notin N_{G}\left(\left\langle W, \sigma_{q-1}\right\rangle\right)$.
(1) Suppose $W_{0}<W$. Then $r\left(\Omega_{1}\left(V / W_{0}\right)\right)>1$.

Proof. Suppose not. Then the above remarks and Theorem 1.1 imply that V / W_{0} is cyclic. But then $\left\langle W, v, \sigma_{q-1}\right\rangle / W$ has a cyclic Sylow 2-subgroup, a contradiction since this forces v to lie in $N_{G}\left(\left\langle W, \sigma_{q-1}\right\rangle\right)$.
(2) V contains a normal subgroup $V_{0}>W_{0}$ which is a complement to $\langle\eta\rangle$. Moreover $V_{0} / W_{0} \simeq E_{2^{n}}$.

Proof. Let v be as above. By (1) we may replace v by v_{0} such that in addition we have $v_{0}^{2} \in W_{0}$. We now use the idea in the proof of Lemma 4.6. v_{0} acts trivially on $W_{0} / F \times_{*} S_{0}$, and E has q conjugates in W_{0} under the action of $\left\langle F, v_{0}, \sigma_{q-1}\right\rangle$. Moreover we have seen in (39) that v_{0} acts on S_{0}. As in the proof of Lemma 4.6 we find that v_{0} acts trivially on $S_{0} / Z\left(S_{0}\right)$ if $\eta=1$. If $\eta \neq 1$, either v_{0} or $v_{0} \xi$ acts trivially on $S_{0} / Z\left(S_{0}\right)$ by Theorem 1.1. Thus we may as well assume that v_{0} acts trivially on $S_{0} / Z\left(S_{0}\right)$. Therefore

$$
\begin{equation*}
\left|\left\langle W_{0}, v_{0}, \sigma_{q-1}\right\rangle:\left\langle W_{0}, v_{0}\right\rangle\right|=q \tag{41}
\end{equation*}
$$

and $\left\langle W_{0}, v_{0}, \sigma_{q-1}\right\rangle$ has a normal Sylow 2-subgroup V_{0}. Now (2) follows easily.
(3) $V_{0}=\left(R \times_{*} S_{0}\right) \cdot\left\langle\alpha_{1}\right\rangle$ where $F \leq R \leq C_{V_{0}}\left(S_{0}\right)$ and R / F is isomorphic to $E_{2^{n}}$.

Proof. We first observe that σ_{q+1} acts on V_{0} as

$$
F \cdot\left\langle\alpha_{1}\right\rangle \leq C_{G}\left(\sigma_{q+1}\right)
$$

Moreover, $V_{0} / F \cdot\left\langle\alpha_{1}\right\rangle$ is elementary abelian since $v_{0}^{2} \in C_{V_{0}}\left(S_{0}\right)$. Hence $\bar{V}_{0}=$ V_{0} / F is elementary abelian, so

$$
\begin{equation*}
\left(S_{0} \times\left\langle\alpha_{1}\right\rangle\right)^{-}=S_{0} \times \frac{\left\langle\alpha_{1}\right\rangle . F}{F} \tag{42}
\end{equation*}
$$

has a complement $\bar{R}=R / F$ under the action of σ_{q+1}. As \bar{R} is isomorphic to $E_{2^{n}}, \sigma_{q+1}$ centralizes R. Now let $u \in R \backslash F$. As u acts trivially on $S_{0} / Z\left(S_{0}\right)$ and S_{0} is of Suzuki B-type, $\left\langle C_{S_{0}}(u), \sigma_{q+1}\right\rangle \geq S_{0}$ and (3) follows.

Thus we have essentially two cases to consider, depending on whether $\exp (R)$ equals 4 or 8 .
(4) α_{1} is not conjugate to any involution of $R \times_{*} S_{0}$.

Proof. Let $u \in R \times_{*} S_{0}$ be an involution. Suppose that $u \notin F \times_{*} S_{0}$. Then
$R \times_{*} S_{0} / Z\left(S_{0}\right)$ is elementary abelian, so $O_{2}\left(\left\langle u, \sigma_{q-1}\right\rangle\right)$ is of exponent 2 and thus u is not conjugate to α_{1}.
(5) $\exp (R)=4$ and $P>V$.

Proof. Suppose not. Define $V_{1}=V=N_{P}\left(W_{0}\right), V_{1,0}=V_{0}$ which also equals $C_{V_{1}}\left(S_{0}\right) \times_{*} S_{0}$, and in general $V_{k}=N_{P}\left(V_{k-1,0}\right)$ and $V_{k, 0}=C_{V_{k}}\left(S_{0}\right) \times_{*}$ S_{0}. Finally, let $R_{0}=F$.
(a) Assume $\exp (R)>4$. Then, if $V_{k} \leq\left\langle P \cap G^{\prime}, T\right\rangle, V_{k, 0}$ contains a subgroup R_{k} such that
(i) R_{k} is a complement in $C_{V_{k}}\left(S_{0}\right)$ to α_{1} containing R_{k-1} and normalized by σ_{q-1},
(ii) R_{k} is homocyclic and inverted by α_{1},
(iii) $V_{k}=\left(R_{k} \times_{*} S_{0}\right) \cdot\left\langle\alpha_{1}, \eta\right\rangle$.

To prove this we use induction on k. The case $k=1$ has partly been considered in (3), where (i) and (iii) were proved, while (ii) follows from Theorem 2.1. Suppose (a) has been established for all $k \leq h$ and assume $P>V_{h}$. (Note that $R=R_{1}$.) Let $v \in N_{P}\left(V_{h}\right) \backslash V_{h}$ such that $v^{2} \in V_{h}$. Clearly v acts on $R_{h} \times_{*} S_{0}$. As $\exp \left(R_{h}\right) \geq 8, S_{0}^{v} \cap R_{h}=Z\left(S_{0}\right)$, and v acts on $F=\mho^{a}\left(R_{h} \times_{*} S_{0}\right)$ for some a. Thus $S_{0} \cap S_{0}^{v}>Z\left(S_{0}\right)$. Furthermore, if $s \in\left(S_{0} \cap S_{0}^{v}\right) \backslash Z\left(S_{0}\right)$ and $w \in\left(R \times_{*} S_{0}\right) \cdot\left\langle\alpha_{1}, \xi\right\rangle$ is an involution centralizing s, then $w \in\left(R \times_{*}\right.$ $\left.S_{0}\right) \cdot\left\langle\alpha_{1}\right\rangle$. Thus v acts on $\left(R_{h} \times_{*} S_{0}\right) \cdot\left\langle\alpha_{1}\right\rangle=V_{h, 0}$, which is the crucial point in the proof of (5). Also, $\alpha_{1}^{v}=\alpha_{1} r_{1}$ for some $r_{1} \in R_{h}$. Now (a) follows easily by using the arguments proving (1) through (3). v acts on

$$
\begin{equation*}
\bigcap_{r=1}^{d} C_{V_{h}}\left(v^{-2^{r}} \alpha_{1} v^{2 r}\right)=S_{0} \tag{43}
\end{equation*}
$$

where $2^{d}=$ ord (v), and on R_{k} for all $k \leq h$ as well of course. Now, if $W_{0}<W$ and $r\left(\Omega_{1}\left(V_{h+1} / V_{h}\right)\right)=1, V_{h+1} / V_{h}$ is cyclic by Theorem 1.1. Moreover, $\Omega_{1}\left(V_{h+1}\right)=\Omega_{1}(W) \leq W_{0} .\langle\xi\rangle$ since R_{h} is homocyclic. As $\Omega_{1}\left(R_{h}\right)=Z\left(S_{0}\right)$ it is easy to verify as in Lemma 4.9 that $Z\left(S_{0}\right)$ is strongly closed in $V_{h+1,0}=$ $V_{h, 0}$ and we reach a contradiction as in Lemma 4.10(ii), since we have assumed that $V_{h+1} \leq\left\langle P \cap G^{\prime}, T\right\rangle$. Now (i), (ii) and (iii) follows by exactly the same argument as was used to prove (2) and (3), while (ii) follows from Theorem 2.1.

Thus we may assume that $P=V_{k}$ for some k. Let P_{0} denote $V_{k, 0}$ and set $Q=R_{k}$. Then Q is either homocyclic or of class 2 and exponent 4 (and equal to R).
(b) α_{1} has a complement in G.

