FINITE GROUPS WITH A QUASISIMPLE COMPONENT
OF TYPE PSU(3, 2") ON ELEMENTARY ABELIAN FORM

BY
PeTER LANDROCK!

It is a quite common phenomenon among sporadic simple groups that some
involution has a centralizer with a quasisimple component of even characteristic
which is on elementary abelian form. By this we mean that the centralizer of
the component has an elementary abelian Sylow 2-subgroup. (For definition
of component, quasisimple etc., we refer the reader to for example D.
Gorenstein’s survey article on finite simple groups.) Examples of such sporadic
simple groups are: Janko’s first group J; (Z, x PSL(2, 4)), the Mathieu group
M., (Z, x Ss), the Hall-Janko group J, (Z, x Z, x PSL(2, 4)), the sporadic
Suzuki group Su (Z, x Z, x PSL(3, 4)), Held’s group He (a central extension
of PSL(3, 4) by Z, x Z,), Rudvalis’ group Ru (Z, x Z, x Sz(8)), Conway’s
group Co, (Z, x Z, x G,(4)) and Fischer’s new simple group F,(?) (Z, x
Z, x Fy).

This gives rise to several classification problems, among which is the following
natural one.

Classify finite (in particular simple) groups with an involution whose central-
izer C is isomorphic to the direct product of an elementary abelian 2-group E
and a group B containing a normal subgroup B, which is quasisimple of
Bender-type such that Cg(By) = Z(B,).

However, to deal with this problem we need an additional assumption on the
involutions of E. A natural one, at least when B, is of Bender-type, seems to
be that C is the centralizer of all the involutions in E (trivially satisfied when
|E| = 2.) This is a type of problem which for instance occurs in a recent work
by D. Mason, in which he considers finite simple groups all of whose components
are of Bender-type (and the centralizer of some involution not 2-constrained of
course). Furthermore, J, and Ru satisfy this assumption.

Exactly this problem has been considered in the following cases when B, is
isomorphic to one of the simple groups PSL(2, g) or Sz(q), B = B, and G is
simple: E ~ Z, and B ~ PSL(2, 2"), by Z. Janko, B ~ PSL(2,2"), by F. L.
Smith, B ~ Sz(g), by U. Dempwolff, and some as special cases in related
problems which have been dealt with by M. Aschbacher and K. Harada.

Here we shall answer the question completely for all groups with B, quasi-
simple of PSU(3, 2")-type, the third class of groups of Bender-type.

Received January 11, 1974.
1 Part of this work was supported by The Royal Society, London.
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THEOREM 1. Let G be a finite group with an involution whose centralizer C
satisfies:

*) C=E x U, where E ~ E,,. and U contains a normal subgroup U,
which is quasisimple of PSU(3, 2")-type such that Cy(Uy) = Z(U,). Furthermore,
C is the centralizer of every involution in E.

Then either G contains a strongly closed elementary abelian 2-group or E is of
order 2 and has a complement in G.

In particular, by D. Goldschmidt’s classification of groups with a strongly
closed abelian 2-subgroup, G is not simple. In case G does not contain such a
strongly closed elementary abelian 2-group, let H be a complement in G of E.
Now, an obvious question is whether H may be simple. To answer this we first
recall that the unitary groups are groups of so-called “twisted” type due to the
fact that they may be defined as the fixpoint-group of an automorphism of
order two, namely, the product of a graph and a field automorphism, of a simple
group of Chevalley-type, in this case the projective special linear groups. Thus
H ~ PSL(3, 2%") is a possibility. Our next theorem states that these are the
only simple groups with that property.

THEOREM 2. Let G be a simple group admitting an automorphism p of order 2,
whose centralizer C in Aut (G) satisfies (*). Then p is an outer automorphism,
C ~ PSUQ3, 2") and G ~ PSL(3, 2°").

We shall obtain this by showing that a Sylow 2-subgroup of G is isomorphic
to that of PSL(3, 22") and then quote a classification theorem due to M. Collins,
which may be found in [1].

Finally, Theorems 1 and 2 together with the theorem by D. Goldschmidt
referred to above (see [2]) give the following.

MAIN THEOREM. Let G be a finite group with an involution whose centralizer
C satisfies (*). Then G/O(G) contains a normal subgroup isomorphic to one of the
Jollowing :

@ PSUG, 2",

(i) PSU(3, 2" x PSUG3, 2",

(iii) PSL(3, 2%".

Furthermore, O(G) is abelian and equal to Z(U,) if |[E| > 2.

The most interesting fact about the proof of Theorem 1 and 2 is that except
for the application of a few “classical’’ results (Sylow’s Theorem, Griin’s First
Theorem and some transfer lemmas) and a result on the automorphism group
of a special class of 2-groups, it is completely self-contained.

In Section 1 we describe those properties of SU(3, 2") that we need and de-
velop a very short method by which to determine the automorphism group of
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a special class of 2-groups, the so-called Suzuki 2-groups. More specifically,
we find the automorphism group of the Sylow 2-subgroups of Sz(q) and
PSU3, 2.

Section 2 is a characterization of the Sylow 2-subgroups of PSU(3, 2") and
PSL(3, 2") by a certain property of their automorphism group. The situation
we consider seems to appear in several classification problems which is the main
reason why we have stated the result in a special section.

In Section 3 we prove two elementary lemmas. The first gives those natural
bounds that may be put on the elementary abelian component in general
directly from the basic assumptions. The second is a straightforward application
of Griin’s First Theorem to a configuration that occurs many times whenever
|UJU,| is even.

The last section consists of the proof of our theorems. Our method is merely
to build up the possible structure of Sylow 2-subgroups of groups satisfying our
assumption. The first step, namely when our involution is central, is easily
reduced to the consideration of finite groups with a Sylow 2-subgroup iso-
morphic to a 2-subgroup of U containing a Sylow 2-subgroup of PSU(3, 2").
The idea in this proof will be used several times in what follows. Now, if
SeSyl, (U) and S, = S n Uy let WeSyl, (Ng(E x Sp)). Then S is the
semidirect product S, . {#) of S, and a cyclic group. Our next step is to see
that W contains a normal subgroup W, containing E x S,, which is a com-
plement in W to {n) such that W,/E x S, ~ E,,. Moreover, W, = S,.
Cw,(So), and E has a complement in W, which is a central extension of S, by
a homocyclic group F of exponent 2 or 4 such that F n S, is equal to Z(S,).
If Fis of exponent 4, we easily reduce to the case |E| = 2. However, it now
takes a rather involved series of arguments to show that Z(S,) is strongly closed
in a Sylow 2-subgroup P containing it. Anyway, we may in the following assume
that F is elementary abelian. Now, a short argument allows us furthermore to
assume that F n E? = (1) for all g € G, and also that P > W. We proceed
to build up ¥V = Np(W,). Not surprisingly we obtain that ¥ contains a normal
subgroup ¥V, > W, which is a complement to {n) such that Vo/W, ~ E,..
Moreover, V, = Cy (F).E, and Cy (F)/F ~ E,... Now two different cases
occur, depending on whether Q,(Cy (F)) equals F or not. In the former case
we prove that F is strongly closed, in the latter that Cy (F) is isomorphic to a
Sylow 2-subgroup of PSL(3, 2%"), using the above characterization of that. We
finish by proving that G contains a normal subgroup L with Cy (F) as Sylow
2-subgroup. The case where F is strongly closed of course corresponds to the
case when G/O(G) contains a normal subgroup isomorphic to the direct product
of two copies of PSU(3, 2") interchanged by the involution in E.

Discussions with R. I. S. Gow and R. Solomon on parts of this work have
been very helpful.

Finally, the author would like to thank D. Mason for his numerous useful
comments and suggestions throughout the preparation of this paper.
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1. Properties of SU(3, 27) and Suzuki 2-groups

The unitary group SU(3, q), ¢ = 2", is defined over the field of g2 elements.
Its outer automorphism group is formed by the cyclic group of order 2x con-
sisting of field automorphisms and a diagonal automorphism of order 3 when
3, g + 1) = 3. Furthermore,

SUG, q)
Z(sU@G, )’

and Z(SU(3, ¢)) has order 1 or 3 depending on whether 3 divides ¢ + 1 or not.
On the other hand, SU(3, ¢q) is the only nontrivial perfect central extension of
PSUQ3, q). Thus, if U, is a quasisimple group of PSU(3, q)-type, U, is iso-
morphic to either SU(3, g) or PSU(3, q).

A Sylow 2-subgroup S = Sy(q) of SU(3, q) is of Suzuki B-type: |Sg| = ¢q°,
|Z(Sg)| = q, and S = Z(Sg) = ®(Sp), which of course also equals Q,(Sp)
since Sy is a Suzuki 2-group. Let U be any group such that U, < U is quasi-
simple of PSU(3, q)-type and Cy(U,) = Z(U,). Let |U/U,| equal nyn,, where
n, is odd and n, is the 2-part. Then a Sylow 2-subgroup of U is isomorphic
to the semidirect product of Sz and a cyclic group of order n,.

Our first result gives the structure of the automorphism group 4y of Sz. We
shall not use the specific structure of Sy to find A5 but the important property
thatit has a cyclic group of order g2 — 1 acting on it (sitting inside Aut (SU(3, q))
and inside SU(3, q) for (3, ¢ + 1) = 1), such that the subgroup of order
q — 1 acts trivially on the involutions. This is exactly what makes it of Suzuki
B-type.

PSU@G, q) =

THEOREM 1.1.  The automorphism group Ag of Sg has the following structure:
0,(Ap) is elementary abelian of order 2*". Ap/O,(Ap) has order 2n(q* — 1)
and is isomorphic to the normalizer of a Singer-cycle in GL(2n, 2).

Proof. Let By < Ay consist of those automorphisms acting trivially on
Sg/Z(Sg) and Cy < Ay of those acting trivially on Z(Sg). Clearly, By <0 Ag
and Cz =2 Ap. Moreover By < Cp and as ®(Sp) = Z(Sp), By is a 2-group.
Since |Sp/Z(Sp)| = 2" and |Z(Sp)| = 2",

By~ Hom (Z} x Z3 x -+ x Z3" Z} x Z3 x -+ x Z) (6]

where Z%¥ ~ Z, for all k. Hence By is elementary abelian of order 22"*. Now
Ag/Bg is isomorphic to a subgroup of GL(2n, 2). We know it contains a sub-
group of order 22" — 1 acting irreducibly on Sz/Z(Sp). Hence O,(Ap/Bp) =
{1) and By = 0,(A4p). By a result of T. O. Hawkes [5], Cy/Bg is isomorphic
to a subgroup of D,, X -+ x D,,. where D,, is a dihedral group of order
2q;, q; an odd prime power. We know that 4z/By contains a subgroup Dy of
order 2n(2%" — 1) isomorphic to the normalizer of a Singer-cycle in GL(2n, 2).
Now Dy contains a dihedral subgroup D,y of order 2(g + 1), which lies
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inside Cy/Bg. Since the element of order g + 1 acts irreducibly on Sg/Z(Sp),
the normalizer in A4p/Bg of the subgroup Q of order ¢ + 1in D, is equal
to Dy as well. Hence Q is equal to its centralizer in Cy/Bp, 50 Cp/Bg = D44 1)
But then D, g, , is normal in Ag/Bg, so Ag/By = Dp, and we are done.

COROLLARY. Let R be any 2-group containing some Sy as a subgroup of index
2. Then Z(R) = Z(Sp).

