# IMMERSIONS UP TO COBORDISM 

BY<br>Arunas Liulevicius ${ }^{1}$

Given a compact manifold $M^{m}$ we ask for the least integer $k$ such that $M^{n}$ immerses into $R^{m+k}$. A great deal is known for special classes of manifolds (see Gitler [9]). There is a conjecture that (if $m \geq 2$ ) $M^{m}$ immerses in $R^{2 m-\alpha(m)}$, where $\alpha(m)$ is the number of ones in the dyadic expansion of $m$. The original question can be weakened to read: given $M^{m}$, find the least integer $k$ such that there is a manifold $M^{\prime}$ cobordant to $M$ and $M^{\prime}$ immerses in $R^{m+k}$.

We shall say that $M^{m}$ immerses into $R^{m+k}$ up to cobordism. Brown [4], [5] has proved that $M^{m}$ immerses in $R^{2 m-\alpha(m)}$ up to cobordism. Of course, we have lost a lot of geometric information by passing to cobordism, since now $k(M)$ is a function only of the cobordism class of $M$, and if $M$ is a boundary ( $M=$ $R P^{2 n+1}$, an odd-dimensional real projective space, for example) then $k(M)=0$. Even if $M$ is not a boundary, a manifold may immerse up to cobordism into a lower dimensional Euclidean space than $M$ itself: for example, $R P^{10}$ immerses up to cobordism into $R^{15}$, as we shall see later, but $R P^{10}$ itself immerses into $R^{16}$, and does not immerse into $R^{15}$ (see Gitler [9]).

The fact that we have lost geometric information by passing to cobordism (and reducing the problem to homotopy theory) should not make us sad: the geometric situation was too complicated, so we would not obtain useful qualitative information if we preserved the complexity of the original problem. The purpose of this note is to convince the reader that even after the reduction there is a lot of structure (possibly even too much?) remaining.

The usual approximation theorems of Thom [16] give a reduction of the problem of immersions up to cobordism to a question of homotopy. Let $M O$ be the Thom spectrum [16] for the orthogonal group, then cobordism classes of compact $m$-dimensional manifolds correspond to elements of

$$
\pi_{m}(M O)=\underline{l_{n}} \pi_{n+m}(M O(n))
$$

Let $\lambda_{k}: \pi_{m+k}^{s t}(M O(k)) \rightarrow \pi_{m}(M O)$ be the map into the direct limit, where the superscript st denotes stable homotopy. If $x \in \pi_{m}(M O)$ represents the cobordism class of $M$, then $M$ is cobordant to an $M^{\prime}$ which immerses in $R^{m+k}$ if and only if $x$ is in the image of $\lambda_{k}$. The essential point here is the use of the theorem of Hirsch [10] which reduces the question of immersion in $R^{m+k}$ to the geometric dimension of the stable normal bundle of the manifold.

Stated in another way: we define an increasing filtration of $\pi_{*}(M O)$ by setting

[^0]${ }^{\text {geo }} F_{s} \pi_{*}(M)=$ image of $\lambda_{s}$. Let ${ }^{\text {geo }} E^{0} \pi_{*}(M)$ be the associated graded object, then our original question is equivalent to the following: given $x=\left[M^{m}\right] \neq 0$, what is the $k$ so that the class of $x$ is nonzero in $E_{k}^{0} \pi_{m}(M O)$ ?

The purpose of this note is to study ${ }^{g e o} E^{0} \pi_{m}(M O)$.
We recall that $\pi_{*}(M O)$ is a polynomial algebra over $Z_{2}$ (Thom [16]) and the Hurewicz homomorphism $\pi_{*}(M O) \rightarrow H_{*}\left(M O ; Z_{2}\right)$ is a monomorphism onto the primitives under the coaction of the algebra $A_{*}$ (dual of the mod 2 Steenrod algebra [14]). This, as we shall see, presents us with an algebraically obvious set of polynomial generators for $\pi_{*}(M O)$. The homology $H_{*}\left(M O ; Z_{2}\right)$ is filtered by the images of $H_{*+n}\left(M O(n) ; Z_{2}\right)$ and this filtration induces the algebraic filtration ${ }^{\text {alg }} F$ of $\pi_{*}(M O)$. We shall ask ourselves three questions:

Question 1. Do the algebraically obvious polynomial generators have the smallest algebraic filtration?