If not, α_{1} is conjugate to some involution in $\left(Q \times_{*} S_{0}\right) \cdot\langle\eta\rangle$ by Lemma 3.4. Hence α_{1} is conjugate to some involution of the form $\xi u s$, where $u \in Q$ and $s \in S_{0}$, by the same argument that proves (4). Then ξ inverts u and s, so $\xi u s$
is conjugate to ξu and ξ inverts $H=O_{2}\left(\left\langle u, \sigma_{q-1}\right\rangle\right)$, which therefore is homocyclic. If $H \simeq E_{2^{n}}, C_{P}(\xi u) \geq H \times Z\left(S_{0}\right)$, a contradiction unless $u \in Z\left(S_{0}\right)$. If $\exp (H)=4, \xi u$ centralizes the diagonal $D \simeq E_{2^{n}}$ of H and M_{0}. But then ξu is conjugate to ξd for some $d \in D$ and $C_{P}(\xi d) \geq D \times Z\left(S_{0}\right)$, again a contradiction. Finally, if $\exp (H) \geq 8, \xi$ inverts F. But then $C_{P}(\xi u) \geq D \times$ $Z\left(S_{0}\right)$, where $D \simeq E_{2^{n}}$ is the diagonal of F and M_{0}, a contradiction. Thus $u \in Z\left(S_{0}\right)$ and α_{1} is conjugate to ξ. In particular ord $(\eta)=2$. But then ($Q \times_{*} S_{0}$) $\left\langle\alpha_{1} \xi\right\rangle$ is a complement in P to α_{1} as well, so by the same argument α_{1} is conjugate to $\alpha_{1} \xi$. Now, let $f \in F \backslash Z\left(S_{0}\right)$. Then $f^{\xi}=f i$ for some $i \in Z\left(S_{0}\right)$. Suppose $i \neq 1$ and let $s \in M_{0}$ such that $s^{2}=i$. Then ξ centralizes $f s$, so ξ centralizes the normal Sylow 2-subgroup H of $\left\langle f s, \sigma_{q-1}\right\rangle$, which is homocyclic. In particular, $\exp (H)=4$, since otherwise ξ centralizes $H \times Z\left(S_{0}\right) \simeq E_{2^{2 n}}$, contrary to the fact that ξ is conjugate to α_{1}. But α_{1} acts on H and $C_{H}\left(\alpha_{1}\right)=$ $Z\left(S_{0}\right)$. Hence a Sylow 2 -subgroup of $C_{G}(\xi)$ contains a homocyclic subgroup of exponent 4 and order 4^{n}, and an involution, conjugate to α_{1} which acts nontrivially on H. Thus a similar situation occurs in $T \in \operatorname{Syl}_{2}(C)$. By inspecting T we see that the involution in question must be of the form ξs_{0} or $\alpha_{1} \xi s_{0}$ for some $s_{0} \in S_{0}$. Conjugating by an element of S_{0} we may therefore assume that the involution has the form ξ or $\alpha_{1} \xi$. Moreover, the homocyclic subgroup in question has an intersection with S_{0} which contains an element s_{1} of order 4. Hence s_{1} is inverted by that involution. Thus α_{1} inverts some element of order 4 in H, a contradiction since α_{1} inverts F. This shows that $i=1$, so ξ centralizes F. But then $\alpha_{1} \xi$ inverts F, a contradiction since α_{1} is conjugate to $\alpha_{1} \xi$. This proves (b).

Hence α_{1} has a complement in G with $\left(Q \times S_{0}\right) \cdot\langle\eta\rangle$ as Sylow 2-subgroup (at least we may have chosen notation so). It is now clear that we must proceed by reaching a contradiction of the same nature as that in the proof of Lemma 4.10(ii). However, we can no longer expect to prove by a short argument that $Z\left(S_{0}\right)$ is strongly closed in $Q \times_{*} S_{0}$ w.r.t. G due to the fact that involutions of $Q \times_{*} S_{0}$ may be squares in ($Q \times_{*} S_{0}$), even if they do not belong to $Z\left(S_{0}\right)$. So we must go the opposite way this time so to speak, namely, prove that ξ "transfers out", in which case it will be trivial to verify that $Z\left(S_{0}\right)$ is strongly closed in $Q \times_{*} S_{0}$, and (5) will follow.

Now, let us consider possible conjugates of α_{1} in P. By (b), every conjugate of α_{1} in P is of the form $\alpha_{1} u s$ or $\alpha_{1} \xi u s$ for some $u \in Q, s \in S_{0}$. Suppose $\alpha_{1} u s$ is an involution. Then α_{1} inverts u and s modulo $Z\left(S_{0}\right)$, since $Q \cap S=Z\left(S_{0}\right)$ and $\left[Q, S_{0}\right]=\langle 1\rangle$. Hence $u \in F$, i.e. u is inverted by α_{1}, so $s \in Z\left(S_{0}\right)$. It follows immediately that

$$
\begin{equation*}
C_{P}\left(\alpha_{1} u s\right) \cap\left(Q \times_{*} S_{0}\right)=S_{0} \tag{44}
\end{equation*}
$$

Next, assume that $\alpha_{1} \xi u s$ is an involution. Then $\alpha_{1} \xi u s$ is conjugate to $\alpha_{1} \xi u$ in P. Furthermore, $\alpha_{1} \xi$ inverts the normal Sylow 2-subgroup H of $\left\langle u, \sigma_{q-1}\right\rangle$. Suppose $u \notin Z\left(S_{0}\right)$. If ord $(u)=2, C p\left(\alpha_{1} \xi u\right) \geq H \times Z\left(S_{0}\right)$, a contradiction. If $u^{2} \neq 1$ let $H_{0} \leq H$ be the subgroup of order 4^{n} and exponent 4. Then
$C_{P}\left(\alpha_{1} \xi u\right) \geq D \times Z\left(S_{0}\right)$, where $D \simeq E_{2^{n}}$ is the diagonal of H_{0} and M_{0}, again a contradiction. Thus $u \in Z\left(S_{0}\right)$. In this case $\left\langle\alpha_{1}\right\rangle \times Z\left(S_{0}\right) \times\langle\xi\rangle$ is a maximal elementary abelian subgroup of a Sylow 2-subgroup of $C_{G}\left(\alpha_{1} \xi u s\right)$, and

$$
\begin{equation*}
\Omega_{1}\left(C_{P}\left(\alpha_{1} \xi u s\right)\right) \cap\left(Q \times_{*} S_{0}\right)=Z\left(S_{0}\right) \tag{45}
\end{equation*}
$$

(c) ξ is not conjugate to an involution of $Z\left(S_{0}\right)$.

Suppose $\xi^{g}=i \in Z(P) \leq Z(S)$ for some $g \in G$. Let C_{i} denote $C_{G}(i)$. Now, $C_{G}(\xi)$ contains as a subgroup $\left\langle\alpha_{1}, \xi\right\rangle \times L$, where $L=C_{U_{0}}(\xi) \simeq$ $\operatorname{PSL}(2, q)$. By Sylow's Theorem we may assume that $\left(\left\langle\alpha_{1}\right\rangle \times Z\left(S_{0}\right)\right)^{g} \leq P$. Clearly, as $Z\left(S_{0}\right) \in \operatorname{Syl}_{2}(L)$,

$$
\begin{equation*}
Z\left(S_{0}\right)^{g} \cap O_{2}\left(C_{i}\right)=\langle 1\rangle \tag{46}
\end{equation*}
$$

On the other hand, by our determination of conjugates of α_{1} in P above,

$$
\begin{equation*}
\left(\langle i\rangle \times Z\left(S_{0}\right)^{g}\right) \cap\left(Q \times_{*} S_{0}\right)=Z\left(S_{0}\right) \tag{47}
\end{equation*}
$$

Furthermore, since L has one conjugacy class of involutions, it follows that there exists an $h \in C_{i}$ such that $\xi^{h} \in Z\left(S_{0}\right)$. Now we reach a contradiction exactly as in the second part of the proof of Lemma 4.10(ii).

We may now finish the proof of (5) by "extremal" arguments. It follows immediately from (c) and Lemma 3.2 that $\eta^{4}=1$. Furthermore, if ord $(\eta)=4$ and $\eta \in P \cap G^{\prime}$, then, by Lemma 3.3, η is conjugate to an element of $\left(Q \times_{*} S_{0}\right)$. $\langle\xi\rangle$ so ξ is conjugate to an element of $Q \times_{*} S_{0}$, while if ord $(\eta)=2$ and $\xi \in P \cap G^{\prime}$ this follows from Lemma 3.4. Let in any case ξ^{g} be an extremal conjugate of ξ in P. Then it follows immediately from our determination of the conjugates of α_{1} in P that $\xi^{g} \in Z\left(S_{0}\right)$, a contradiction by (c). Thus $\eta=1$. As mentioned earlier this implies that $Z\left(S_{0}\right)$ is strongly closed in P w.r.t. G, contrary to our assumption.
(6) $V=\left(S_{0}^{1} \times_{*} S_{0}^{2}\right) \cdot\left\langle\alpha_{1}, \eta\right\rangle$, where $S_{0}=S_{0}^{1} \simeq S_{0}^{2}, F \leq S_{0}^{2}$ and $|P: V|=$ 2. Furthermore, there exists a $\kappa \in P$ such that $\alpha_{1}^{\kappa}=\alpha_{1} \xi$ and $\left(M_{0}\right)^{\kappa}=F$, and α_{1} has no conjugate in $P \backslash V$.

Proof. By (4), α_{1} is not conjugate to any involution of $R \times_{*} S_{0}$. By (5) there is a $p \in N_{P}(V) \backslash V$ such that $p^{2} \in V$. As $\exp (R)=4, p^{-1} \alpha_{1} p$ does not belong to $\left(R \times_{*} S_{0}\right) \cdot\left\langle\alpha_{1}\right\rangle$, although clearly $p \in N_{P}\left(R \times_{*} S_{0}\right)$. Furthermore, if ord $(\eta)>2,\left(R \times_{*} S_{0}\right) \cdot\langle\xi\rangle$ is normalized by p, while if ord $(\eta)=2$ we may assume this to be the case. Thus $p^{-1} \alpha_{1} p=\alpha_{1} \xi u s$ for some $u \in R, s \in S_{0}$. As in the proof of (5), this however forces u to lie in $Z\left(S_{0}\right)$, and $\alpha_{1} \xi u s$ is conjugate to $\alpha_{1} \xi$ in P. It now follows that V has the claimed structure and that α_{1} and $\alpha_{1} \xi$ are conjugate in $N_{P}(V)$ by some κ where $\kappa^{2} \in V$. Also, $N_{P}(V)=\langle V, \kappa\rangle$ (note that $V=N_{P}\left(V_{0}\right)$). Now, if $P>N_{P}(V)$, there exists an involution $v \in N_{P}(V) \backslash V$ such that v is conjugate to α_{1} and

$$
C_{N_{P}(V)}(v)=\langle v\rangle \times C_{V}(v) \simeq T=\left\langle\alpha_{1}\right\rangle \times S
$$

This implies that v centralizes $Z\left(S_{0}\right)$. Moreover, as $F^{v}=M_{0}, v$ centralizes the diagonal of F and M_{0}, which is isomorphic to $E_{2^{n}}$, a contradiction to the assumption that v is conjugate to α_{1}. Thus we have established (6).
(7) Either $P /\left(S_{0}^{1} \times_{*} S_{0}^{2}\right) \cdot\left\langle\alpha_{1}\right\rangle$ is cyclic or there exists a $v \in P \backslash V$ such that $\alpha_{1}^{v}=\alpha_{1} \xi, v^{2} \in\langle\xi\rangle,[\eta, v] \in\langle\xi\rangle$ and v centralizes $Z\left(S_{0}\right)$.