Remark. This technique may easily be applied to find the automorphism
group of other types of 2-groups, in particular other Suzuki 2-subgroups.
Among these the most interesting are those of A-type, to which class belong the
Sylow 2-subgroup S, = S,(¢q) of the simple Suzuki groups Sz(q), ¢ = 2°.
Analogously we obtain the following (known) structure.

THEOREM 1.2. The automorphism group A, of S, has the following structure:
0,(A,) is elementary abelian of order 2**. A ,/0,(A,) has order n(q — 1) and is
isomorphic to the normalizer of a Singer-cycle in GL(n, 2).

We will list those properties of SU(3, g) we are going to use. Of course we
are mostly interested in 2-elements.
Sg(q) can be described in the following way:

0 0 1

The cyclic group of order ¢®> — 1, which is the complement of Sy(g) in its
normalizer in SU(3, ¢q) is generated by

g7 0 0
0p-1=1{0 &1 0 3)

1 a b
Sp(q) ~ {{0 1 a"}: a,be GF(q?), b+ b + a'*1 = 0.} ?2)

0 0 g

where ¢ is a primitive (g2 — 1)-th root of unity. Let furthermore Op1 =
(62— " and 6,4y = (6,2-1)""". Unless 3 divides ¢ + 1, SU(3, ¢) is simple
as mentioned earlier. If 3 does divide ¢ + 1, Z(SU(3, ¢)) has order 3 and is
contained in {o,). In this case the complement in the normalizer of Si(g)
in PSU(3, q) has order (g2 — 1)37!. We will use the above notation for the
elements of the complement independently of whether we deal with SU(3, ¢q)
or PSU(3, q). In the latter case, 0,2, and g, ; have orders (g> — D3 ! and

(g + 1)37! respectively.
1 a b
0 1 4 @
0 0 1

Denote by (a, b) the element
in Sg(q). Then
(a, b)(c,d) = (@ + ¢,d + ac® + b) 5)
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and in particular
(a,b) = (0,a', (a,b)"! = (a, bY). ©)

Sz(q) has one conjugacy class of involutions and one of elements of order 4
under the action of the group of order g2 — 1 in its automorphism group. Let
(a9 b)’ (1’ C) € SB(q) Then

(@b ', 0@ b =U,c+a+a)=(1,c @)

if and only if a?~! = 1, an equation with ¢ — 1 solutions. Of course we do not
get any bound on b since Z(Sg(q)) consists of elements of the form (0, d) by
(6). Hence it follows that the centralizer of an element of order 4 is of order ¢2.
It is easy to check that any such group M is normalized by o,_,, and o,_, acts
irreducibly on M/Z(Sg(q)). Hence

M~Zix - xZj ®

where Z¥ ~ Z, for all k. Sp(g) has ¢ + 1 groups of this type, M;, M,, ...,
M,, M,, conjugate under the action of the element of order g + 1 in the
automorphism group. Denote in the following Sg(q) by S,. For any k4, &,

So _ My o My
Z(So)  Z(So)  Z(So)

®

Let £ be the field automorphism of order 2. We note that £ acts trivially on
Z(S,). Since S, contains ¢ + 1 maximal abelian subgroups, ¢ normalizes at
least one of them, say M,. However, (9) shows that it does not normalize any
other, since otherwise it would act trivially on S,/Z(S,), which is not the case.
It is easy to check that M, is inverted by . Finally, ¢ centralizes o,_; and
inverts g, 1, and the centralizer of £ in PSU(3, q) is isomorphic to PSL(2, q).

2. A characterization of the Sylow 2-subgroups of
PSU (3, 27) and PSL(3, 2")

The following situation seems to occur in many classification problems,
including the present one.

(*) Q is a 2-group admitting an automorphism o« of order 2 and an auto-
morphism p of order 2" — 1 such that
(i) o and p commute with each other under the action on Q,
(i) Cgy(o) =~ E,n,
(iii) p acts transitively on Cy(a)*.

The purpose of this section is to prove the following

THEOREM 2.1. Let Q be a (nonabelian) 2-group satisfying (*). Then Q is
isomorphic to a Sylow 2-subgroup of PSU(3, 2") or PSL(3, 2").
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Remark. We note that is easily verified that in case Q is abelian, then Q is
either homocyclic of rank » or elementary abelian of order 22",

The first step towards a characterization of such 2-groups has also been
obtained by G. N. Thwaites in [7] as a corollary to a general result on p-groups:

LEMMA 2.2. Let Q be a 2-group satisfying (*). Then Q contains a homocyclic
subgroup Q, of rank n such that
(i) o inverts Q,,
(ii) p acts transitively on Qo/®(Qy),
(i) Q/®(Q) ~ Ez and ®(Q) = (Qy).
Proof. See Lemma 2.5 in [7].

We now consider the semidirect product of Q and {a) x {p). Let Q, =

{rys..., r,y and choose notation such that r; = r{'"* for i = 2,...,n. Let
g, € 0\Q,andsetg; = ¢8 "', i = 2,...,n Then
Q=<r1""armq1a~--aqn>' (10)

Since ag{'ag, € Qo\®(Q), we may as well assume that [a, ¢,] = r;. In par-
ticular, it follows that the map r; » ¢, induces an isomorphism between
Qo/®(Q) and {4, . - ., 4,, D(Q))/®(Q) which commutes with p. Thus we have

LeMMA 2.3. Q/®(Q) is the direct sum of two isomorphic p-modules.

The next lemma is due to R. Solomon and occurs in another context. We
include the proof.

LeMMA 2.4. Let Q be a nonabelian group satisfying (*). Then Q is of class 2
and exponent 4.

Proof. To see this we will consider the associated Lie ring. Let Q, Q,, O,,
Qs, ... be the lower central series of Q and set L = Q/Q,, L™ = 0,/Q,
(Q, defined as above) and L = Q;/Q;,, fori =1,2,.... Let L™ be a com-
plement in L under the action of p. Now, by Lemmas 2.2 and 2.3, Q;/0;., =~
E,.foralli > 0,and L*, L™, L, L,, ... are all vector spaces of dimension
nover Z, and isomorphic as p-modules. Thus there exists a primitive (2" — 1)-th
root of unity A such that A, A2, A%*, ..., 12" are the eigenvalues of p on Ly =
L™ ®z, K,where K = Z,(J). Let Ly = L ®7, K, L = L* ®,, Kand Ly =
L, ®z, Kfori=1,2,.... Letu,,...,u,_, be eigenvectors of p in Ly with
corresponding eigenvalue A2, It easily follows that ug + u%, ..., u,_ 4 + %,
form a basis for L; and corresponding eigenvalues are 1>, Next, we want a
basis of eigenvectors for L,. Clearly L, is generated by vectors of the form
[w;, ui*] or [u;, u;], each of which is either O or an eigenvector of g,_; with
corresponding eigenvalue A*'* . Hence [u;, u;] = 0 for all i, j, and [u;, u%'] #
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Oifand onlyif i = j, so [ug, u%'], ..., [#,—1, %L ] form a basis for L,. Finally,
consider L,. A similar calculation shows that L, is generated by vectors of the
form [[u;, ui'], u;]. However, by Jacobi’s identity,

[[ui’ ugl]’ uj] = [[ugtn, uj]’ “i] + [[uj’ ui]’ ug“] (ll)

so by our calculations above [[u;, ui'], u;] = O unless i = j. But now, as
432" is never an eigenvalue, [[u;, u*'], u;] = 0 as well, i.e. L, = 0. Hence Q
is of class at most 2.

LEMMA 2.5. Let P be a group of order 23", class 2 and exponent 4 admitting
an automorphism p of order 2" — 1 such that

(i) Z(P) = Z ~ E,., and p acts transitively on Z *,
(i) P/Z ~ E,..,,

(iii) P/Z is the direct sum of two irreducible p-modules, each of which is
isomorphic to Z as a p-module.

Then P is isomorphic to the Sylow 2-subgroup of PSU(3, 2") or PSL(3, 2").

Proof. Identity P and {p) with the corresponding subgroups of P.{p).
Let p € P\Z, and let R = {p, p) n P. Then RZ/Z ~ E,, by (iii). Moreover,
RZ|Z ~ Z as a p-module. On the other hand, as R is either abelian or a Suzuki
2-group of A-type, it follows from [6] that R is abelian.

Let hy, be an element of order 4 and set H = {(h,, p) N P. As P is non-
abelian, Q,(H) = Z. Next we claim that Cp(h) = H for all h € H\Z. Suppose
p € P\H centralizes h and consider R = {ph®, p> n P. As R is abelian,
[ph*, p°h**] = 1. However, since [p, p?] = 1 as well, this implies that
[p, #**] = [p*, #*] = 1. Thus p centralizes #** as well, and it follows by in-
duction that p centralizes H, a contradiction since P is nonabelian.

It now follows that every & € H\Z(P) is inverted by exactly one element p
in P modulo H. In particular, if Q,(P) > Z(P), P contains exactly 2 maximal
elementary abelian subgroups of order 2?". Anyway, P is generated by the
subgroups P; = {p, p) n Pand P, = {ph, p) n P. Now,since [p, p*"h**] =
[p, #**], all commutators are uniquely determined from commutators of type
[p, "], 1 < k < 2" — 1. However, as {ph®, p) N P is abelian as we have
seen above,

Lok, p?h?"] = [p, W'1[p*, 1] = 1. (12)

Thus [p, #**] = [p, h]* = (h*?*, so it follows by induction that all com-
mutators are uniquely determined. Thus there exists at most one such group of
a given order with P, elementary abelian and at most one with P, homocyclic
of exponent 4. As both the Sylow 2-subgroup of PSU(3, 2") and that of
PSL(3, 2") satisfy the assumption of the lemma, we are done.

Theorem 2.1 is an immediate consequence of these lemmas.
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3. General results

LemMma 3.1. Let G be a finite group with an involution «, whose centralizer
has the form Cg(o,) = C = E x H where o, € E, E is elementary abelian and
H is any group. Assume furthermore that for any B € E*, a Sylow 2-subgroup
of Cy(P) is isomorphic to that of C. Then one of the following occurs:

(1) o is central,

(i) r(E) < r(Q,(Z(S))), where S € Syl, (H)

Proof. Assume a is not central and let £ x S < P, where P € Syl, (G).

Furthermore, let p € Np(E x S)\E x S such that p> € E x S. Then p acts
on E n E? s0o En E? = (1) by assumption. On the other hand,

P YEp < QZ(E x S)) = E x Q,(Z(S)). (13)
Hence |E|* < |E||Q,(Z(S))|, which proves (ii).

Notation. 1If K is a group acting on the group H, let H . K denote the semi-
direct product of H and K.

LemMA 3.2. Let G be a finite group, P € Syl, (G). Suppose P contains a
normal subgroup P, with a complement C = E x {c), where E is elementary
abelian (or {1)). Assume furthermore that ord (c) > exp (P,). Then

PAnG < PO . (E X <cord(C)/exp(Po)>).
Proof. This is just a straightforward application of Griin’s First Theorem
(see [4, p. 252]):
PG = (Pn NPy, U Pn(PY). (14)

xeG

First consider P n Ng(P)'. Let N be a complement of P in Ng(P). Let n; € N,
p; € P,i = 1, 2. Then, independently of the present structure of P,

[nip1, nzpz] = P1_1”1_1P2_1"1n1_1"2_1n1n2n2_1P1n2P2 (15)

belongs to P if and only if ny'n; 'nyn, = [n,, n,] does. Hence it suffices to
consider elements [p;n, p,n,] where [ny, n,] =1 in order to determine
P N Ng(P)', in which case

["1 |20 "2P2] = P1_1n1_1P2_1”1n2_1P1”2P2' (16)

Before we continue, we note the following elementary fact.