This question tacitly hopes that ${ }^{\mathrm{alg}} E_{0} \pi_{*}(M)$ has a very simple-minded structure: namely, take polynomial generators of smallest possible filtration, then monomials in these generators should project into a $Z_{2}$-basis of ${ }^{\mathrm{alg}} E_{0} \pi_{*}(M O)$, so if it turns out (as it does) that the algebraically obvious generators do not have minimal filtration (we shall see that this first happens in dimension 11), we can still ask:

Question 2. Is ${ }^{\mathrm{alg}} E^{0} \pi_{*}(M O)$ a polynomial algebra?
The answer is no, and the first departure from a polynomial algebra occurs in dimension 10.

Since our algebraically obvious generators turn out not to have the minimal algebraic filtration, we can ask:

Question 3. Do the polynomial generators of Boardman [3], Brown [4], Dold [8], and Kozma [11] have minimal algebraic filtration?

The answer is no again, unfortunately. Boardman's generators first fail in dimension 11, Brown's in dimension 6, Dold's in dimension 11, Kozma's in dimension 11.

So far we have been talking only about the algebraic filtration of $\pi_{*}(M O)$. Since the following diagram commutes (horizontal maps are maps into the direct limit, vertical maps are the Hurewicz homomorphisms into homology over $Z_{2}$ )

we have ${ }^{\text {geo }} F_{n} \subset{ }^{\text {alg }} F_{n}$, so we ask:
Question 4. Is the algebraic filtration the same as the geometric filtration?

The answer is no again, a counterexample being furnished by [ $R P^{14}$ ] which is of algebraic filtration 1, but of geometric filtration at least 2.

We refer the reader to Brown [4], [5] for an elegant geometric proof that

$$
{ }^{g e o} F_{n-\alpha(n)}=\pi_{n}(M O)
$$

and to Burlet [7], Salmonsen [15] on the homotopy of $M O(n)$ and $M S O(n)$, to Wells [17] on cobordism of immersions. I am indebted to all of the above authors (and to J. F. Adams, T. tom Dieck, R. K. Lashof, and M. Mahowald) for conversations and letters.

The paper is organized as follows: Section 1 describes the algebraically obvious generators for $\pi_{*}(M O)$, Section 2 describes the structure of ${ }^{\text {alg }} E_{*}^{0} \pi_{*}(M)$ in total degree $\leq 14$, Section 3 inspects the generators of Boardman, Brown, Dold, and Kozma, and Section 4 shows that ${ }^{\text {alg }} F \neq{ }^{\text {geo }} F$ in an infinite number of dimensions $\geq 14$.

## 1. Algebraically obvious generators for $\pi_{*}(M O)$

We recall (see [13], for example) that $H_{*}(M O)\left(Z_{2}\right.$ coefficients here and later) is a polynomial algebra $Z_{2}\left[b_{1}, \ldots, b_{n}, \ldots\right]$ on generators $b_{n}$ coming from $H_{n+1}(M O(1))$ with coaction of $A_{*}$ (dual of the Steenrod algebra over $Z_{2}$, see Milnor [14]) given by $\mu_{*} b_{n}=\sum_{s=o}^{n} \gamma_{s+1}^{(n+1)} \otimes b_{s}$, where $\gamma_{s}^{(n)} \in A_{* n-s}$ satisfy the relations

$$
\gamma_{1}^{(s+1)}= \begin{cases}\xi_{r} & \text { if } s=2^{r}-1 \\ 0 & \text { if } s \neq 2^{r}-1\end{cases}
$$

where $\xi_{r}$ are the Milnor [14] generators, and the $\gamma_{j}^{(i)}$ are determined by $\gamma_{n}^{(n)}=1$ and the Cartan relations: for each pair of natural numbers $i, j$ we have