Proof. Let $S_{12}=S_{0}^{1} \times_{*} S_{0}^{2}$ and suppose $P / S_{12} \cdot\left\langle\alpha_{1}\right\rangle$ is not cyclic. Then $\kappa^{2} \in S_{12} \cdot\left\langle\alpha_{1}, \eta^{2}\right\rangle$. We have furthermore chosen κ such that $\kappa^{-1} \alpha_{1} \kappa=\alpha_{1} \xi$. As $\kappa^{2} \in V, \kappa^{-2} \alpha_{1} \kappa^{2}=\alpha_{1} f$ for some $f \in F$. Let $s \in S_{0}^{2}$ such that $\alpha_{1}^{s}=\alpha_{1} f$. Then $(\kappa s)^{-1} \alpha_{1}(\kappa s)=\alpha_{1} \xi$ and $(\kappa s)^{-2} \alpha_{1}(\kappa s)^{2}=\alpha_{1}$. Let κs be denoted μ. Then $\alpha_{1}^{\mu}=\alpha_{1} \xi$ and $\xi^{\mu}=\xi$. Thus

$$
\begin{equation*}
\mu^{2} \in N=C_{P}\left(\alpha_{1}\right) \cap C_{P}(\xi)=\left\langle\alpha_{1}\right\rangle \times Z\left(S_{0}\right) \cdot\langle\eta\rangle \tag{48}
\end{equation*}
$$

Moreover, μ acts on $C_{G}\left(\alpha_{1}\right) \cap C_{G}(\xi)$ which contains a normal subgroup $H_{1}=$ $\left\langle\alpha_{1}\right\rangle \times L \cdot\langle\eta\rangle$ of odd index, where $L \simeq \operatorname{PSL}(2, q)$. Let $H_{2}=H_{1} \cdot\langle\mu\rangle$, $H_{0}=L . C_{H_{1}}(L)$. Then $H_{2} / H_{0} \simeq\langle\eta\rangle /\langle\xi\rangle$ as the outer automorphism group of L is cyclic and $\langle\eta\rangle /\langle\xi\rangle$ acts faithfully (as field automorphisms) on L. Hence $\mu \eta^{r} \in H_{0}$ for some $r \in \mathbf{N}$. However, as μ acts on N and $\mu^{2} \in N$,

$$
\begin{equation*}
\left(\mu \eta^{r}\right)^{2} \in H_{0} \cap N=\left\langle\alpha_{1}\right\rangle \times Z\left(S_{0}\right) \times\langle\xi\rangle \tag{49}
\end{equation*}
$$

Now all involutions of $\left\langle\alpha_{1}\right\rangle \times Z\left(S_{0}\right) \times\langle\xi\rangle \backslash Z\left(S_{0}\right) \times\langle\xi\rangle$ are conjugate to α_{1}, and therefore

$$
\begin{equation*}
\left(\mu \eta^{r}\right)^{2} \in Z\left(S_{0}\right) \times\langle\xi\rangle \tag{50}
\end{equation*}
$$

On the other hand, as $\mu \eta^{r} \in H_{0}$ and $\left(\mu \eta^{r}\right)^{4}=1, \mu \eta^{r}$ acts on L as an inner automorphism of order less than or equal to 2. Thus $\left(\mu \eta^{r}\right)^{2} \in\langle\xi\rangle$ and (7) follows with $v=\mu \eta^{r}$.

We note that $v \alpha_{1}$ is an involution if $v^{2}=\xi$.
(8) α_{1} has a complement G_{0} in G.

Proof. Either $P / S_{12} \cdot\left\langle\alpha_{1}\right\rangle$ is cyclic, in which case $\left\langle S_{12}, \kappa\right\rangle$ is a complement in P to α_{1}, or $S_{12} \cdot\langle\eta, v\rangle$ is a complement. In either case α_{1} has a complement in P with no conjugate, as we have seen in (6), and (7) follows from Lemma 2.4.

Thus a Sylow 2-subgroup P_{0} of G_{0} is either $S_{12} \cdot\langle\kappa\rangle$ (in the cyclic case) or $S_{12} \cdot\langle\eta, v\rangle$, without loss of generality.
(9) ξ is not conjugate to any involution in S_{12}.

Proof. Suppose $\xi^{g} \in S_{12}$. As ξ acts on S_{0}^{1} and S_{0}^{2} as a field automorphism, $C_{S_{12}}(\xi)=D \times Z\left(S_{0}\right)$, where $D \simeq E_{2^{n}}$ is the diagonal of F and M_{0}. Now, if $\xi^{g} \in S_{12} \backslash Z\left(S_{0}\right), C_{S_{12}}\left(\xi^{g}\right)$ contains a subgroup $M_{01} \times_{*} M_{02}$ of index q, where $M_{0 i} \leq S_{0}^{i}$ is maximal abelian. It follows immediately that ξ is not extremal in P. Let $\xi^{h} \in P$ be extremal. Then $C_{P}\left(\xi^{h}\right)$ contains a conjugate of α_{1}. However, by (6) we have that if $\alpha_{1}^{a} \in P$ for some $a \in G$, then $\alpha_{1}^{a}=\alpha_{1}^{p}$ for some $p \in P$. Thus we may assume that $\alpha_{1} \in C_{P}\left(\xi^{h}\right)$. Hence $\xi^{h} \in\left\langle\alpha_{1}\right\rangle \times S$. Now, as ξ is not extremal in P and any involution in $\left\langle\alpha_{1}\right\rangle \times S$ is conjugate to either α_{1}, ξ
or an involution in $Z\left(S_{0}\right)$, it follows that $\xi^{h} \in Z\left(S_{0}\right)$. Let $i \in Z(P)$. As in the proof of $5(\mathrm{c})$, which only depends on the determination of possible conjugates of α_{1} in P, there exists an $h \in C_{i}=C_{G}(i)$ such that $\xi^{h} \in Z\left(S_{0}\right)$. Now, as in the proof of Lemmas 4.3(ii) and 4.10(ii), for every element a and subgroup A of C_{i}, let \bar{a} and \bar{A} denote the corresponding element and subgroup of $\bar{C}_{i}=C_{i} /\langle i\rangle$. Let $s \in M_{0}$ such that $s^{2}=i$. Then by Sylow's Theorem, we may assume that

$$
\begin{equation*}
\left(\left\langle\bar{\alpha}_{1}\right\rangle \times\langle\bar{s}\rangle \times Z\left(S_{0}\right)^{-} \times\langle\bar{\xi}\rangle\right)^{h} \leq \bar{P} . \tag{51}
\end{equation*}
$$

As $s^{h} \in C_{P}\left(\alpha_{1}^{h}\right), s^{h} \in S_{12} \cdot\langle\eta\rangle$. However, as $\xi^{h} \in Z\left(S_{0}\right)$, this implies that $s^{h} \in S_{12} \cdot\langle\xi\rangle$. Consequently, ξ^{h} centralizes s^{h}, a contradiction.
(10) $r\left(\Omega_{1}\left(P_{0} / S_{12}\right)\right)>1$.

Proof. It follows immediately from (9) and Lemma 3.3 that P_{0} / S_{12} is not cyclic. Assume in the following that $r\left(\Omega_{1}\left(P_{0} / S_{12}\right)\right)=1$. Then ord $(v)=$ ord $(\eta)=4$ since $[v, \eta] \in\langle\xi\rangle$ i.e. $\langle\eta, v\rangle \simeq Q_{8}$. Furthermore, by Lemma 3.3, η is conjugate to an element ζ of $S_{12} \cdot\langle v\rangle$ and by (9), $S_{12} \cdot\langle v\rangle=S_{12} \cdot\langle\zeta\rangle$. Then $\zeta^{2}=\xi f m$ for some $f \in F, m \in M_{0}$, which is conjugate to ξ in S_{12}, so we may as well assume that $\zeta^{2}=\xi$. Let $\zeta=v s_{1} s_{2}$, where $s_{1} \in S_{0}$ and $s_{2} \in S_{0}^{\nu}$. Then

$$
\begin{equation*}
\zeta^{2}=\left(v s_{1} s_{2}\right)^{2}=\xi s_{1}^{v} s_{2} s_{2}^{v} s_{1} \quad \bmod Z\left(S_{0}\right) \tag{52}
\end{equation*}
$$

Thus $s_{1}^{\nu}=s_{2} \bmod Z\left(S_{0}\right)$. So $\zeta=v s_{1} s_{1}^{\nu} i$ for some $i \in Z\left(S_{0}\right)$. Consequently,

$$
\zeta^{2}=\left(v s_{1} s_{1}^{\nu}\right)^{2}=\xi s_{1}^{\nu} s_{1}^{\zeta} s_{1} s_{1}^{\nu}
$$

In particular, $s_{1}^{\xi}=s_{1} \bmod Z\left(S_{0}\right)$, i.e. $s_{1}^{\xi}=s_{1}^{-1}$. But then

$$
\begin{equation*}
s_{1}^{v}\left(v s_{1} s_{1}^{v} i\right) s_{1}^{-v}=v s_{1}^{s} s_{1} i=v i \tag{53}
\end{equation*}
$$

i.e. we may assume that $\zeta=v i$. Now, as

$$
\begin{equation*}
C_{P}(\xi)=\left(\left(Z\left(S_{0}\right) \times D\right) \cdot\langle\eta, v\rangle\right) \cdot\left\langle\alpha_{1}\right\rangle \tag{54}
\end{equation*}
$$

we have

$$
\begin{equation*}
C_{P}(v i)=\left(Z\left(S_{0}\right) \times D_{1}\right) \cdot\left(\langle v i\rangle \times_{*} C_{\left\langle\eta \alpha_{1}\right\rangle}(v i)\right) \tag{55}
\end{equation*}
$$

where $D_{1} \leq D$. Also,

$$
\begin{equation*}
C_{P}(\eta)=Z \cdot\left\langle\alpha_{1}\right\rangle \times\langle\eta\rangle \tag{56}
\end{equation*}
$$

where $Z \leq Z\left(S_{0}\right) \times D$ is of order 2^{n}. Thus η is not extremal in P. Since η centralizes α_{1} and all conjugates of α_{1} in P lies in $S_{12} \cdot\left\langle\eta, \alpha_{1}\right\rangle$ and furthermore the centralizer of any conjugate of α_{1} in P is contained in V, it now follows easily that $\eta^{g} \in S_{12} \cdot\langle\xi\rangle$ if η^{g} is an extremal conjugate of $-\eta$ in P. By (9), this is a contradiction.
(11) Contradiction.