Let P be a p-group, P, a normal subgroup of P with a complement C =
E x {c) where E is elementary abelian (or (1)) and ord (¢) > exp (P,/P’).
Let p be an automorphism of P and set P, = P, . E. Then

@ () n P =(1),
(b) ¢ = p,c’ for some p,e P and jeN, (j, p) = 1.
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This is easily verified in the following way: Let E = EP'[/P’ and {¢) =
{c)P'|P’'. Then

N~

=E x {c)y x Q 17

for some Q < Py, @ = QP'/|P’, as P’ < P, and (a) follows, since by as-
sumption ord (c) > exp (Po/P’) = exp (Q). Hence P{ n {c) = (1) as well,
and (b) follows.

This has the following consequence. Let p; = p,;c, where p,; € P, i =
1, 2. Suppose ord (c) > exp (Py/P’). Then

ny'piny = prac, ni'pang = pipc (18)
where p', € P2, pi, € P} and kjis odd, i = 1, 2, by (b). Thus
[nip1, napa] = p'cat TRt ~ha) (19)

for some
P e (P}, PP) < Py . {7y < P(c?),

where e = exp (Py/P’), by assumption. Since 1 — kj, i = 1,2, is even,
P A Ng(P) < Py.{c*).

Next let n, = min (ord (c), exp (P’)). Now the result above together with
our assumption, namely that P = P n G’, implies that for some x € G there
exists a je N, j odd, p, € P, and a € E such that p = poac’ € P n (P¥) <
P, cord@no™! Byt clearly, ord (p) > ord (c). This proves the lemma.

The following result was first observed by K. Harada.

LemMma 3.3. Let G be a finite group, P € Syl, (G), and let P, be a maximal
subgroup of P. Assume that x € P\P, belongs to the focal subgroup of P with
respect to G. Then either x is conjugate to an element of P, or x*" is conjugate
to an element of P\P, for some r > 1.

Proof. By transfer.

Finally we shall use a transfer lemma due to D. Goldschmidt, which extends
the result of Lemma 3.3 in the special case when ord (¢) = 2, namely the
following:

Definition. Let G be a finite group, x € P € Syl, (G) an involution. Then
x is said to be extremal in P provided that Cp(x) € Syl, (Cs(x)).

LemMA 3.4. Let G be a finite group, P € Syl, (G), and let x € P be an in-
volution which belongs to the focal subgroup of P with respect to G. Assume
x has a complement P, in P. Then x has an extremal conjugate in P,

Proof. See [3].
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4. The classification
Assumption. Let G be a finite group with an involution «; such that
Cile)) =C=Ex U @)

where E is elementary abelian and U contains a normal subgroup U, which is
quasisimple of PSU(3, g)-type such that Cy(Uy) = Z(U,). Assume further-
more that C4(x) = Cg(a,) for all « € E* (a trivial assumption when |E| = 2).

Notation. If H and K are subgroups of the group G such that [H, K] = 1,
we denote by H x , K the central product of H and K w.r.t. H n Kin addition
to the standard use.

If G is a finite group, we denote by G, a p-group isomorphic to a Sylow p-
subgroup of G. Similarly, we denote by |G|, the order of a Sylow p-subgroup
of G.

Otherwise our notation will be standard as in [4].

E = {og,..., ty).

SeSyl, (U), So =UynS =Syq). S=S5,.{n), where ord (n) =
|U/Uy|,. Let & be the involution in () (if n # 1). Furthermore, letn, = ™"
where 2¥ = ord ().

Z(So) = <i1a cee in>'

T, = E x S,.

T = E x S. We note that all maximal elementary abelian subgroups of T
are conjugate to E x Z(S,) x (&) inside of CH(E x Z(S,)).

Let We Syl, (Ng(Typ), Wy = Cy(So) .Sy, VeSyl, (Ng(Wp)) and V <
P € Syl,, (G).

Let M, denote the maximal abelian subgroup of S, which is inverted by £&.

Finally, let 6,2_y, 0,4, and g,_; denote the same elements of U, as in
Section 1.

b

We note that the assumption on the centralizers of the involutions in E
implies that E is a T.I.-set and that the automizer of E is of odd order.

Also, since every involution of S, is a square, no involution of F is conjugate
to the involutions of S,.

LemMA 4.1. Suppose |E| > 2. Let x € E*, y € E. Then « is not conjugate
to &y.

Proof. Clearly E x (&) x Cy, (&) < Cg(&y), which is isomorphic to
E x U if &y is conjugate to a. Since Cy (&) is isomorphic to PSL(2, q), the
assumption |E| > 2 implies that

0,(C4(&y)) N E # (1).
But this contradicts that E is a T.I.-set.
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LEMMA 4.2. Suppose the weak closure of E x Z(S,) in P is contained in T,
and assume that &y is conjugate to an involution of Z(S,) for some y € E. Then
there exists for any o € E* a B € E* such that o is conjugate to BEy. In particular,
|E| = 2.

Proof. If the weak closure of E x Z(S,) in P is contained in 7, it follows
that whenever (E x Z(S,) x {£))? < P for some g € G,

(E x Z(So) x () = E x Z(So) x (&) 0

for some s € M, by the remark above. Suppose (£y)" = ie Z(S,) for some
he G. As Z(P) < Z(S,), we may as well assume that i € Z(P). Then

(E x Z(Sp) x <§>)h < Cgli),
so for some ¢ € Cg(i) we have that (E x Z(Sp) x {¢))* < P. Hence
(E x Z(S,) x (&) = E x Z(So) x (&) 2D

and (¢y)? = i for some s, € M, with g = hcs,. But i and &y are not conjugate
in Ng(C), so En E? = {(1). Since all involutions of Z(S,) x {&y) are
conjugate by assumption, gag ™! equals fj or £fj for some B e E*, je Z(S,).
If gag~! equals £Bj, we are done. If gag™! equals Bj, replace g by g, = ¢°,
where ¢ is a power of ¢,_, such that j° = i. Then ggoogs'g~"' = gBg™'¢y.
Now, if gBg~ ' ¢ E x Z(S,), B # a and in particular |E| > 2. But then
gBg~' € E x Z(S,) by Lemma 4.1, a contradiction. Hencegfg~ ' e E x Z(S,),
and we are done.

LemMMa 4.3. Let G be a finite group with S (in the above notation) as Sylow
2-subgroup. Then we have the following constraints on S.

(i) Assume Sy < SN G'. Then SN G < Sy.{&.

(ii) If furthermore G contains a subgroup isomorphic to U (in the above
notation), S N G' = S,.

Proof. By Lemma 3.2, we may as well assume that n* = 1. Suppose
(Y < SN G’ and ord (n) = 4. Then, by Lemma 3.3, ¢ is conjugate to some
involution in Z(S,), say &? = i e Z(S) for some g € G. By Sylow’s Theorem
we may assume that

(Z(So) . MY < 8.
But then n° € S, as (n°)> = i and ord () = 4, so 5° acts trivially on Z(S,).
Thus
1Z(So): Czspy(m)] = 2. (22)

However, |Z(So)| = |Cys,)(®)I? as ord (1) = 4, and consequently |Z(S,)| = 4.
On the other hand, as (Z(S,) x {£))! < S we may as well assume that
(Z(So) x (&)Y = Z(So) x (&). Now, as n?e S, &n°¢ = n’ mod (Z(Sy)).
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But then #? is inverted by &, as we have seen in Section 1. This is a contradiction
as 7 is not inverted by any element in Z(S,), and (i) follows.

Next assume that G contains a subgroup isomorphic to U. In order to prove
(ii), we may assume that ord (§) =2 by (). If SN G = S,.{&), &9 =ie
Z(S,) for some g € G by Lemma 3.4. Thus C4() = C; contains a subgroup
H = H, x (i) such that Z(S,) x (&) is a Sylow 2-subgroup of (i) x H,
and ¢ € H,, where H, ~ PSL(2, q). Since S < C, as well, we obtain 0,(C;) =
{iy. Now let s € S, such that ésé = s~! and s® = i. For every element a
(or subgroup A) of C;, denote by a (resp. A) the corresponding element (resp.
subgroup) of C; = C;/(i). Let &" = je Z(S,) N H, for some h € H,. Again
we may assume that ((§) x Z(S,)” x (&))" < § by Sylow’s Theorem.
Hence

((8) x Z(Sp)™ x &) = (5" x Z(Se)™ x (& (23)
where ¢" = j. Thus
(({s) Xx Z(S0)) - &N = ({s") x4 Z(S)) - {&). (24)

But then j = &" centralizes s", a contradiction.

LEMMA 4.4. Suppose o, is central. Then Z(S,) is strongly closed.

Proof. Suppose o, is central. Then E x Z(S,) is strongly closed if |E| > 2
by Lemmas 4.1 and 4.2. But clearly, no element of E x Z(S,)\Z(S,) is con-
jugate to an involution of Z(S,). Hence Z(S,) is strongly closed if |E| > 2.
Assume therefore that E = {«,). By Lemma 3.4, o is conjugate to some
involution in Q,(S) if E does not have a complement in G. So in that case
|U/U,| is even and {«,) is conjugate to £. In particular, £ is not a square.
But then S, . {&x,) is a complement in P to ;. so o, is conjugate to o, as
well, and again Z(S,) is strongly closed. Hence E is of order 2 and has a com-
plement in G. But then by Lemma 4.3, we are done.,

COROLLARY. m < n.

Proof. By Lemma 3.1.

LemMma 4.5. Q,(W) > Q(T).

Proof. Suppose not. Let pe Np(W). Then pe Np(Z(Q,(W))). But
Z(Q(W)) = E x Z(S,), so p normalizes

Cw(E x Z(So)) = E x (S,.£&)) (25)

and hence also E x S,. Thus p € W by definition, so P = W.

By Lemma 4.2 Z(S,) is strongly closed if |E| > 2. So assume E = {a,).
By Lemma 4.4, «, is not central, so T is a proper subgroup of W. Hence o,
is conjugate to a,i for all i € Z(S,) by the action of a,_, on w™'a;w, where
we W\T. If Z(S,) is not strongly closed, the involutions of Z(S,) are con-
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jugate to y¢ for some y € E. Hence a, is conjugate to yfa; by Lemma 4.2.
Now, as in the proof of Lemma 4.2, there exists an 4 € G such that i* = y¢ and

(o) x Z(Sp) x L&) = Cay) x Z(So) x (&). (26)
On the other hand,
h_liho'qnh—lih = {0,418y = °'q_+11 (27

Hence iho . h™'i = hoy!ih™'. By the structure of U, ho,.,h™' does not
belong to U, then, since ho,.,h~" is not real in U,. Thus ho,, k™" ¢ C.
Consequently, a? ¢ E x Z(S,), so of = &ya,j for some je Z(S,). Let se M,
such that s ~'&s equals &j. Then o = &ya, and i = &yj. Now let ¢ be an
arbitrary element in Cy(£). Then

ayhses *h oy = hséyaycéyoys T *hTY = hsesTh! (28)
$0 hsCyy(&)s "'h™! < C. As Cy(¢) =~ PSL(2, g) we deduce that

hsCy,(&)s ™A™t < U,.
Thus
Z(So)y " < gy x Z(So) x (&) n Uy = Z(So), (29

a contradiction since i* = &yj.