By (7) and (10), either $v^{2}=1$ or $[\eta, v]=1$. Moreover, if $v^{2} \neq 1, \eta^{2} \neq 1$ by (10). But in the latter case $\eta_{2} v$ is an involution where $\eta_{2} \in\langle\eta\rangle$ is of order 4 .

Thus either $v^{2}=1$ and $[\eta, v]=\xi, v^{2}=1$ and $P_{0} / S_{12} \simeq\langle\xi\rangle \times\langle v\rangle$ or $v^{2} \neq 1$ and $P_{0} / S_{12} \simeq\langle\eta\rangle \times\langle\eta \nu\rangle$. In the latter case $\eta_{2} \notin P \cap G^{\prime}$ by Lemma 3.3 and (9). In the former case we apply Lemma 3.3. Assume $\eta \in P \cap G^{\prime}$. Then $\eta^{2 r}$ is conjugate to an element of $P_{0} \mid S_{12} \cdot\left\langle\eta^{2}, v\right\rangle$, again by (9). But any element of $P_{0} \mid S_{12} \cdot\left\langle\eta^{2}, v\right\rangle$ has order larger than or equal to ord (η) unless $\eta^{4}=1$, as $(\eta v)^{2}=\eta^{2} \xi$. Thus we may assume in any case that $\langle\eta, v\rangle$ is isomorphic to either $Z_{2} \times Z_{2}$ or D_{8}. Consider the case $\langle\eta, v\rangle \simeq D_{8}$. Then ξ is conjugate to an involution in $P_{0} \mid S_{12} \cdot\langle\xi, \eta v\rangle$ unless $\eta \notin P \cap G^{\prime}$. Assume therefore that ξ is conjugate to $v s_{1} s_{2}$ for some $s_{i} \in S_{0}$. Then $s_{1}^{v}=s_{2} \bmod Z\left(S_{0}\right)$, as v inverts $s_{1} s_{2}$, and $s_{1} s_{2}$ is an involution. Moreover, $\left|C_{S_{12}}(v)\right|=2^{3 n}$, and $v s_{1} s_{2}$ is conjugate to $v i$ by s_{1}, where $i=s_{1}^{\nu} s_{2} \in Z\left(S_{0}\right)$. Again, ξ is not extremal, and we easily reach a contradiction. Thus we have reduced to the case $\langle\eta, v\rangle \simeq$ $Z_{2} \times Z_{2}$. But then ξ has an extremal conjugate in $S_{12} .\langle v\rangle$ by Lemma 3.4. However, this forces the extremal conjugate to lie in S_{12}, as no element of $S_{12} \cdot\langle v\rangle\left\langle S_{12}\right.$ centralizes any conjugate of α_{1} in P. This final contradiction proves Lemma 4.12.

Lemma 4.13. Suppose F is elementary abelian and $E^{g} \cap F \neq\langle 1\rangle$ for some $g \in G$. Then $Z\left(S_{0}\right)$ is strongly closed in P with respect to G.

Proof. If $E^{g} \cap F \neq\langle 1\rangle$ for some $g \in G$, it follows that $E \simeq E_{2^{n}}$ and in fact that $F=E^{g} \times Z\left(S_{0}\right)$, since $F \simeq E_{2^{2 n}}$, from our basic assumptions on E. Furthermore, this implies that ord $(\eta) \leq 2$, as η_{2} acts nontrivially on $Z\left(S_{0}\right)$.

First we claim that either $Z\left(S_{0}\right)$ is strongly closed in P w.r.t. G, or the weak closure of E in W w.r.t. $N_{G}(W)$ is equal to $\left\langle E, E^{g}\right\rangle=F$. E. Suppose $E^{a} \leq W$ for some $a \in G$. Then $E^{a} \leq W_{0}$ since $|E|>2$. Moreover, either $E^{a} \leq F . E$ or $E^{a} \cap(F . E)=\langle 1\rangle$. So assume the latter case occurs. Then, if $\alpha \in E^{\#}$, $\alpha^{a}=\beta v s$ for some $\beta \in E^{\#}, v \in E^{g}$ and $s \in S_{0}$. Thus $M_{s}=C_{S_{0}}(s) \leq C_{W}\left(\alpha^{a}\right)$, and consequently

$$
\begin{equation*}
E^{a}=E_{a}=\left\langle\alpha_{1} v_{1} s_{1}, \ldots, \alpha_{n} v_{n} s_{n}\right\rangle \tag{57}
\end{equation*}
$$

where $E^{g}=\left\langle v_{1}, \ldots, v_{n}\right\rangle$ and $M_{s}=\left\langle s_{1}, \ldots, s_{n}\right\rangle$, since E_{a} is an elementary abelian subgroup of W_{0} whose centralizer in W_{0} is isomorphic to $E_{2^{n}} \times S_{B}\left(2^{n}\right)$. We note that $\left\langle E, E^{g}\right\rangle$ is isomorphic to $\operatorname{PSL}\left(3,2^{n}\right)_{2}$. Suppose $\eta \neq 1$, i.e. $\eta=\xi$ is of order 2. Now, if furthermore $a \in N_{G}(W), \xi^{a}=\xi \gamma v_{a} s_{a}$ for some $\gamma \in E$, $v_{a} \in E^{g}$ and $s_{a} \in S_{0}$. However, as ξ inverts $\gamma v_{a} s_{a}, \xi$ inverts s_{a}, so we may as well assume that $s_{a}=1$. If $v_{a} \neq 1, \xi \gamma$ centralizes F. Then $\alpha_{k}^{\nu_{a}}=\alpha_{k} s_{k}^{2}$ for all k, $1 \leq k \leq n$, since $\xi \gamma v_{a}$ centralizes E^{a}. But then v_{a} belongs to $v_{k} Z\left(S_{0}\right)$ for all k, a contradiction since $|E|>2$. So $v_{a}=1$, and therefore $v_{k}^{\xi \gamma}=v_{k} s_{k}^{2}$ for all k, so $v_{k}^{\alpha_{k} \xi \gamma}=v_{k}$ for all k. But then $\alpha_{k} \xi \gamma$ centralizes F for all k, since $\alpha_{k} \xi \gamma \in C_{G}\left(\sigma_{q-1}\right)$, again a contradiction. Thus $\eta=1$. But now, by Lemma $4.9, Z\left(S_{0}\right)$ is strongly closed if $P=W=W_{0}$ so we may assume that $V=N_{P}\left(W_{0}\right)>W_{0}$. Let $v \in V \backslash W_{0}$ such that $v^{2} \in W_{0}$. Suppose $E^{v} \cap(F, E)=\langle 1\rangle$. Then, using the above notation

$$
\begin{equation*}
E^{v}=\left\langle\alpha_{1} v_{1} s_{1}, \ldots, \alpha_{n} v_{n} s_{n}\right\rangle \tag{58}
\end{equation*}
$$

Hence $\alpha^{v}=\alpha v s$ for some $\alpha \in E^{\#}, v \in E^{g}$ and $s \in M_{s}$. Now, as $v^{2} \in W_{0}$, $\alpha^{v} v^{v} s^{v}=\alpha v s v^{v} s^{v}=\alpha i$ for some $i \in Z\left(S_{0}\right)$. But then $v=v^{v} \bmod Z\left(S_{0}\right)$, so $v \in N_{P}(F)$. However, $N_{P}(F)=W_{0}$ as $F=E^{g} \times Z\left(S_{0}\right)$, a contradiction. Thus $E^{v} \leq\left\langle E^{g}, E\right\rangle$. Consequently, $V=P$ and $\left|V: W_{0}\right|=2$. Finally, let $a \in N_{G}(W)$ such that $E^{a} \cap\left\langle E, E^{v}\right\rangle=\langle 1\rangle$. Then, from what we have just seen,

$$
\begin{equation*}
a v^{-1} a^{-1}\left(E \times Z\left(S_{0}\right)\right) a v a^{-1}=E^{v} \times Z\left(S_{0}\right) \tag{59}
\end{equation*}
$$

Let $\alpha \in E^{\#}$. Then $a^{-1} \alpha a=\beta v s$ for some $\beta \in E^{\#}, v \in E^{v \#}$ and $s \in S_{0} \backslash Z\left(S_{0}\right)$. After possibly replacing a by $\sigma_{q-1}^{-k} a \sigma_{q-1}^{k}$ for some k we may assume that $v^{-1} \beta v v=v \beta$. Thus, if $[\beta, v]=i$,

$$
\begin{equation*}
a v^{-1} a^{-1} \alpha a v a^{-1}=a v^{-1} \beta v s v a^{-1}=a \beta v s^{v} i a^{-1}=\alpha\left(s^{-1} s^{v} i\right)^{a-1} \tag{60}
\end{equation*}
$$

which belongs to $E^{v} \times Z\left(S_{0}\right)$. Thus $s s^{v}$ is of order 4, i.e. v acts nontrivially on $S_{0} / Z\left(S_{0}\right)$. In particular, s does not lie in the maximal abelian subgroup of S_{0} normalized by v. Since a was arbitrary, σ_{q+1} does not act transitively on the set of maximal abelian subgroups of S_{0}. Hence n is odd, and $E \times Z\left(S_{0}\right)$ has exactly $2\left((q+1) 3^{-1}+1\right)$ conjugate subgroups in W under the action of $N_{G}(W)$, a contradiction since $(q+1) 3^{-1}+1$ is an even number and $|P: W|=2$.