COROLLARY 1. Q,(W) < Np(Sy).
Proof. Let t e Q,(W)\T be an involution. Then ¢ acts on
Ty = 0;,(Co(E x Z(So))) = E x (So+{04+1)) (30)

sotactson T| = S,.

COROLLARY 2. Q,(W) < Cp(Z(Sy)).
Proof. By Corollary 1 and the corollary of Theorem 1.1.

LEMMA 4.6. (i) o,-1 € Ng(Q(W)).
(ii) W contains a normal subgroup Wy > T,, which is a complement to {n)

such that Wy|T, ~ E,.. Moreover o,_, acts faithfully and irreducibly on W,/T,,
and Wy|Z(S,) is elementary abelian.

Proof. Let 1€ Q,(W)\Q,(T) be an involution and « € E*. Then t acts
trivially on Z(S,) and on E x Z(S,)/Z(S,) as well, as E is a T.I.-set and
ING(E): C| is odd. Thus tat = ai for some i € Z(S,). So for any k there
exists an r such that 1t** = t* mod (C), where p = o,_, and r is determined
by ii** = i*". Now let 1t = t""a, where ae C. As 1, 7**, 7" belong to
Ce(Z(S0)),

ae Cg(Z(So) N Cg(@) = E x (8o . (g+1) + &) 3D
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By Corollary 1 of Lemma 4.5, t acts on S,. Suppose |U/U,| is odd. Then
acE x (So.{0,41))-

But 77** acts trivially on So/Z(S,) by Theorem 1.1 as o, centralizes ¢. Thus,
as " = 1t*"a” !, 1*" acts trivially on S,/Z(S,), so does 7.

If 7 acts trivially on Sy/Z(S,), independently of whether |U/U,| is odd or not,
a does as well, and it follows that a € T,

If © acts nontrivially on Sy/Z(S,), |U/U,| is even by the remark above. In
particular, as t¢ € W, t£€ must act trivially on S,/Z(S,), again by the structure
of Az. Consequently (t€)?> € Z(T,). Hence (¢)? actually belongs to Z(S,),

since no element of Z(T,)\Z(S,) is a square. Let ¢t = t&£. It now follows that

a = (L& OEY" = 1Pt 1t (32)

is a 2-element, and (i) follows.

To prove (ii), we define W, as follows. If 7 acts trivially on S,/Z(S,), we let
Wy = Ty, t°,...,7°*" "), If 1 acts nontrivially on So/Z(S,), we let W, =
(Ty, t*, ..., t*""">. For any w € W, clearly w = 1*°t, for some ze N, t, € T,
so W =<(Wy,n). As So,== W, it follows from the structure of Ap that
Wy, <2 W. Also, W,/T, acts trivially on T,/Z(S,). Now, let we W,. Then
w? € T,. On the other hand, as w acts trivially on Sy/Z(S,), w* € Cyo(So)-
Hence w? € E x Z(S,) and it follows that W,/Z(S,) is elementary abelian.

We can now determine the structure of W, completely.

LEMMA 4.3.7. Wy = Sy . Cyo(So) and Cyy(So) = F.E, where F~ Ty =
Z(S,) and F|Z(S,) ~ E,.. Moreover, Fa W.

Proof. Tt is not difficult to see that o,., acts on W,. But W, = W,/E x
Z(S,) is elementary abelian, from which it follows that S, = S, x E/E x
Z(S,) has a complement in W, under the action of 6,4, Fo = Fo/E x Z(S).
Once again, E x Z(S,)/Z(S,) has a complement in Fo/Z(S,), say F = F/Z(S,),
as Fy/Z(S,) is elementary abelian by Lemma 4.6(ii). Since o, acts trivially
on Z(S,) and F/Z(S,) ~ Z(S,), 6,+, actually centralizes F. Let f€ F be any
element outside Z(S;). Then |S,: Cs,(f)| < 2". As f centralizes ¢,,; and
(8o, 6,+1)" = Sy, we deduce immediately that f centralizes S,, and the first
part of the lemma follows.

In order to prove the last statement we note that F. E is normal in W.
Furthermore, {c,_,) is normalized by #. Clearly o,_; acts on F. E and hence
on F.E/Z(S,). Therefore E x Z(S,)/Z(S,) has a complement under the
action of ¢,_, which we may as well assume to be F itself. It now follows that

((F x4 S0) + 04=1) + (E x {m)) < (F X4 So) - {0,4-1) (33)
is normalized by # and hence that F =2 W.

LemMmA 4.8. F is homocyclic of exponent 2 or 4.
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Proof. We have seen that F/Z(S,) and Z(S,) are isomorphic as g,_;-
modules. Also Z(S,) < Z(F). Hence all elements in a coset of Z(S,) in F
have the same order. If F is not elementary abelian, Q,(F) = Z(S,) and F is
homocyclic of exponent 4 if abelian, otherwise of Suzuki A-type by definition.
However, the last case is impossible, since, by [6], this would imply that
F|Z(S,) and Z(S,) are not isomorphic as g,_ ;-modules.

LEMMA 4.9. Suppose P = W. Then Z(S,) is strongly closed in W, with
respect to G. In particular Z(Sy) is strongly closed if Wy = W.

Proof. An involution of Wo\E x Z(S,) is of the form vs where ve F. E
and s € Sy, and Cy,(vs) = Cs,(s) x (vs). If (vs)? € Z(S,) for some g € G,
we may as well assume that W contains (Cy(v5))? by Sylow’s Theorem. But
Q,(Cs,(s)) is equal to Z(S,), and every involution in Z(S,) is a square in Cg(s),
which contains a maximal abelian subgroup M of S,. As W = W,.<{n),
M9 = M, x {(m), where M, < W,, for some m € M?. Furthermore,

{vs) x QM) = Z(S,) (34)
as Z(So) = U0'(W,). Since M x (vs) is abelian,
M? < Cy(Z(So)) = Wo . (). (3%

As any square in W, . (¢) lies in S, and m? is an involution, m* € Z(S,), a
contradiction.

LemMA 4.10. Suppose P = (P n G', E) and assume furthermore that
Z(S,) is not strongly closed in P with respect to G.

(i) Suppose |E| = 2 and P = W. Then E has a complement in G.
(ii) Suppose |[E| = 2. Then P > W.
(iii) Suppose P = W. Then ord (n) < 2.
(iv) The weak closure of E in P is not contained in E x Z(S,).

Proof. (i) Suppose |E| = 2 and P = W. As F x, Sy/Z(S,) is the direct
sum of three isomorphic g,_,-modules, it follows that if w, is an involution in
F x, S, then Cp  s,(wo) contains an elementary abelian group of order 22,
In particular, «, is not conjugate to any involution in F x, S,. Now suppose
E does not have a complement in G. Then af = ¢fs for some fe F\Z(S,)*,
s € Sy and g € G by Lemma 3.3 since (F X, S,) . () is a complement in P to
o;. But then ¢ inverts fs, so &s¢ = s mod (Z(S,)). Thus & inverts s (see
Section 1) and hence &fs is conjugate to &f. Suppose f # 1. If F is elementary
abelian, Cy,(£f) = F in contradiction to the assumption that o, is conjugate to
&f. If Fis of exponent 4, f centralizes the diagonal D of F and M,, D ~ E,..
But &f is conjugate to &fs; where s, € M, and s? = f?. Hence f5;, € D and a
conjugate of o, centralizes D x Z(S,), again a contradiction. Thus f =1
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and a, is conjugate to &. In particular, ord (#) = 2. By the same argument,
o, is conjugate to «,&. It now easily follows that all involutions of W\W, are
conjugate to o;. Hence Z(S,) is strongly closed by Lemma 4.9.

(ii) Let G, be a complement of Ein G by (i). We may as well choose notation
so, that a Sylow 2-subgroup of G, is of the form (F x, So) . {n). Moreover,
we may assume that ord (1) < 4 by Lemma 3.2, and if ord () = 4 that & is
conjugate to an involution in Z(S,) by Lemma 4.9, again using the fact that if
m e W, . {&) is of order 4, then m* € Z(S,). If on the other hand ord () = 2
it follows immediately from Lemma 3.4 that & is conjugate to some involution
fsin F x, S,. But then Cg(€) contains subgroups isomorphic to F x, Cs(s)
and {a;» X Z(Sy) x (&), so ¢ is not extremal in P. Furthermore, if &% € P
is extremal, &9 centralizes some conjugate of o, lying in P, which, by (i), must
be of the form a,v for some v € (F x, So) . {&). It is now easy to see, using
Lemma 4.9, that £9 € Z(S,). Thus, in any case, £ is conjugate to an involution
of Z(Sy). Now, let ie Z(P) < Z(S,) and C; = Cg(i). Obviously, as ¢ is
conjugate to i, 0,(C;) = (i), since C4z(¢) contains a subgroup isomorphic to
PSL(2, q). Thus we may use the idea in the proof of Lemma 4.3 (ii). For every
element a (or subgroup A) of C;, denote by a (resp. A) the corresponding element
(resp. subgroup) of C; = C;/{i). Now, (&)* = j belongs to Z(Sp)\{i) for
some h e C;, wherej e Z(W)~. Letse My, s*> = i. Then,as{§) x Z(S,)~ x
(&) < Cg[(&), we may assume by Sylow’s Theorem that ((§) x Z(S,)~ x
(EM" < W. But then

({5 Xa Z(So)) « <m))* < (F %4 So) « (&) (36)
soj = (&)", a contradiction as ¢ inverts s. Now, by Lemma 4.9, we are done.

(iii) By Lemma 4.7, W = (F x, Sp) . (E x {n)). Hence we may assume,
by Lemma 3.2, that ord (1) < 4. Furthermore, if ord (n) = 4, then, by Lemma
3.3, ¢ is conjugate to a square in W, . (&), i.e. to an involution i € Z(S,), say

9 =je Z(W) for some g € G. Now we use the idea of the proof of Lemma
4.3 (i). By Lemma 4.9, Z(S,) is strongly closed in W, w.r.t. G. Thus we may
assume by Sylow’s Theorem that

(Z(So) x &)Y = Z(So) x {wo&) @37

for some w, € W,. Furthermore, since (49)> =i, € W,.<{¢). Hence n°
centralizes Z(S,) and thus n = 2. Now, as E is a T.I.-set and ord () = 4 by
assumption, |E| = 2, and, by (ii), we are done.

(iv) If the weak closure of Ein W w.r.t. G is contained in E x Z(S,), then
P = W. Hence we may assume, by (iii) and Lemma 4.9, that ord (1) = 2 and
after possibly change of notation, by Lemma 3.4, that & is conjugate to some
involution of W, say &% = vs, ve F.E, se€ S,, for some g€ G. But then
Cg(&) contains subgroups isomorphic to E x Z(S,) x (&) and F x, Cs(s).
This, together with the assumption that the weak closure of E is contained in
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E x Z(S,), again implies that & is conjugate to an involution of Z(S,). This
is a contradiction by Lemma 4.2.

LemMMA 4.11. Suppose F is homocyclic of exponent 4. Then either Z(S,) is
strongly closed or |E| = 2 and ay inverts F.