Assume therefore in the following that the weak closure of E in W w.r.t. $N_{G}(W)$ is equal to $\left\langle E, E^{g}\right\rangle$. It immediately follows that either $Z\left(S_{0}\right)$ is strongly closed in G, or $|V: W|=2$, where $V=N_{G}(W)$. Assume therefore that the latter case occurs. Then actually $P=V$, as clearly $\left\langle E, E^{g}\right\rangle \times_{*} S_{0}$ is normal in $N_{P}(V)$. Let $P=\langle W, v\rangle$, where $v^{2} \in W$. We may as well assume without loss of generality that v centralizes ξ, since v centralizes $\xi \gamma \bmod Z\left(S_{0}\right)$ for some $\gamma \in E: \xi^{v}=\xi \gamma \nu$ for some $\gamma \in E, v \in E^{v}$. But then $\gamma^{v}=v \bmod Z\left(S_{0}\right)$, so $(\xi \gamma)^{v}=\xi \gamma \bmod Z\left(S_{0}\right)$. Thus, without loss of generality, $C_{V}(\xi)=\langle\xi\rangle \times$ $\langle E, v\rangle$. Every involution of $\left\langle E, E^{v}\right\rangle$ is conjugate either to α_{1} or to i_{1}. Moreover, if $\delta \in\left\langle E, E^{v}\right\rangle$ is conjugate to α_{1}, δ is conjugate to δi for any $i \in Z\left(S_{0}\right)$. In particular α_{1} is conjugate to $\alpha_{1} \xi$ if ξ is conjugate to an involution in $Z\left(S_{0}\right)$. Since v centralizes ξ, it easily follows by Lemma 3.3 that $v^{2} \in W_{0}$. Assume $\xi \in P \cap G^{\prime}$. By Lemma 3.4, there exists an extremal conjugate $\xi^{h} \in W_{0} \cdot\langle v\rangle$ of ξ for some $h \in G$. Clearly $\xi^{h} \notin W_{0}$. Moreover, $\left\langle E, E^{v}\right\rangle^{h}$ is normal in $W_{0} \cdot\left\langle\xi^{h}\right\rangle$, in fact $\left(E \times Z\left(S_{0}\right)\right)^{h}$ is normal in $W_{0} \cdot\langle v\rangle$ and $C_{V}\left(\xi^{h}\right)$ contains an element interchanging $\left(E \times Z\left(S_{0}\right)\right)^{h}$ and $\left(E^{v} \times Z\left(S_{0}\right)\right)^{h}$. Hence $\left\langle E, E^{v}\right\rangle^{h} \leq$ W_{0}. As E^{h} and $E^{v h}$ are of the form considered in (59) this implies that v acts trivially on $S_{0} / Z\left(S_{0}\right)$. By symmetry, $\xi \xi^{h}$ acts trivially on $S_{0} / Z\left(S_{0}\right)$ as well, a contradiction. Thus $\xi \notin P \cap G^{\prime}$.

Finally suppose $v \in P \cap G^{\prime}$. First we claim that $Z\left(S_{0}\right)$ is strongly closed in W_{0} w.r.t. G. We only have to consider involutions of the form $\tau=\alpha v s$ for some $\alpha \in E^{\#}, v \in E^{v \#}$ and $s \in S_{0}$. But as mentioned earlier, $C_{W_{0}}(\tau)=E_{1} \times S_{1}$, where $E_{1} \simeq E_{2^{n}}$ and $S_{1} \simeq S_{B}(q)\left(\simeq S_{0}\right.$ as a 2-group). But if $\left(E_{1} \times S_{1}\right)^{g}$ is a subgroup of P for some $g \in G$, it follows immediately by the structure of P that $E_{1} \cap Z\left(S_{0}\right)=\langle 1\rangle$. Hence $\tau^{g} \notin Z\left(S_{0}\right)$ and it follows that $Z\left(S_{0}\right)$ is strongly
closed in W_{0} w.r.t. G. So in order to finish the proof we may assume that v is an involution conjugate to those of $Z\left(S_{0}\right)$. Now, $\sigma_{q-1}^{-1} v \sigma_{q-1} v$ acts trivially on $S_{0} / Z\left(S_{0}\right)$, and $\sigma_{q-1}^{-1} v \sigma_{q-1} v \in N_{G}(E)$ as v is an involution. Hence

$$
\sigma_{q-1}^{-1} v \sigma_{q-1} v=\rho c
$$

where $\rho^{q-1} \in C, c \in C$ and ρ acts trivially on $Z\left(S_{0}\right)$. On the other hand, as ρ^{q-1} acts trivially or as an inner automorphism on U_{0}, the structure of Aut (U_{0}) implies that ρ itself must act as an inner automorphism. Since our only constraint on c is that it must lie in C, we may also assume that $\rho^{q-1}=1$. But then $\rho \in C_{G}\left(U_{0}\right)$, as $\rho \in C_{G}\left(Z\left(S_{0}\right)\right)$. Furthermore, as $\sigma_{q-1}^{-1} v \sigma_{q-1} v$ acts trivially on $S_{0} / Z\left(S_{0}\right), \sigma_{q-1}^{-1} v \sigma_{q-1} v=c_{0} s_{0}$ for some $c_{0} \in C_{G}\left(S_{0}\right)$ and $s_{0} \in S_{0}$. Moreover, as $\rho c=c_{0} s_{0}, c_{0}=\rho c_{1}$ for some

$$
c_{1} \in C \cap C_{G}\left(S_{0}\right)=E \times Z\left(S_{0}\right)
$$

But then, if $c_{1}=\alpha i$, where $\alpha \in E$ and $i \in Z\left(S_{0}\right), c_{0} s_{0}=\rho_{1} s_{1}$, where $\rho_{1}=\rho \alpha$ and $s_{1}=i s_{0}$. Also $\rho_{1}^{q-1}=1$ and $\rho_{1} \in C_{G}\left(U_{0}\right)$.

If v acts nontrivially on $S_{0} / Z\left(S_{0}\right), v$ inverts some maximal abelian subgroup of S_{0} by Theorem 1.1. Consider the case when v acts trivially on $S_{0} / Z\left(S_{0}\right)$. If $s_{1} \in Z\left(S_{0}\right), v$ and σ_{q-1} centralize each other $\bmod C_{G}\left(S_{0}\right)$. As v acts trivially on $S_{0} / Z\left(S_{0}\right), v$ centralizes some s in $S_{0} \backslash Z\left(S_{0}\right)$. But then v centralizes $C_{S_{0}}(s)$ since σ_{q-1} acts on $C_{S_{0}}(s)$, and we reach a contradiction exactly as in the proof of Lemma 4.9. Thus s_{1} is of order 4. Since v inverts $\rho_{1} s_{1}, s_{1}^{v} \in S_{0}$ and $\rho_{1} \in$ $C_{G}\left(S_{0}\right)$, it follows that v inverts both ρ_{1} and s_{1}. In particular, v inverts $C_{S_{0}}\left(s_{1}\right)$.

Thus v inverts some maximal abelian subgroup M of S_{0}. Let H be the homocyclic subgroup of $\left\langle E, E^{\nu}\right\rangle$ of exponent 4 inverted by v. Then v centralizes the diagonal $D \simeq E_{2^{n}}$ of H and M, and $D \times Z\left(S_{0}\right) \times\langle v\rangle$ is a maximal elementary abelian subgroup of P. Moreover, if v acts nontrivially on $S_{0} / Z\left(S_{0}\right)$ it follows immediately that v is conjugate to $v d$ for all $d \in D \times Z\left(S_{0}\right)$. However, this is also true if v acts trivially on $S_{0} / Z\left(S_{0}\right)$. Let $\rho_{1}=\left(\rho_{1}^{k}\right)^{2}$. Then it follows from the equation $\sigma_{q-1}^{-1} v \sigma_{q-1} v=\rho_{1} s_{1}$ that

$$
\begin{equation*}
\left(\rho_{1}^{-k}\right)^{2} \sigma_{q-1}^{-1} v \sigma_{q-1}=\rho_{1}^{-k} \sigma_{q-1}^{-1} v \sigma_{q-1} \rho_{1}^{k}=s_{1} v \tag{61}
\end{equation*}
$$

since ρ_{1} is inverted by v and $\rho_{1} \in C_{G}\left(U_{0}\right)$. Then v is conjugate to $v s$ for all $s \in M$. Since on the other hand v is conjugate to $v h$ for all $h \in H$ in $\langle E, v\rangle$, the assertion follows. Now let $v^{g}=i \in Z\left(S_{0}\right)$. By Sylow's Theorem we may assume that $\left(D \times Z\left(S_{0}\right) \times\langle v\rangle\right)^{g} \leq P$. Then

$$
\begin{equation*}
\left(D \times Z\left(S_{0}\right) \times\langle v\rangle\right)^{g} \cap W_{0}=Z\left(S_{0}\right) \times D_{1} \tag{62}
\end{equation*}
$$

where $D_{1} \cap\left\langle E, E^{v}\right\rangle=\langle 1\rangle$. Moreover, as $|D|>2, d^{g} \in W_{0}$ for some $d \in D^{\#}$. Hence $d^{g} \in\left(D_{1} \times Z\left(S_{0}\right)\right) \backslash Z\left(S_{0}\right)$, as $Z\left(S_{0}\right)$ is strongly closed in W_{0} w.r.t. G, and d^{g} is conjugate to $d^{g} i$. But this is a contradiction since $d^{g} i=(d v)^{g}$ is conjugate to v.

Lemma 4.14. Suppose F is elementary abelian and assume furthermore that $Z\left(S_{0}\right)$ is not strongly closed in P. Then:
(i) V contains a normal subgroup $V_{0}>W_{0}$, which is a complement in V to $\langle\eta\rangle$, such that V_{0} / W_{0} is isomorphic to $E_{2^{2 n}}$. Moreover, $\sigma_{q^{2}-1} \in N_{G}\left(V_{0}\right)$ and $\sigma_{q^{2}-1}$ acts irreducibly and faithfully on V_{0} / W_{0}.
(ii) $C_{V_{0}}(F)=R$ is a complement in V_{0} to E, and R / F is isomorphic to $E_{24 n}$.
(iii) The weak closure of E in V_{0} is contained in W_{0}.

Proof. Let $F=Z_{0} \times Z\left(S_{0}\right)$ such that $\sigma_{q-1} \in N_{G}\left(Z_{0}\right)$.
(i) By Lemma 4.10(iv), $E \times Z\left(S_{0}\right)$ is not weakly closed in W. Furthermore, $F \cap E^{g}=\langle 1\rangle$ for all $g \in G$ by the previous lemma. Suppose $W=P$. Then by Lemma $4.10(\mathrm{ii}),|E|$ is larger than 2. Consequently, if $\left(E \times Z\left(S_{0}\right)\right)^{g} \leq W$, then actually $\left(E \times Z\left(S_{0}\right)\right)^{g} \leq W_{0}$. So let $\left(E \times Z\left(S_{0}\right)\right)^{g}$ be a subgroup of W_{0} which is not contained in T_{0} for some $g \in G$. If $\alpha \in E^{\#}, \alpha^{g}=\beta z s$ for some $\beta \in E^{\#}, z \in Z_{0}$ and $s \in S_{0}$, where $s^{2}=(\beta z)^{2}$. Let $s \in M_{s}=C_{S_{0}}(s)$. Then M_{s} is contained in $C_{G}\left(\alpha^{g}\right)$, so

$$
\begin{equation*}
E^{g}=\left\langle\alpha_{1} z_{1} s_{1}, \ldots, \alpha_{m} z_{m} s_{m}\right\rangle \tag{63}
\end{equation*}
$$

exactly as in (57), where

$$
\begin{equation*}
Z_{0}=\left\langle z_{1}, \ldots, z_{m}, \ldots, z_{n}\right\rangle \tag{64}
\end{equation*}
$$

and

$$
\begin{equation*}
M_{s}=\left\langle s_{1}, \ldots, s_{m}, \ldots, s_{n}\right\rangle \tag{65}
\end{equation*}
$$

Now, by Lemmas 4.9 and 4.10 (iii), we may assume that ord (η) is equal to 2 . Furthermore, as $E^{g} \times Z\left(S_{0}\right) \unlhd W_{0}$, we may assume $W_{0}^{g-1} \leq W$, in which case it immediately follows that $W_{0}^{g-1} \leq W_{0}$. Thus we may assume that $g \in N_{G}\left(W_{0}\right)$. Now, if $Z\left(S_{0}\right)$ is not strongly closed in P w.r.t. G, by Lemma 3.4, there exists an extremal conjugate $\xi^{h}, h \in G$, of ξ in W_{0}. It easily follows that $\xi^{h} \in Z\left(S_{0}\right)$ as $|E|>2$. Furthermore we may assume by Sylow's Theorem that $E^{h} \leq P$. But then

$$
\begin{equation*}
(E \times\langle\xi\rangle)^{g h} \leq E \times Z\left(S_{0}\right) \tag{66}
\end{equation*}
$$

and we reach a contradiction by exactly the same argument which proved Lemma 4.2, since $|E|>2$. Thus $V>W$, as by assumption $Z\left(S_{0}\right)$ is not strongly closed in P.

Let $v \in V \backslash W$ such that $v^{2} \in W$. Then

$$
\begin{equation*}
E^{v}=\left\langle\alpha_{1} z_{1} s_{1}, \ldots, \alpha_{m} z_{m} s_{m}\right\rangle \tag{67}
\end{equation*}
$$

where we have used the notation of (63), (64) and (65). First we note that v acts on $F \times_{*} S_{0}$ and trivially on $W_{0} / F \times_{*} S_{0}$. If not, let $\alpha \in E^{\#}$ such that $\alpha^{\nu}=\beta z s$ where $\beta \in E \backslash\langle\alpha\rangle, z \in Z_{0}$ and $s \in S_{0}$. Let $\alpha \beta z_{1} s_{1} \in E^{v}$ for suitable $z_{1} \in Z_{0}$ and $s_{1} \in S_{0}$ by (67). As $\alpha^{\nu 2}=\alpha i$ for some $i \in Z\left(S_{0}\right)$, it follows that $\left(\alpha \beta z_{1} s_{1}\right)^{v}=$ $\beta z_{1} s_{1} \alpha i=\left(\alpha \beta z_{1} s_{1}\right)^{z o}$ for some $z_{0} \in Z_{0}$, a contradiction as $\alpha \beta z_{1} s_{1}$ is conjugate to an involution of E. Now, by counting conjugates of $E \times Z\left(S_{0}\right)$ in W_{0} under the action of $\left\langle W, \sigma_{q-1}, v\right\rangle$, we find that

$$
\left|\left\langle W, \sigma_{q-1}, v\right\rangle:\left\langle W, \sigma_{q-1}\right\rangle\right|=q .
$$

Suppose $\Omega_{1}\left(V / W_{0}\right)=1$. As v does not normalize $\left\langle\sigma_{q-1}\right\rangle \cdot\langle\eta\rangle$, a Sylow 2-
subgroup \bar{Q} of $\left\langle W, \sigma_{q-1}, v\right\rangle / W_{0}$ is quaternion, and $\langle\bar{\eta}\rangle=W / W_{0} \unlhd \bar{Q}$ if we assume $W / W_{0} \leq \bar{Q}$. In particular, we may assume that $v^{2}=\xi$. On the other hand, as $q \geq 4, \bar{\eta}$ is a square in \bar{Q} as well since $\langle\bar{\eta}\rangle \leq \bar{Q}$. This is easily seen to be impossible. Thus $r\left(\Omega_{1}\left(V / W_{0}\right)\right)>1$. Assume therefore that $v^{2} \in W_{0}$. As $\sigma_{q-1} \in N_{G}\left(W_{0} \cdot\langle\xi\rangle\right), \sigma_{q-1} \in C_{G}(\xi)$ and $\sigma_{q+1} \in N_{G}\left(W_{0}\right)$ while σ_{q+1} is inverted by ξ, we first replace v by $v_{0}=v v^{\sigma_{q-1}}$, which is equal to $v^{\sigma_{q-1}{ }^{k}}$ modulo $W_{0} \cdot\langle\xi\rangle$ for some $k \in \mathbf{N}$. It is now easy to verify, just as in previous similar cases, that $N=\left\langle W_{0}, v_{0}, \sigma_{q^{2}-1}\right\rangle$ is 2-closed since v_{0} acts trivially on $W_{0} / F \times_{*} S_{0}$, and we obtain (i) with $V_{0}=V \cap N$, since $\sigma_{q^{2}-1}$ acts irreducibly on $S_{0} / Z\left(S_{0}\right)$. Let $\sigma=\sigma_{q+1}^{r}$. Then $O_{2}\left(W_{0}, v_{0}^{\sigma}, \sigma_{q-1}\right) / W_{0}$ is elementary abelian and isomorphic to $Z\left(S_{0}\right)$ as a σ_{q-1}-module for any r. It also follows that N / W_{0} is elementary abelian. As $\sigma_{q^{2}-1}$ acts irreducibly on $S_{0} / Z\left(S_{0}\right)$, even if 3 divides $q+1$, (i) follows.
(ii) As we have just seen, $V_{0} / Z_{0} \times S_{0} \simeq E_{2^{2 n}} \times E_{2^{m}}$. Thus E has a complement R under the action of $\sigma_{q^{2}-1}$ containing $Z_{0} \times S_{0}$. Now the action of σ_{q+1} and the fact that σ_{q+1} centralizes F implies that $R \leq C_{V_{0}}(F)$, and as E acts nontrivially on F, R actually equals $C_{V_{0}}(F)$. Moreover, R acts on $Z_{0} \times S_{0} / Z_{0} \simeq S_{0}$, so, by Theorem $1.1, R$ centralizes $S_{0} \bmod F$. Hence $u^{2} \in C_{R}\left(S_{0}\right)=F$ if $u \in R$. In particular, $R / F \simeq E_{24 n}$.
(iii) Suppose $E^{g} \leq V_{0}$ for some $g \in G$. Then $E^{g} \cap R$ is trivial by (ii). Thus an element of E^{g} is of the form αu for some $\alpha \in E^{\#}, u \in R$. Suppose $u \notin Z_{0} \times$ S_{0}. Then α^{u} is equal to $\alpha z s$ for some $z \in Z_{0}^{\#}$ and $s \in S_{0} \backslash Z\left(S_{0}\right)$, so $u^{2}=z s$, which contradicts (ii).

Corollary. Assume in addition to the assumptions of Lemma 4.14 that $|E|>2$. Then $V=P$.

Proof. Suppose $|E|>2$. Then, if $E^{g} \leq V$, it follows that $E^{g} \leq V_{0}$. Thus the corollary follows from (iii).

Lemma 4.15. Suppose we are in the situation of Lemma 4.14.
(i) Suppose $\Omega_{1}(R)=F$. Then $R .\left\langle\alpha_{1}\right\rangle \simeq \operatorname{PSU}\left(3,2^{n}\right)_{2} 乙 Z_{2}$.
(ii) Suppose $\Omega_{1}(R)>F$. Then $R \simeq \operatorname{PSL}\left(3,2^{2 n}\right)_{2}$.