Proof. Assume Z(S,) is not strongly closed in P w.r.t. G. Then, by Lemma
4.10 (iv), E x Z(S,) is not weakly closed in W. Suppose some « € E* does
not invert F. This will occur if [E] > 2. Let F = {f},..., f,y and fe F\Z(S,).
If afe = ff2i, where i € Z(S,)*, and s € S, such that s? equals i, afs is an in-
volution. Assume therefore that afs is conjugate to some involution in E. As

Cs,(af5) = Cg,(s) equals some maximal abelian subgroup M; = {(syy,..., 51,)
in S, we may choose notation such that

CW(Otf:S‘) = Ea = <O€1f1S11, sty o‘mfmslm> = E2m (38)
as E is a T.L.-group and o,_, centralizes F.E. Let M, = {s;1,..., S,) be

another maximal abelian subgroup of S,. Here we choose notation such that
oo/t = [s1; 55;]- Then

My = {fi5z1, -, fuSan) < Cy(afs).

Now fix s, for some k, € N. For every j e Z(S,)* there exists an s; € M,
such that (sz,casj)2 = j, in particular if j = j,, = fki Hence fi524,5; is an
involution, so Q;({My, M3)) > Z(S,) and thus {M,, M;) is not a Suzuki
2-group. Thus, by Lemma 4.10(iv), an involution of the form fs, fe F\Z(S,),
s € So\Z(S,) is conjugate to an element of E. As every noncentral involution
in F x, S, belongs to an elementary abelian subgroup of order 22" then
|E| = 2" and we may reverse the above process. If s, € Sp\Cs,(s), there exists
an «, € E such that [ag, f] = [So, s]. Now let f; € F such that (xfp)* = s3.
Then a4 fy5, is an involution centralizing fs, a contradiction. Since any in-
volution of Wy\E x Z(S,) is of the form «,fys, Or fos, for suitable oy € E*,
fo € F\Z(S,), we have reached a final contradiction.

LeEMMA 4.12.  Suppose F is homocyclic of exponent 4. Then Z(S,) is strongly
closed.

Proof. We will prove this in a series of steps by way of contradiction. So
assume Z(S,) is not strongly closed. By the previous lemma, |[E| = 2 and «,
inverts F. Moreover, by Lemma 4.10(ii), P > W.

As W, char W, Ng(W) < Ng(W,) and in particular ¥V > W. Now let
v e V\W such that v> € W. Then, by Lemma 4.11, v~ a0 = «, f for some
fe F. Furthermore, v~ 2a,0? = a,i for some i € Z(S,), so v acts on

Cwo(t)) N Cyo(a]) = So. (39
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Hence v acts on Cy,(S,) = F.{a;) as well, so v acts on F. By counting
conjugates of «; we obtain

|<W’ v, aq-1>: <W’ aq—1>l =4q. (40)
Clearly v ¢ Ng({W, 6,-1)).

(1) Suppose W, < W. Then r(Q(V /W) > 1.

Proof. Suppose not. Then the above remarks and Theorem 1.1 imply that
VW, is cyclic. But then (W, v, o,_,)/W has a cyclic Sylow 2-subgroup, a
contradiction since this forces v to lie in Ng({W, 0,-1)).

(2) V contains a normal subgroup V, > W, which is a complement to
{n). Moreover Vo/W, ~ E,..

Proof. Letvbe asabove. By (1) we may replace v by v, such that in addition
we have v € W,. We now use the idea in the proof of Lemma 4.6. v, acts
trivially on Wy/F x, S,, and E has g conjugates in W, under the action of
(F, vy, 6,_1). Moreover we have seen in (39) that v, acts on S,. As in the proof
of Lemma 4.6 we find that v, acts trivially on So/Z(Sy) if n = 1. If n # 1,
either v, or vy acts trivially on Sy/Z(S,) by Theorem 1.1. Thus we may as
well assume that v, acts trivially on Sy/Z(S,). Therefore

|<Wo, Vo, O'q—1>: <W09 Uo>| =4q 41)
and (W, vy, 0,—,) has a normal Sylow 2-subgroup ¥V,. Now (2) follows
easily.

(B) Vo = (R x4 Sp).<ayy where F < R < Cy(S,) and R/F is isomorphic
to EZ"'
Proof. We first observe that o, acts on V} as
F.{ay) < C(0g41)-

Moreover, Vo/F . {a) is elementary abelian since v} € Cy(S,). Hence V, =
Vo/F is elementary abelian, so

(So X <o,))™ = 8o x ﬁ%;f 42)

has a complement R = R/F under the action of ¢,,,. As R is isomorphic to
E,., 0., centralizes R. Now let u € R\F. As u acts trivially on So/Z(S,) and
S, is of Suzuki B-type, {Cs,(u), 0,41) = S, and (3) follows.

Thus we have essentially two cases to consider, depending on whether exp (R)
equals 4 or 8.

(4) a4 is not conjugate to any involution of R X, S,.

Proof. Letue R x, S, be an involution. Suppose that u ¢ F x, S,. Then
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R %, So/Z(S,) is elementary abelian, so 0,({u, o,-,)) is of exponent 2 and
thus u is not conjugate to «;.

(5) exp(R)=4and P > V.

Proof. Suppose not. Define V; = V = Np(W,), V;, = V, which also
equals Cy (Sp) X4 So, and in general Vy = Np(Vi—-; ) and Vj o = Cy,(So) X«
So. Finally, let R, = F.

(a) Assume exp (R) > 4. Then, if V, < (PG, T), V,, contains a
subgroup R, such that

(i) R, is a complement in Cy,(S,) to «; containing R,_,; and normalized
by o,_4,
(i) R, is homocyclic and inverted by o,
(i) Vi = (Ry X4 So) - {og, ).

To prove this we use induction on k. The case k = 1 has partly been con-
sidered in (3), where (i) and (iii) were proved, while (ii) follows from Theorem
2.1. Suppose (a) has been established for all kK < 4 and assume P > V.
(Note that R = R,.) Let v € Np(V)\V, such that v?> € V,. Clearly v acts on
R, x4 So. Asexp (R,) = 8,85 n R, = Z(S,),andvactson F = U(R;, X, Sp)
for some a. Thus S, N S§ > Z(S,). Furthermore, if s € (S; N SH\Z(S,)
and we (R X, Sg).<ay, &) is an involution centralizing s, then we (R X,
So) « oy ). Thus v acts on (R, x, So).<{a;) = V, o, which is the crucial point
in the proof of (5). Also, a] = ayr; for some r, € R,. Now (a) follows easily
by using the arguments proving (1) through (3). v acts on

d
01 Cy, (0% a,0*) = S, (43)

where 2¢ = ord (v), and on R, for all k < h as well of course. Now, if W, < W
and r(Q (Vy+1/Vy) = 1, Vyuq/Vs is cyclic by Theorem 1.1. Moreover,
Q(Vyr 1) = (W) < W, . (&) since R, is homocyclic. As Q;(R,) = Z(Sy)
it is easy to verify as in Lemma 4.9 that Z(S,) is strongly closed in V., o =
Vi.0 and we reach a contradiction as in Lemma 4.10(ii), since we have assumed
that V., < (P n @', T). Now (i), (ii) and (iii) follows by exactly the same
argument as was used to prove (2) and (3), while (ii) follows from Theorem 2.1.

Thus we may assume that P = V, for some k. Let P, denote V, , and set
Q = R,. Then Q is either homocyclic or of class 2 and exponent 4 (and equal
to R).

(b) o, has a complement in G.

If not, «, is conjugate to some involution in (Q X, So) . (n) by Lemma 3.4.
Hence o, is conjugate to some involution of the form &us, where u € Q and
s € Sy, by the same argument that proves (4). Then ¢ inverts u and s, so fus
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is conjugate to ¢u and ¢ inverts H = O,({u, 6,_,)), which therefore is homo-
cyclic. If H =~ E,., Cp(éu) = H x Z(S,), a contradiction unless u € Z(S,).
If exp (H) = 4, £u centralizes the diagonal D ~ E,. of H and M,. But then
Eu is conjugate to &d for some de D and Cp(éd) > D x Z(S,), again a
contradiction. Finally, if exp (H) > 8, & inverts F. But then Cp(éu) > D X
Z(S,), where D ~ F,, is the diagonal of F and M,, a contradiction. Thus
ue Z(S,) and «, is conjugate to £. In particular ord () = 2. But then
(Q x4 So) . (a0 &) is a complement in P to «, as well, so by the same argument
a, is conjugate to o;&. Now, let fe F\Z(S,). Then f* = fi for some i € Z(S,).
Suppose i # 1 and let s € M, such that s2 = i. Then ¢ centralizes f5, so &
centralizes the normal Sylow 2-subgroup H of {fs, ,_,, which is homocyclic.
In particular, exp (H) = 4, since otherwise ¢ centralizes H x Z(S,) ~ E,2n,
contrary to the fact that & is conjugate to ;. But «, acts on H and Cy(a,) =
Z(S,). Hence a Sylow 2-subgroup of Cs;(€) contains a homocyclic subgroup
of exponent 4 and order 4", and an involution, conjugate to «; which acts
nontrivially on H. Thus a similar situation occurs in T € Syl, (C). By inspecting
T we see that the involution in question must be of the form &s, or a,&s, for
some s, € Sy. Conjugating by an element of S, we may therefore assume that
the involution has the form £ or a;¢. Moreover, the homocyclic subgroup in
question has an intersection with S, which contains an element s, of order 4.
Hence s, is inverted by that involution. Thus «, inverts some element of order
4 in H, a contradiction since «, inverts F. This shows thati = 1, so £ centralizes
F. But then ¢ inverts F, a contradiction since «; is conjugate to «,&. This
proves (b).

Hence a, has a complement in G with (Q x4 So) . {#) as Sylow 2-subgroup
(at least we may have chosen notation so). It is now clear that we must proceed
by reaching a contradiction of the same nature as that in the proof of Lemma
4.10(ii). However, we can no longer expect to prove by a short argument that
Z(S,) is strongly closed in Q X, S, w.r.t. G due to the fact that involutions of
0 x4 S, may be squares in (Q X, Sp), even if they do not belong to Z(S,).
So we must go the opposite way this time so to speak, namely, prove that ¢
“transfers out”, in which case it will be trivial to verify that Z(S,) is strongly
closed in Q x, S,, and (5) will follow.

Now, let us consider possible conjugates of «; in P. By (b), every conjugate
of o, in P is of the form o, us or a,&us for some u € Q, s € S;. Suppose o us is
an involution. Then o, inverts # and s modulo Z(S,), since Q N S = Z(S,)
and [Q, So] = (1). Hence u € F, ie. u is inverted by a,, so se€ Z(S,). It
follows immediately that

Cp(aus) 0 (Q x4 Sp) = So. (44)

Next, assume that o, Eus is an involution. Then o, &us is conjugate to o, éu in P.
Furthermore, «;¢ inverts the normal Sylow 2-subgroup H of (u, o,_).
Suppose u ¢ Z(S,). If ord (u) = 2, Cp(a,éu) = H x Z(S,), a contradiction.
If u*> # 1 let Hy < H be the subgroup of order 4" and exponent 4. Then
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Cp(aéu) > D x Z(S,), where D ~ E,. is the diagonal of H, and M,, again
a contradiction. Thus u € Z(S,). In this case {a;) x Z(S,) x (&) is a max-
imal elementary abelian subgroup of a Sylow 2-subgroup of Cg(a,&us), and

Q(Cp(a18us)) N (Q x4 So) = Z(So). (45)

(¢) ¢ is not conjugate to an involution of Z(Sy).
Suppose ¢ = ie Z(P) < Z(S) for some ge G. Let C; denote Cg(i).
Now, Cg(¢é) contains as a subgroup (g, &) x L, where L = Cy (&) ~

PSL(2, q). By Sylow’s Theorem we may assume that ({o;) x Z(So))! < P.
Clearly, as Z(S,) € Syl, (L),

Z(So)! N 05(Cy) = (1). (46)
On the other hand, by our determination of conjugates of «, in P above,
i) X Z(So)) N (2 X4 So) = Z(S,)- @7

Furthermore, since L has one conjugacy class of involutions, it follows that there
exists an & € C; such that " e Z(S,). Now we reach a contradiction exactly
as in the second part of the proof of Lemma 4.10(ii).

We may now finish the proof of (5) by ‘“extremal” arguments. It follows
immediately from (c) and Lemma 3.2 that n* = 1. Furthermore, if ord (1) = 4
andn € P n G’, then, by Lemma 3.3,  is conjugate to an element of (Q X, S,) .
(&> so ¢ is conjugate to an element of Q x, S,, while if ord () = 2 and
£ e P n G this follows from Lemma 3.4. Let in any case &7 be an extremal
conjugate of £ in P. Then it follows immediately from our determination of the
conjugates of «; in P that & € Z(S,), a contradiction by (c). Thus# = 1. As
mentioned earlier this implies that Z(S,) is strongly closed in P w.r.t. G,
contrary to our assumption.

6) V = (S x4 S2).{ay, n),where Sy = S§ ~ S, F < S3and |P: V| =
2. Furthermore, there exists a k € P such that af = o,¢ and (My)* = F, and
o, has no conjugate in P\V.

Proof. By (4), a, is not conjugate to any involution of R X, S,. By (5)
there is a p € Np(V)\V such that p> € V. As exp (R) = 4, p~'a;p does not
belong to (R X Sp) . {a,), although clearly p € Np(R X, S;). Furthermore,
iford () > 2, (R X, So) . (&) is normalized by p, while if ord (n) = 2 we may
assume this to be the case. Thus p~'a;p = a,¢us for some u € R, s€ S,. As
in the proof of (5), this however forces u to lie in Z(S,), and «,&us is conjugate
to o, ¢ in P. It now follows that ¥ has the claimed structure and that «, and
;& are conjugate in Np(V) by some k where k2 € V. Also, Np(V) = {(V, k)
(note that V = Np(V,)). Now, if P > Np(V), there exists an involution
v € Np(V)\V such that » is conjugate to «; and

Cnor)0) = (0) x Cp(v) ~ T = {oy) x S.
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This implies that v centralizes Z(S,). Moreover, as F* = M,, v centralizes the
diagonal of F and M,, which is isomorphic to E,., a contradiction to the
assumption that v is conjugate to ;. Thus we have established (6).

(7) Either P/(S} x4 S3).<{a;) is cyclic or there exists a v € P\V such that
al = &, v? e (&), [, v] € {&) and v centralizes Z(S,).

Proof. Let S;, = S} x, S3 and suppose P/S;, . {a;) is not cyclic. Then
k* € Sy, . {ay, n*). We have furthermore chosen x such that x ™ 'a;x = a,¢.
As k* e V, k™ %a;k? = a,f for some fe F. Let se S2 such that af = a,f.
Then (xs) ™ 'a (ks) = a,& and (xs)” 2a,(xs)?> = «;. Let xs be denoted u. Then
of = ¢ and & = £ Thus

K2 e N = Cplag) N Cp(Q) = gy x Z(So) - {n)- (48)

Moreover, u acts on Cg(a;) N Cg(€) which contains a normal subgroup H, =
{ay) x L.{n) of odd index, where L ~ PSL(2,q). Let H, = H,.{u),
Hy, = L.Cy,(L). Then H,/H, ~ {n)/{&) as the outer automorphism group
of L is cyclic and {n)/{&) acts faithfully (as field automorphisms) on L. Hence
un" € H, for some r e N. However, as p acts on N and pu® € N,

(un')* € Hy 0 N = {ayy x Z(So) x <&). 49)

Now all involutions of {a;> X Z(Sy) x {EX\Z(S,) x (&) are conjugate to
oy, and therefore

(un")* € Z(Sy) x (&) (50)

On the other hand, as un" € H, and (un")* = 1, un" acts on L as an inner
automorphism of order less than or equal to 2. Thus (un")? € {(¢) and (7)
follows with v = un".

We note that va, is an involution if v? = £,

(8) o, has a complement G, in G.

Proof. Either P/S,, . {a,) is cyclic, in which case {S;,, k) is a complement
in Pto ay, or Sy, . {n, v) is a complement. In either case «, has a complement
in P with no conjugate, as we have seen in (6), and (7) follows from Lemma 2.4.

Thus a Sylow 2-subgroup P, of G is either S;, . {(x) (in the cyclic case) or
S12 - {1, v), without loss of generality.

(9) ¢ is not conjugate to any involution in S/ ,.

Proof. Suppose &% € S;,. As & acts on S§ and S3 as a field automorphism,
Cs,,(&) = D x Z(S,), where D ~ E,, is the diagonal of F and M,. Now, if
& e 81,\Z(S,), Cs,, (&%) contains a subgroup M,; x, My, of index g, where
M,; < Si is maximal abelian. It follows immediately that ¢ is not extremal in
P. Let &" € P be extremal. Then Cp(*) contains a conjugate of ;. However,
by (6) we have that if af € P for some a € G, then af = af for some p € P.
Thus we may assume that a, € Cp(&"). Hence &' e (a;) x S. Now, as ¢ is
not extremal in P and any involution in {a;) X S is conjugate to either a;, &
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or an involution in Z(S,), it follows that & € Z(S,). Let i e Z(P). As in the
proof of 5(c), which only depends on the determination of possible conjugates
of a, in P, there exists an & € C; = Cg4(i) such that & € Z(S,). Now, as in the
proof of Lemmas 4.3(ii) and 4.10(ii), for every element a and subgroup 4 of C;,
let @ and A denote the corresponding element and subgroup of C; = C,/{(i).
Let s € M, such that s = i. Then by Sylow’s Theorem, we may assume that

(&) x (8) x Z(Sp)™ x (&' < P. (5D
As s"e Cp(al), s" e S1,.{n). However, as &" e Z(S,), this implies that
s* € Sy, . (&). Consequently, &* centralizes s*, a contradiction.
(10) r(Q(Po/S12)) > 1.

Proof. It follows immediately from (9) and Lemma 3.3 that P,/S,, is not
cyclic. Assume in the following that r(Q,(Py/S;z)) = 1. Then ord (v) =
ord (1) = 4 since [v, n] € (&) i.e. (n, v) ~ Qq. Furthermore, by Lemma 3.3,
n is conjugate to an element { of Sy, .<v) and by (9), Sy, .<{v) = S;,.<.
Then (% = &fm for some fe F, m e M,, which is conjugate to £ in S;,, so we
may as well assume that (> = . Let { = vs;s,, where s; € S, and s, € Sg.
Then

{* = (v515,)% = &sispsys; mod Z(S,). (52)
Thus s} = s, mod Z(S,). So { = vs,s}i for some i € Z(S,). Consequently,
{? = (vsys])” = Esisfsysy.
In particular, s; = s; mod Z(S,), i.e. s = s7!. But then
s}(vsysyi)sTY = vsis,i = vi, (53)
i.e. we may assume that { = vi. Now, as

Co(&) = ((Z(So) x D). <n, v)). <), (54

we have
Cp(vi) = (Z(So) % Dy) . (Vi) Xy C ey (vi)) (55
where D; < D. Also,
Co(n) = Z . {ay) x {m) (56)

where Z < Z(S,) x D is of order 2". Thus 5 is not extremal in P. Since 5
centralizes o; and all conjugates of «, in P lies in S;, . {n, @, ) and furthermore
the centralizer of any conjugate of «; in P is contained in V, it now follows
easily that #? € S, . (&) if #? is an extremal conjugate of-n in P. By (9), this
is a contradiction.

(11) Contradiction.

By (7) and (10), either v> = 1 or [, v] = 1. Moreover, if v* # 1, n* # 1
by (10). But in the latter case 5,v is an involution where #, € {(n) is of order 4.
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Thus either v = 1 and [,v] = & v?> =1 and Py/S;, =~ (&) x {(v) or
vZ # 1 and Py/S;, =~ {(n) x {nv). In the latter case , ¢ P n G’ by Lemma
3.3 and (9). In the former case we apply Lemma 3.3. Assume ne P n G'.
Then n*" is conjugate to an element of Py\S;, . {#% v), again by (9). But any
element of Py\S;, . <{n? v) has order larger than or equal to ord () unless
n* =1, as (yv)®> = y*¢. Thus we may assume in any case that {5, v) is iso-
morphic to either Z, x Z, or Dg. Consider the case {n, v) ~ Dg. Then ¢ is
conjugate to an involution in Py\S;,. (& nv) unless n ¢ P n G'. Assume
therefore that £ is conjugate to vs;s, for some s; € S;. Then s} = s, mod Z(S,),
as v inverts s;5,, and s;5, is an involution. Moreover, |Cs,,(V)| = 23" and
vs;5, is conjugate to vi by s,, where i = s}s, € Z(S,). Again, £ is not extremal,
and we easily reach a contradiction. Thus we have reduced to the case {3, v) ~
Z, x Z,. But then ¢ has an extremal conjugate in S, .{v) by Lemma 3.4
However, this forces the extremal conjugate to lie in S;,, as no element of
Si2 - {(¥D\S;, centralizes any conjugate of «; in P. This final contradiction
proves Lemma 4.12.

LemMA 4.13.  Suppose F is elementary abelian and E* n F # (1) for some
g€ G. Then Z(S,) is strongly closed in P with respect to G.

Proof. If E? n F # (1) for some g € G, it follows that E ~ E,, and in fact
that F = E? x Z(S,), since F ~ E,.., from our basic assumptions on E.
Furthermore, this implies that ord () < 2, as #, acts nontrivially on Z(Sy).