Proof. Let \bar{R}_{0} be a complement in \bar{R} of $S_{0} \times Z_{0} / F$ under the action of $\sigma_{q^{2}-1}$ and $\bar{R}_{0}=R_{0} / F$ such that $\Omega_{1}\left(R_{0}\right)>F$ if $\Omega_{1}(R)>F$. Let $N_{0}=N_{R_{0}}\left(M_{0}\right)$. Then it easily follows from (67) that $\left|N_{0}\right|=2^{3 n}$. Also we may assume without loss of generality that $Z_{0}=R_{0}^{2}$ if R_{0} is not elementary abelian. Suppose $\Omega_{1}\left(R_{0}\right)>F$. Then $\overline{\bar{R}}_{0}=R_{0} / Z\left(S_{0}\right)$ is either elementary abelian or isomorphic to $\operatorname{PSL}\left(3,2^{n}\right)_{2}$ by Lemma 2.5. Thus $\overline{\bar{R}}_{0}$ is either elementary abelian or contains exactly two maximal elementary abelian subgroups. However, as $\sigma_{q^{2}-1}$ acts irreducibly on $\bar{R}_{0} / Z_{0}=\bar{R}_{0}$, this is impossible. Thus $\overline{\bar{R}}_{0}$ is elementary abelian. Since $R_{0}^{2} \leq Z_{0}$ this implies that R_{0} is elementary abelian.

If $\Omega_{1}\left(R_{0}\right)>F$ it therefore follows, by Lemma 2.5 , that N_{0} is elementary abelian and hence that $\left\langle M_{0}, N_{0}\right\rangle \simeq E_{2^{n}} \times \operatorname{PSL}\left(3,2^{n}\right)_{2}$.

If $\Omega_{1}(R)=F$, let $t \in N_{0}$ be an element of order 4. We may assume without loss of generality that t centralizes s where $\alpha^{t}=\alpha z s, z \in Z_{0}, s \in S_{0}$; if $s^{t} \neq s$ we replace R_{0} by a complement containing $t s^{\prime}$, where $s^{\prime} \in S_{0}$ such that $s^{t s^{\prime}}=s$. So in this case $\left\langle M_{0}, N_{0}\right\rangle$ is homocyclic of order $2^{4 n}$ and rank $2 n$, using the argument in the first part of the proof of Lemma 2.5. Now, as $\sigma_{q^{2}-1}$ acts irreducibly on \bar{R}_{0}, we use the idea in the proof of Lemma 2.5, namely, we show that all commutators are uniquely determined. If $\Omega_{1}(R)>F, R_{0}$ is elementary abelian. If $\Omega_{1}(R)=F, R_{0}$ is equal to $R_{1} \times Z\left(S_{0}\right)$, where $\Omega_{1}\left(R_{1}\right)=Z_{0}$, and, by Lemma 2.5, R_{1} is isomorphic to $\operatorname{PSU}\left(3,2^{n}\right)_{2}$. Finally, if $u \in R_{0}$ and $\alpha \in E^{\#}$, let $\alpha^{u}=\alpha z s$ where $z \in Z_{0}, s \in S_{0}$. Then

$$
\left(\alpha^{u \rho}\right)^{u}=\alpha^{u} z^{\rho} u^{-1} s^{\rho} u \quad \text { where } \quad \rho=\sigma_{q^{2}-1}^{k} \text { for any } k
$$

an equation which determines $u^{-1} s^{\rho} u$ uniquely, and the lemma follows.
Corollary. Suppose $Z\left(S_{0}\right)$ is not strongly closed. Then $|E|=2$.
Proof. Obvious.
Lemma 4.16. Suppose $\Omega_{1}(R)=F$. Then F is strongly closed.
Proof. First we consider the case when $P=V$. It follows immediately that F is strongly closed in P w.r.t. G if $V=V_{0}$. So we may assume that $\eta \neq 1$ and that $P \cap G^{\prime}$ is not contained in V_{0}. Let $R=R_{1} \times R_{2}$, where $R_{i} \simeq S_{0}$ and $R_{1}^{\alpha_{1}}=R_{2}$. We may assume without loss of generality that η normalizes $\bar{R}_{i}=$ $R_{i} F / F$. In particular, ξ centralizes F. Furthermore, ξ is conjugate to an involution of F unless $P \cap G^{\prime}$ is contained in $V_{0} \cdot\langle\xi\rangle$ by Lemma 3.3, while if $P \cap G^{\prime}=V_{0} .\langle\xi\rangle$ this immediately follows from Lemma 3.4, since in that case V_{0} is a complement to ξ in P and ξ centralizes F. It follows immediately that the extremal conjugate of ξ in P lies in $Z\left(S_{0}\right)$. As we know the structure of R completely, we easily apply the argument of the proof of Lemma 4.10(ii) and reach a contradiction.

Assume therefore in the following that $V<P$. In particular, $\eta \neq 1$. Le) $V_{1}=N_{P}(V), V_{r+1}=N_{P}\left(V_{r}\right)$. From the structure of R it follows that $N_{P}(R \mathrm{t}$ contains a subgroup P_{0} of index 2 such that P_{0} normalizes $Z\left(R_{i}\right)$ and

$$
\overline{\bar{R}}_{i}=R_{i} \times Z\left(R_{3-i}\right) / Z\left(R_{3-i}\right), \quad i=1,2
$$

and that $N_{P}(R)=P_{0} \cdot\left\langle\alpha_{1}\right\rangle$. Also, as η acts as a field automorphism on S_{0}, we may, after possibly change of notation, assume that $\eta \in P_{0}$ and that η acts as a field automorphism on $\overline{\bar{R}}_{i}, i=1,2$. It easily follows by induction that $\left|V_{r-1}: V_{r}\right| \leq 2$. Let $\gamma_{r+1} \in V_{r+1} \backslash V_{r}$.
(1) We may choose γ_{1} in P_{0} such that one of the following cases occurs:
(a) $\quad V_{1}=\left(R \cdot\left(\langle\eta\rangle \times\left\langle\gamma_{1}\right\rangle\right)\right) \cdot\left\langle\alpha_{1}\right\rangle, \gamma_{1}^{2}=1, \gamma_{1} \in C_{G}(L)$ and $\left[\gamma_{1}, \alpha_{1}\right]=\xi$.
(b) $\operatorname{Ord}(\eta)=2, V_{1}=\left(R \cdot\left\langle\gamma_{1}\right\rangle\right) \cdot\left\langle\alpha_{1}\right\rangle, \gamma_{1}^{2}=\xi$ and $\left[\gamma_{1}, \alpha_{1}\right]=\xi$.

To see this we first observe that $R \unlhd V_{1}$ and $R .\langle\eta\rangle=P_{0} \cap V_{1} \unlhd V_{1}$. Hence $C_{V_{1}}(\xi)$ is not contained in V, so it easily follows that we may choose γ_{1}
in $C_{P}(\xi)$ such that $\gamma_{1}^{-1} \alpha_{1} \gamma_{1}=\alpha_{1} \xi$, i.e. γ_{1} acts on $C_{G}\left(\alpha_{1}\right) \cap C_{G}(\xi)$. This allows us to assume exactly as in the proof of (7) in Lemma 4.12 that either $\gamma_{1}^{2}=\eta$ or $\gamma_{1}^{2} \in\langle\xi\rangle$ and $\left[\gamma_{1}, \eta\right] \in\langle\xi\rangle$. Furthermore, after possibly replacing γ_{1} by $\gamma_{1} \alpha_{1}$ we may assume that $\gamma_{1} \in P_{0}$. Hence $\left[\eta, \gamma_{1}\right]=1$ by Theorem 1.1. Finally, if $\gamma_{1}^{2}=\eta$ and ord $(\eta)>2$, clearly $P=V_{1}$. But then, by Lemma 3.4, $\alpha_{1} \notin$ $P \cap G^{\prime}$ and consequently, by Lemma 3.2, $\gamma_{1} \alpha_{1}, \gamma_{1} \notin P \cap G^{\prime}$ so we are back to $P=V$, which has been considered above.
(2) If $V_{r-1}<P, r \geq 2$, then γ_{r} may be chosen in P_{0} such that one of the following cases occurs:
(a) $V_{r}=\left(R \cdot\left(\langle\eta\rangle \times\left\langle\gamma_{r}\right\rangle\right)\right) \cdot\left\langle\alpha_{1}\right\rangle, \gamma_{r}^{2}=\gamma_{r-1}, \gamma_{r}^{-1} \alpha_{1} \gamma_{r}=\alpha_{1} \eta_{r} \gamma_{r-1}$.
(b) $\quad V_{r}=\left(R \cdot\left\langle\gamma_{r}\right\rangle\right) \cdot\left\langle\alpha_{1}\right\rangle, \gamma_{r}^{2}=\gamma_{r-1}$ and $\gamma_{r}^{-1} \alpha_{1} \gamma_{r}=\alpha_{1} \gamma_{r-1}$.

The proof of course goes by induction. First we consider case (a). Assume (2a) has been established for all $r \leq h$ and that $P>V_{h}$. In particular, ord $(\eta)=$ $2^{k}>$ ord $\left(\gamma_{h}\right)=2^{h}$. Again we may assume without loss of generality that $\gamma_{h+1} \in P_{0}, \gamma_{h+1}^{-1} \alpha_{1} \gamma_{h+1}=\alpha_{1} \eta_{h+1} \gamma_{h}$ and that $\gamma_{h+1} \in C_{G}\left(\eta_{h+1} \gamma_{h}\right)$. Thus it easily follows that γ_{h+1} acts on $C_{G}\left(\eta_{h+1}\right) \cap C_{G}\left(\alpha_{1}\right)$. This allows us to assume, as above, either that $\gamma_{h+1}^{2}=\eta$ or that $\gamma_{h+1}^{2} \in\left\langle\eta_{h+1}\right\rangle \times\left\langle\gamma_{h}\right\rangle$. If however $\gamma_{h+1}^{2}=\eta$, γ_{h+1}^{2} centralizes α_{1}, so $\eta_{h+1} \gamma_{h}$ is inverted by γ_{h+1}. This is only possible if $h=0$, i.e. $\eta=\xi$ and we are in case (b). Thus $\gamma_{h+1}^{2} \in\left\langle\eta_{h+1}\right\rangle \times\left\langle\gamma_{h}\right\rangle$ and it follows without loss of generality, using Theorem 1.1, that we may assume that $\gamma_{h+1}^{2}=$ γ_{h} and $\left[\eta, \gamma_{h+1}\right]=1$, proving (a). Case (b) is even easier, and we leave the proof to the reader.