First we claim that either Z(S,) is strongly closed in P w.r.t. G, or the weak
closure of E in W w.r.t. Ng(W) is equal to {(E, E?) = F.E. Suppose E* < W
for some a € G. Then E* < W, since |E| > 2. Moreover, either E4 < F. E
or E*n (F.E) = {1). So assume the latter case occurs. Then, if « € E¥,
a® = Bvs for some Be E*, ve Ef and se S,. Thus M, = Cs(s) < Cyp(a®),
and consequently

E® = E, = {ayV1S15. .- 0pVuSyy (57

where EY = (v,,...,v,» and M, = {s4,..., s,», since E, is an elementary
abelian subgroup of W, whose centralizer in W, is isomorphic to E,. X Sy(2").
We note that (E, E?) is isomorphic to PSL(3, 2"),. Supposen # 1,ie.n = ¢
is of order 2. Now, if furthermore a € Ny(W), & = Eyv,s, for some y € E,
v, € E? and s, € S,. However, as ¢ inverts yv,s,, £ inverts s,, S0 we may as well
assume that s, = 1. If v, # 1, &y centralizes F. Then o)* = asZ for all k,
1 < k < n, since &yv, centralizes E®. But then v, belongs to v,Z(S,) for all
k, a contradiction since |E| > 2. So v, = 1, and therefore v§* = v,s? for all k,
s0 V{x? = v, for all k. But then &y centralizes F for all k, since o,&y € Cg(0,—4),
again a contradiction. Thus# = 1. But now, by Lemma 4.9, Z(S,) is strongly
closed if P = W = W, so we may assume that V = Np(W,) > W,. Let
v e V\W, such that v> € W,. Suppose E” n (F.E) = {(1). Then, using the
above notation

E’ = {aVySqy .y 0pVuSp)- (58)
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Hence o’ = avs for some a € E*, ve E and se M;. Now, as v’ e W,
a’v’s® = avsv’s® = ai for some i€ Z(S,). But then v = v* mod Z(S,), so
v € Np(F). However, Np(F) = Wyas F = E? x Z(S,), a contradiction. Thus
E’ < (E* E). Consequently, ¥V = Pand |V: W,| = 2. Finally, leta € Ng(W)
such that E* n {E, E*) = (1). Then, from what we have just seen,

av™la " Y(E x Z(Sy))ava™! = E* x Z(S,). (59)

Let « € E*. Then a”'aa = Bvs for some fe E*, ve E°* and s € So\Z(S,).
After possibly replacing a by o-,;'_"laa’;_l for some k we may assume that
v~ 'Bw = vB. Thus, if [B, v] = i,

1 1

av™la Yoava™! = av™'Pysva! = aPvstia”! = a(s " 1s%)*"  (60)

which belongs to E¥ x Z(S,). Thus ss® is of order 4, i.e. v acts nontrivially on
So/Z(S,). In particular, s does not lie in the maximal abelian subgroup of S,
normalized by v. Since a was arbitrary, g,,; does not act transitively on the
set of maximal abelian subgroups of S,. Hence n is odd, and E x Z(S,) has
exactly 2((g + 1)37! + 1) conjugate subgroups in W under the action of
Ng(W), a contradiction since (g + 1)3”! + 1 is an even number and
|P: W| = 2.

Assume therefore in the following that the weak closure of E in W w.r.t.
Ng(W) is equal to (E, E?). It immediately follows that either Z(S,) is strongly
closed in G, or |V: W| = 2, where V = Ng(W). Assume therefore that the
latter case occurs. Then actually P = V, as clearly (E, E?) x, S, is normal in
Np(V). Let P = (W, v), where v>* € W. We may as well assume without
loss of generality that v centralizes &, since v centralizes &y mod Z(S,) for some
yeE: & = &yv for some ye E, ve E’. But then y° = v mod Z(S,), so
(&y)’ = & mod Z(S,). Thus, without loss of generality, Cp(£) = (&) %
{E, v). Every involution of {E, E*) is conjugate either to a, or to i;. More-
over, if 6 € (E, E") is conjugate to a4, d is conjugate to Ji for any i € Z(S,).
In particular «, is conjugate to «,¢ if ¢ is conjugate to an involution in Z(S).
Since v centralizes ¢, it easily follows by Lemma 3.3 that v> € W,. Assume
¢e P G'. By Lemma 3.4, there exists an extremal conjugate &" e W, . (v)
of ¢ for some he G. Clearly & ¢ W,. Moreover, {(E, E°)" is normal in
W, . (&), in fact (E x Z(S,))" is normal in W, . {v) and Cy(&") contains an
element interchanging (E x Z(S,))* and (E® x Z(S,))". Hence {E, E°)" <
W,. As E" and E" are of the form considered in (59) this implies that v acts
trivially on So/Z(S,). By symmetry, " acts trivially on S,/Z(S,) as well, a
contradiction. Thus ¢ ¢ P n G'.

Finally suppose v € P n G'. First we claim that Z(S,) is strongly closed in
W, w.r.t. G. We only have to consider involutions of the form t = avs for some
ae E* ve E'” and se S,. But as mentioned earlier, Cy,(t) = E; x S,
where E; ~ E,. and S; ~ Sg(q) (~S, as a 2-group). But if (E; x S;)is a
subgroup of P for some g € G, it follows immediately by the structure of P that
E, n Z(Sy) = {1). Hence t? ¢ Z(S,) and it follows that Z(S,) is strongly
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closed in W, w.r.t. G. So in order to finish the proof we may assume that v is
an involution conjugate to those of Z(S,). Now, o,,v0,_,v acts trivially on
So/Z(So), and o, },v0,_,v € NG(E) as v is an involution. Hence

-1 _
0 -100,_10 = pC

where p?™' € C, c € C and p acts trivially on Z(S,). On the other hand, as
p?~ ! acts trivially or as an inner automorphism on U,, the structure of Aut (U,)
implies that p itself must act as an inner automorphism. Since our only con-
straint on c is that it must liec in C, we may also assume that p?~! = 1. But
then p € Cg(Uy), as p € C4(Z(S,)). Furthermore, as o, v0,_,v acts trivially
on So/Z(S,), 6,2,06,_10 = co8, for some ¢, € C4(S,) and s, € S,. Moreover,
as pc = ¢oSy, o = pcy for some

cl € C N C(;(So) = E X Z(So).

But then, if ¢; = ai, where a € E and i € Z(S,), ¢,So = p15;, where p; = pa
and s; = isy. Also pi~! = 1 and p,; € C4(Up).

If v acts nontrivially on S,/Z(S,), v inverts some maximal abelian subgroup
of S, by Theorem 1.1. Consider the case when v acts trivially on So/Z(S,). If
51 € Z(Sy), v and g,_, centralize each other mod C4(S,). As v acts trivially on
So/Z(S,), v centralizes some s in Sy\Z(S,). But then v centralizes Cs (s) since
0,1 acts on Cs(s), and we reach a contradiction exactly as in the proof of
Lemma 4.9. Thus s; is of order 4. Since v inverts p,s;, s} € S, and p, €
C(Sy), it follows that v inverts both p, and s,. In particular, v inverts Cg,(s,).

Thus v inverts some maximal abelian subgroup M of S,. Let H be the homo-
cyclic subgroup of (E, E”) of exponent 4 inverted by v. Then v centralizes the
diagonal D ~ E,.of Hand M,and D x Z(S,) x {v) is a maximal elementary
abelian subgroup of P. Moreover, if v acts nontrivially on S,/Z(S,) it follows
immediately that v is conjugate to vd for all de D x Z(S,). However, this is
also true if v acts trivially on Sy/Z(S,). Let p; = (p¥)%. Then it follows from
the equation o, !,v0,_ v = p;s, that

(PT"072100,-1 = pi¥o; 200, 1p% = s, 61)

since p, is inverted by v and p, € C4(U,). Then v is conjugate to vs for all
s € M. Since on the other hand v is conjugate to vh for all & € H in {E, v), the
assertion follows. Now letv? = i € Z(S,). By Sylow’s Theorem we may assume
that (D x Z(S,) x {v))! < P. Then

(D % Z(So) x {v))’ N Wy = Z(S,) x D, (62)

where D; n {E, E*) = (1). Moreover, as [D| > 2, d? € W, for some d e D*.
Hence df € (D; x Z(So))\Z(S,), as Z(S,) is strongly closed in W, w.r.t. G,
and d? is conjugate to d%. But this is a contradiction since d% = (dv)? is
conjugate to v.

LeMMA 4.14.  Suppose F is elementary abelian and assume furthermore that
Z(Sy) is not strongly closed in P. Then:
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(i) V contains a normal subgroup V, > W,, which is a complement in V to
{n), such that V,|W, is isomorphic to Ej:.. Moreover, o,._1 € No(Vy) and
0,21 acts irreducibly and faithfully on V,[W,.

(i) Cy,(F) = R is a complement in V, to E, and R[F is isomorphic to Ejan.

(iii) The weak closure of E in V, is contained in Wj,.

Proof. Let F = Z, x Z(S,) such that a,_; € Ng(Z,).

(i) By Lemma 4.10(iv), E x Z(S,) is not weakly closed in W. Furthermore,
F n E9 = (1) for all g € G by the previous lemma. Suppose W = P. Then
by Lemma 4.10(ii), |E| is larger than 2. Consequently, if (E x Z(Sy))’ < W,
then actually (E x Z(Sp))? < W,. So let (E x Z(S,))? be a subgroup of W,
which is not contained in T, for some ge G. If a € E*, o = Bzs for some
Be E*, ze Z, and s € Sy, where s? = (Bz)®. Let se M, = Cs,(s). Then M,
is contained in Cg4(of), so

E% = (0121815« s UpZS) (63)
exactly as in (57), where

Zy =424y s 2y 2y (64)
and

Mg = {Syees Spsenvs Sy (65)

Now, by Lemmas 4.9 and 4.10(iii), we may assume that ord (n) is equal to 2.
Furthermore, as E9 x Z(S,) < W,, we may assume W$~! < W, in which case
it immediately follows that W$~! < W,. Thus we may assume that g € Ng(W,).
Now, if Z(S,) is not strongly closed in P w.r.t. G, by Lemma 3.4, there exists
an extremal conjugate &, h € G, of ¢ in W,. It easily follows that &" € Z(S,) as
|E| > 2. Furthermore we may assume by Sylow’s Theorem that E* < P. But
then

(E x ()" < E x Z(S,) (66)

and we reach a contradiction by exactly the same argument which proved
Lemma 4.2, since |E| > 2. Thus ¥V > W, as by assumption Z(S,) is not
strongly closed in P.
Let v € V\W such that v> € W. Then
E’ = (0321815 - s UppZySpy 67)
where we have used the notation of (63), (64) and (65). First we note that v acts
on F x, S, and trivially on Wy/F x, S,. If not, let « € E* such that a” = Bzs
where f € E\{a), z€ Z, and s € So. Let afz,s, € E® for suitable z, € Z, and
s, € So by (67). As o = «ai for some i € Z(S,), it follows that (xfz,s,)’ =
Pzysyai = (afzys,)*° for some z, € Z,, a contradiction as «fz,s, is conjugate
to an involution of E. Now, by counting conjugates of E x Z(S,) in W, under
the action of (W, ¢,_,, v), we find that

KW’ Gg-15 v>: <W’ O'q_1>| = dq.
Suppose Q,(V/W,) = 1. As v does not normalize {o,-).{n), a Sylow 2-
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subgroup Q of (W, o,_,, v)/W, is quaternion, and {7j) = W/W, = Q if we
assume W/W, < Q. In particular, we may assume that v> = £ On the other
hand, as ¢ > 4, 7] is a square in Q as well since {7jy == Q. This is easily seen to
be impossible. Thus r(Q,(V/W,)) > 1. Assume therefore that v*> € W,. As
04-1 € No(Wy . {&)), 0,1 € Cs(&) and 0,41 € Ng(W,) while g, is inverted
by ¢, we first replace v by v, = vv’a-1, which is equal to v%¢-*“ modulo W, . (&)
for some k € N. It is now easy to verify, just as in previous similar cases, that
N = (W,, vy, 0,2_,) is 2-closed since v, acts trivially on Wo/F x, S,, and we
obtain (i) with ¥, = ¥V n N, since 6,._, acts irreducibly on So/Z(S,). Let
6 = 0y, Then O,(W,, v§, 0,_()/W, is elementary abelian and isomorphic
to Z(S,) as a o,_;-module for any r. It also follows that N/W, is elementary
abelian. As 0,._; acts irreducibly on So/Z(S,), even if 3 divides ¢ + 1, (i)
follows.

(ii)) As we have just seen, Vy/Z, x Sy =~ E,n X E,.. Thus E has a
complement R under the action of o,._; containing Z, x S,. Now the action
of 0,,, and the fact that o, centralizes F implies that R < Cy(F), and as
E acts nontrivially on F, R actually equals Cy (F). Moreover, R acts on
Zy X Sol/Zy ~ Sy, s0, by Theorem 1.1, R centralizes S, mod F. Hence
u? € Cg(S,) = Fif u e R. In particular, R/F ~ E, .

(iii) Suppose E? < V, for some g € G. Then E? n R is trivial by (ii). Thus
an element of E? is of the form au for some o € E*, u € R. Suppose u ¢ Z, x
So. Then a* is equal to azs for some ze Z ¥ and s € S)\Z(S,), so u* = zs,
which contradicts (ii).

COROLLARY. Assume in addition to the assumptions of Lemma 4.14 that
|E| > 2. Then V = P.

Proof. Suppose |E| > 2. Then, if E? < V, it follows that £9 < V,,. Thus
the corollary follows from (iii).

LemMMA 4.15. Suppose we are in the situation of Lemma 4.14.
(i) Suppose Q(R) = F. Then R.{a;)y ~ PSU(3, 2", 1 Z,.
(i) Suppose Q,(R) > F. Then R ~ PSL(3, 2*"),.

Proof. Let R, be a complement in R of S, x Z,/F under the action of
0,.2-1and Ry = Ry/Fsuch that Q,(R,) > Fif Q;(R) > F. Let Ny = Ng (M)
Then it easily follows from (67) that |[N,| = 23". Also we may assume without
loss of generality that Z, = R3 if R, is not elementary abelian. Suppose
Q,(R,) > F. Then R, = Ry/Z(S,) is either elementary abelian or isomorphic
to PSL(3, 2"), by Lemma 2.5. Thus R, is either elementary abelian or contains
exactly two maximal elementary abelian subgroups. However, as o,._; acts
irreducibly on Ry/Z, = R,, this is impossible. Thus R, is elementary abelian.
Since R < Z, this implies that R, is elementary abelian.

If Q,(Ry) > F it therefore follows, by Lemma 2.5, that N, is elementary
abelian and hence that {M,, Ny ~ E,. x PSL(3, 2"),.
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If Q,(R) = F, let t € N, be an element of order 4. We may assume without
loss of generality that ¢ centralizes s where o = azs, z€ Z,, se€ Sp; if s* # s
we replace R, by a complement containing ts’, where s’ € S, such that s™ = s.
So in this case {M,, No) is homocyclic of order 2*" and rank 2n, using the
argument in the first part of the proof of Lemma 2.5. Now, as o,._, acts
irreducibly on R, we use the idea in the proof of Lemma 2.5, namely, we show
that all commutators are uniquely determined. If Q,(R) > F, R, is elementary
abelian. If Q,(R) = F, R, is equal to R; x Z(S,), where Q,(R,) = Z,, and,
by Lemma 2.5, R, is isomorphic to PSU(3, 2"),. Finally, ifue R,and o € E*,
let o* = azs where z € Z,, s € S;. Then

(Otup)u = o"z°u"'s’u  where p = 6:2—1 for any k,
an equation which determines u~ 's”u uniquely, and the lemma follows.

COROLLAKRY. Suppose Z(S,) is not strongly closed. Then |E| = 2.
Proof. Obvious.

LEMMA 4.16. Suppose Q,(R) = F. Then F is strongly closed.

Proof. First we consider the case when P = V. It follows immediately that
Fis strongly closed in P w.r.t. Gif V' = V,,. So we may assume that# # 1 and
that P n G’ is not contained in V,. Let R = R; x R,, where R; ~ S, and
R% = R,. We may assume without loss of generality that # normalizes R; =
R,F/F. In particular, ¢ centralizes F. Furthermore, & is conjugate to an in-
volution of F unless P n G’ is contained in V. (£) by Lemma 3.3, while if
PG =V,.{& this immediately follows from Lemma 3.4, since in that
case V, is a complement to ¢ in P and ¢ centralizes F. It follows immediately
that the extremal conjugate of £ in P lies in Z(S,). As we know the structure of
R completely, we easily apply the argument of the proof of Lemma 4.10(ii)
and reach a contradiction.

Assume therefore in the following that V' < P. In particular, n # 1. Le)
Vi, = Np(V), V,y1 = Np(V,). From the structure of R it follows that Np(Rt
contains a subgroup P, of index 2 such that P, normalizes Z(R;) and

R, = Ry x Z(Rs_)/Z(R;_)), i=1,2

and that Np(R) = P, .{a ). Also, as n acts as a field automorphism on Sy,
we may, after possibly change of notation, assume that n € P, and that # acts

as a field automorphism on R;, i = 1, 2. It easily follows by induction that
Vec1: Vil < 2. Lety,q € Vg d\Ve
(1) We may choose y, in P, such that one of the following cases occurs:
@ Vi=@R.(ny x {yy) Loy, v3 = 1,9, € Ce(L) and [yy, o] = &
(b) Ord(n) =2,Vy = (R.{y)) .y, v7 = &and [y, ¢4] = &

To see this we first observe that R=<a V, and R.{(n) = Po nV,; =2 V,.
Hence Cy,(¢) is not contained in V, so it easily follows that we may choose y,
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in Cp(€) such that y7 e y; = ¢, ie. y; acts on Cg(a;) N Cg(€). This allows
us to assume exactly as in the proof of (7) in Lemma 4.12 that either y? = g
or y7 € (&) and [y;, n] € (¢). Furthermore, after possibly replacing y, by
y,0, We may assume that y; € P,. Hence [, y;] = 1 by Theorem 1.1. Finally,
if y2 = n and ord (n) > 2, clearly P = V,. But then, by Lemma 3.4, «, ¢
P n G’ and consequently, by Lemma 3.2, y;a;, y; ¢ P n G’ so we are back to
P = V, which has been considered above.

2) IfV,., < P, r = 2, then y, may be chosen in P, such that one of the
following cases occurs:

@ V=R x {90 e 81y Y2 = Vp1s V5 104Yr = ylyYp— s
(b) Vr = (R . <yr>) . <(X1>, )'3 = VYr-1 and 'yr_lal'yr = 01 Yr-1-

The proof of course goes by induction. First we consider case (a). Assume
(2a) has been established for all r < hand that P > V. In particular, ord () =
2* > ord (y,) = 2". Again we may assume without loss of generality that
Vh+1 € Pos Vadi%¥he1 = %flye 1Py and that y,. 4 € Cg(y4174). Thus it easily
follows that y,.; acts on Cg(1,+1) N Cg(x;). This allows us to assume, as
above, either that y?,;, = northatyZ,, € (1,+1) X {p». If howevery?,, =1,
y2.., centralizes a;, SO 7,4 {7, is inverted by y,, ;. This is only possible if 4 = 0,
i.e. n = ¢ and we are in case (b). Thus y72,, € {yp+1) x {y,) and it follows
without loss of generality, using Theorem 1.1, that we may assume that y2, , =
vy and [, y,+ 1] = 1, proving (a). Case (b) is even easier, and we leave the proof
to the reader.

Before we continue, we note that any involution of P,\R is conjugate either
to & or to y,. We therefore obtain

(3) Fis strongly closed in P, w.r.t. G, and «, ¢ G'.

The proof is obtained in the same fashion as many times earlier. If y, is an
involution, y, € Cg(L) by (1), so both ¢ and y, has L in their centralizer and our
method applies to both involutions. That a; ¢ G’ follows immediately from the
fact that Q,(Py) < Cu(F).

(4) Fis strongly closed in P w.r.t. G.

This is clear by (2) and (3) if Py/R is cyclic. Assume therefore that we are in
case (2a). By (3), it suffices to prove that

Q,(G N P) < R.(K&) x {yp)). (68)
Only the following four cases may occur:

L PnG*™ =R.({m) x {0D)

II. PnG™ = R.(Ney *x {Pr@1))s
ML PG = R.({Mm,0y 7)),

IV. PaG™ = R.({M,tq, Pr,%))s
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for suitable k,, r; € N, k; > r;. Note that #,,y, a, is an involution if and only
if kz =Try + 1.

Case II. Suppose k; > ry. Asagy,a; = 1, 'y %, let

P, = (R, Miy—15 Pri—-1s '7n+1°‘17r1>~ (69)

Then P, is a maximal subgroup of P n G‘® not containing ,, and exp (P,/R) =
2471 while every element in P\P, has order 2** mod R. Hence 1, transfers
out by Lemma 3.3 and (4), a contradiction. Thus k, = r,. Now let

Pl = R. (<”n> x <'yr1—1>) (70)

where this time «,y,, ¢ P,. As every element of P\P; has order 2"**! mod R
in this case, we have reached a contradiction again.

Case I1I. It easily follows in the same way here that k, < r, + 1. If
kl = rl + 1, let

Pl = <R’ Mees Pellei+1%15 Yr1-1>' (71)

Then every element of P\P, has order 2"*** (, ,10,) OF 2" (y,, = PNy +1% +
(1,,+1%7)~ ") mod R. It now easily follows that ¢ is conjugate to y, in G,
say & = y,, by our remark on conjugacy classes of involutions in P,. Let
af = a;x, x € G*). Then

V13 xy; = a1 &yyXyy, (72)
ie. yyixy, = &x. Hence o ¢ centralizes x, so oy centralizes y,xy; = £x. But
then o, centralizes x, so £ centralizes x and consequently x is an involution in

L.{&, a contradiction since y; € Cg(L.{&)) while y,xy; = éx. Thus
k, = ry, in which case (68) holds.

Case IV. This case is easily taken care of by referring to Lemma 3.3 unless
k; < r; + 1 in which case it immediately follows that (68) holds.

Remark. Lemma 4.16 deals with cases as G = U} U Z,, where U} ~ U,,
G =U' 2Z, where U! ~ U, and the “twisted wreath product” G =
vl z,).Z2,,, and variations thereof.

LemMA 4.17. Suppose Q,(R) > F. Then G contains a normal subgroup H
with R as Sylow 2-subgroup.

Proof. By Lemma 4.14(iii), R does not contain any involution conjugate o,
so the lemma follows immediately if # = 1. Assume therefore that n # 1.
First we claim that P = V. Let F, x F be a maximal elementary abelian
subgroup of R, which by Theorem 2.1 is isomorphic to PSL(3, 2%"),. Now, if
ord (n) > 2, (F, x F)* = F, x F,whileif ord () = 2 we may as well assume
this to be the case. Let u € F,, such that uo,u = o zs, whereze Zyand se M #
M,. Then ss¢ is an element of order 4 in M,. Moreover, u acts trivially on
M*FyF|F. Thus

uluouu® = oy ss° mod F. (73)
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But ¢ centralizes u°u. It therefore follows that if u € F such that uo,u = a,zs
where s € M,, then z° = zs®> = z*, Thus o,¢ centralizes F. In particular,
¢ is not conjugate to . Neither is &, as |Cp, x f(€)] = 22". Since all involu-
tions of P\R are conjugate to ay, o, & or &, it follows that P = V and that a;
has a complement in G with R.{n) as Sylow 2-subgroup without loss of
generality. Finally, if P n G’ is not contained in R, it easily follows that & is
conjugate to an involution of Z(S,) by Lemma 3.3.

Again we are in a situation, where the argument of Lemma 4.10(ii) may be
applied to reach a contradiction.

Thus we have shown that if G is a finite group with an involution whose
centralizer in G satisfies (¥), then either G contains an elementary abelian 2-
group which is strongly closed in G, or G contains a normal subgroup H whose
Sylow 2-subgroup is isomorphic to that of PSL(3, 2*"). This completes the
proof of Theorems 1 and 2 as mentioned in the introduction.
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