Before we continue, we note that any involution of $P_{0} \backslash R$ is conjugate either to ξ or to γ_{1}. We therefore obtain
(3) F is strongly closed in P_{0} w.r.t. G, and $\alpha_{1} \notin G^{\prime}$.

The proof is obtained in the same fashion as many times earlier. If γ_{1} is an involution, $\gamma_{1} \in C_{G}(L)$ by (1), so both ξ and γ_{1} has L in their centralizer and our method applies to both involutions. That $\alpha_{1} \notin G^{\prime}$ follows immediately from the fact that $\Omega_{1}\left(P_{0}\right) \leq C_{P}(F)$.
(4) F is strongly closed in P w.r.t. G.

This is clear by (2) and (3) if P_{0} / R is cyclic. Assume therefore that we are in case (2a). By (3), it suffices to prove that

$$
\begin{equation*}
\boldsymbol{\Omega}_{1}\left(G^{(\infty)} \cap P\right) \leq R \cdot\left(\langle\xi\rangle \times\left\langle\gamma_{1}\right\rangle\right) \tag{68}
\end{equation*}
$$

Only the following four cases may occur:

$$
\text { I. } P \cap G^{(\infty)}=R \cdot\left(\left\langle\eta_{k_{1}}\right\rangle \times\left\langle\gamma_{r_{1}}\right\rangle\right) \text {, }
$$

II. $P \cap G^{(\infty)}=R \cdot\left(\left\langle\eta_{k_{1}}\right\rangle \times\left\langle\gamma_{r_{1}} \alpha_{1}\right\rangle\right)$,
III. $P \cap G^{(\infty)}=R \cdot\left(\left\langle\eta_{k_{1}} \alpha_{1}, \gamma_{r_{1}}\right\rangle\right)$,
IV. $P \cap G^{(\infty)}=R \cdot\left(\left\langle\eta_{k_{1}} \alpha_{1}, \gamma_{r_{1}} \alpha_{1}\right\rangle\right)$,
for suitable $k_{1}, r_{1} \in \mathbf{N}, k_{1}>r_{1}$. Note that $\eta_{k_{2}} \gamma_{r_{1}} \alpha_{1}$ is an involution if and only if $k_{2}=r_{1}+1$.

Case II. Suppose $k_{1}>r_{1}$. As $\alpha_{1} \gamma_{r_{1}} \alpha_{1}=\eta_{r}^{-1} \gamma_{r}^{-1}$, let

$$
\begin{equation*}
P_{1}=\left\langle R, \eta_{k_{1}-1}, \gamma_{r_{1}-1}, \eta_{r_{1}+1} \alpha_{1} \gamma_{r_{1}}\right\rangle \tag{69}
\end{equation*}
$$

Then P_{1} is a maximal subgroup of $P \cap G^{(\infty)}$ not containing $\eta_{k_{1}}$ and $\exp \left(P_{1} / R\right)=$ $2^{k_{1}-1}$, while every element in $P \backslash P_{1}$ has order $2^{k_{1}} \bmod R$. Hence $\eta_{k_{1}}$ transfers out by Lemma 3.3 and (4), a contradiction. Thus $k_{1}=r_{1}$. Now let

$$
\begin{equation*}
P_{1}=R \cdot\left(\left\langle\eta_{r_{1}}\right\rangle \times\left\langle\gamma_{r_{1}-1}\right\rangle\right) \tag{70}
\end{equation*}
$$

where this time $\alpha_{1} \gamma_{r_{1}} \notin P_{1}$. As every element of $P \backslash P_{1}$ has order $2^{r_{1}+1} \bmod R$ in this case, we have reached a contradiction again.

Case III. It easily follows in the same way here that $k_{1} \leq r_{1}+1$. If $k_{1}=r_{1}+1$, let

$$
\begin{equation*}
P_{1}=\left\langle R, \eta_{r_{1}}, \gamma_{r_{1}} \eta_{r_{1}+1} \alpha_{1}, \gamma_{r_{1}-1}\right\rangle . \tag{71}
\end{equation*}
$$

Then every element of $P \backslash P_{1}$ has order $2^{r_{1}+1}\left(\eta_{r_{1}+1} \alpha_{1}\right)$ or $2^{r}\left(\gamma_{r_{1}}=\gamma_{r_{1}} \eta_{r_{1}+1} \alpha_{1}\right.$. $\left(\eta_{r_{1}+1} \alpha_{1}\right)^{-1}$) mod R. It now easily follows that ξ is conjugate to γ_{1} in $G^{(\infty)}$, say $\xi^{g}=\gamma_{1}$, by our remark on conjugacy classes of involutions in P_{0}. Let $\alpha_{1}^{g}=\alpha_{1} x, x \in G^{(\infty)}$. Then

$$
\begin{equation*}
\gamma_{1} \alpha_{1} x \gamma_{1}=\alpha_{1} \xi \gamma_{1} x \gamma_{1} \tag{72}
\end{equation*}
$$

i.e. $\gamma_{1} x \gamma_{1}=\xi x$. Hence $\alpha_{1} \xi$ centralizes x, so α_{1} centralizes $\gamma_{1} x \gamma_{1}=\xi x$. But then α_{1} centralizes x, so ξ centralizes x and consequently x is an involution in $L .\langle\xi\rangle$, a contradiction since $\gamma_{1} \in C_{G}(L \cdot\langle\xi\rangle)$ while $\gamma_{1} x \gamma_{1}=\xi x$. Thus $k_{1}=r_{1}$, in which case (68) holds.

Case IV. This case is easily taken care of by referring to Lemma 3.3 unless $k_{1} \leq r_{1}+1$ in which case it immediately follows that (68) holds.

Remark. Lemma 4.16 deals with cases as $G=U_{0}^{1} 乙 Z_{2}$, where $U_{0}^{1} \simeq U_{0}$, $G=U^{1} \quad Z_{2}$, where $U^{1} \simeq U$, and the "twisted wreath product" $G=$ $\left(\begin{array}{ll}U_{0}^{1} & Z_{2}\end{array}\right) \cdot Z_{2 n}$, and variations thereof.

Lemma 4.17. Suppose $\Omega_{1}(R)>F$. Then G contains a normal subgroup H with R as Sylow 2-subgroup.

Proof. By Lemma 4.14(iii), R does not contain any involution conjugate α_{1}, so the lemma follows immediately if $\eta=1$. Assume therefore that $\eta \neq 1$. First we claim that $P=V$. Let $F_{0} \times F$ be a maximal elementary abelian subgroup of R, which by Theorem 2.1 is isomorphic to $\operatorname{PSL}\left(3,2^{2 n}\right)_{2}$. Now, if ord $(\eta)>2,\left(F_{0} \times F\right)^{\xi}=F_{0} \times F$, while if ord $(\eta)=2$ we may as well assume this to be the case. Let $u \in F_{0}$ such that $u \alpha_{1} u=\alpha_{1} z s$, where $z \in Z_{0}$ and $s \in M \neq$ M_{0}. Then $s s^{\xi}$ is an element of order 4 in M_{0}. Moreover, u acts trivially on $M^{\xi} F_{0} F / F$. Thus

$$
\begin{equation*}
u^{\xi} u \alpha_{1} u u^{\xi}=\alpha_{1} s s^{\xi} \quad \bmod F \tag{73}
\end{equation*}
$$

But ξ centralizes $u^{\xi} u$. It therefore follows that if $u \in F$ such that $u \alpha_{1} u=\alpha_{1} z s$ where $s \in M_{0}$, then $z^{\xi}=z s^{2}=z^{\alpha_{1}}$. Thus $\alpha_{1} \xi$ centralizes F. In particular, $\alpha_{1} \xi$ is not conjugate to α_{1}. Neither is ξ, as $\left|C_{F_{0} \times F}(\xi)\right| \geq 2^{2 n}$. Since all involutions of $P \backslash R$ are conjugate to $\alpha_{1}, \alpha_{1} \xi$ or ξ, it follows that $P=V$ and that α_{1} has a complement in G with $R \cdot\langle\eta\rangle$ as Sylow 2-subgroup without loss of generality. Finally, if $P \cap G^{\prime}$ is not contained in R, it easily follows that ξ is conjugate to an involution of $Z\left(S_{0}\right)$ by Lemma 3.3.

Again we are in a situation, where the argument of Lemma 4.10(ii) may be applied to reach a contradiction.

Thus we have shown that if G is a finite group with an involution whose centralizer in G satisfies $\left(^{*}\right)$, then either G contains an elementary abelian 2group which is strongly closed in G, or G contains a normal subgroup H whose Sylow 2-subgroup is isomorphic to that of $\operatorname{PSL}\left(3,2^{2 n}\right)$. This completes the proof of Theorems 1 and 2 as mentioned in the introduction.

References

1. M. Collins, The characterization of finite groups whose Sylow 2-subgroups are of type $L_{3}(q)$, q even, J. Algebra, vol. 25 (1973), pp. 490-512.
2. D. Goldschmidt, 2-fusion in finite groups, Ann. of Math, vol. 99 (1974), pp. 70-117.
3. —, a transfer lemma, manuscript.
4. D. Gorenstein, Finite groups, Harper and Row, New York, 1968.
5. T. O. Hawkes, On the automorphism group of a 2-group, Proc. London Math. Soc., vol. XXVI (1973), pp. 57-111.
6. G. Higman, Suzuki 2-groups, Illinois J. Math., vol. 7 (1963), pp. 79-96.
7. G. N. Thwaites, A characterization of M_{12} by the centralizer of an involution, Quart, J. Math., vol. 24 (1973), pp. 537-558.

University of Warwick
Warwick, England
University of Chicago
Chicago, Illinois

[^0]: Received January 11, 1974.
 ${ }^{1}$ Part of this work was supported by The Royal Society, London.