$$
\gamma_{i+j}^{(n)}=\sum_{n=s+t} \gamma_{i}^{(s)} \gamma_{j}^{(t)}
$$

(see [13]).
Let $N_{*}=Z_{2}\left[u_{2}, u_{4}, \ldots, u_{n}, \ldots\right], n \neq 2^{r}-1$ and define an isomorphism of algebras and comodules over $A_{*}$

$$
f: H_{*}(M O) \rightarrow A_{*} \otimes N_{*}
$$

where the coaction in $A_{*} \otimes N_{*}$ is $\phi_{*} \otimes 1, \phi_{*}: A_{*} \rightarrow A_{*} \otimes A_{*}$ being the coproduct. The map $f$ is determined by the algebra homomorphism

$$
\mathbf{f}=\left(\eta_{*} \otimes 1\right) f: H_{*}(M O) \rightarrow N_{*}
$$

where $\eta_{*}: A_{*} \rightarrow Z_{2}$ is the augmentation and $\mathbf{f}\left(b_{n}\right)=u_{n}$ if $n \neq 2^{r}-1$, $\mathbf{f}\left(b_{n}\right)=0$ if $n=2^{r}-1$ for some $r$ (see Liulevicius [12], as well as correction in [13]). Of course, the image of $\pi_{*}(M O)$ is precisely $f^{-1}\left(1 \otimes N_{*}\right)$, and we call the corresponding polynomial generators of $\pi_{*}(M O)$ algebraically obvious. Let us simplify notation by identifying $H_{*}(M O)$ with $A_{*} \otimes N_{*}$ under $f$, thus identifying $\pi_{*}(M O)$ with $1 \otimes N_{*}$. Table 1.1 gives the expression for $u_{n}$ in terms of the polynomial generators $b_{i}$ for $n \leq 18$.

Table 1.1

| Generator | Algebraic degree | Expression |
| :---: | :---: | :---: |
| $\xi_{1}$ | 1 | $b_{1}$ |
| $u_{2}$ | 1 | $b_{2}$ |
| $\xi_{2}$ | 1 | $b_{3}+$ |
|  | 2 | $+b_{1} b_{2}$ |
| $u_{4}$ | 1 | $b_{4}$ |
|  | 3 | $+b_{1}^{2} b_{2}$ |
| $u_{s}$ | 1 | $b_{5}$ |
|  | 2 | $+b_{1} b_{4}+b_{2} b_{3}$ |
|  | 3 | $+b_{1} b_{2}^{2}$ |
| $u_{6}$ | 1 | $b_{6}$ |
| $\xi_{3}$ | 1 | $b_{7}$ |
|  | 2 | $+b_{3} b_{4}+b_{1} b_{6}$ |
|  | 3 | $+b_{1} b_{2} b_{4}+b_{1}^{2} b_{5}$ |
|  | 4 | $+b_{1}^{2} b_{2} b_{3}+b_{1}^{3} b_{4}$ |
|  | 5 | $+b_{1}^{3} b_{2}^{2}$ |
| $u_{8}$ | 1 | $b_{8}$ |
|  | 3 | $+b_{2} b_{3}^{2}+b_{1}^{2} b_{6}$ |
|  | 5 | $+b_{1}^{2} b_{2}^{3}+b_{1}^{4} b_{4}$ |
|  | 7 | $+b_{1}^{6} b_{2}$ |
| $u_{9}$ | 1 | $b_{9}$ |
|  | 2 | $+b_{3} b_{6}+b_{2} b_{7}+b_{1} b_{8}$ |
|  | 3 | $+b_{2} b_{3} b_{4}$ |
|  | 4 | $+b_{1} b_{2}^{2} b_{4}+b_{1}^{2} b_{2} b_{5}$ |
|  | 5 | $+b_{1}^{2} b_{2}^{2} b_{3}+b_{1}^{3} b_{2} b_{4}+b_{1}^{4} b_{5}$ |
|  | 6 | $+b_{1}^{4} b_{2} b_{3}+b_{1}^{3} b_{2}^{3}+b_{1}^{5} b_{4}$ |
|  | 7 | $+b_{1}^{5} b_{2}^{2}$ |
| $u_{10}$ | 1 | $b_{10}$ |
|  | 5 | $+b_{1}^{4} b_{6}$ |
| $u_{11}$ | 1 | $b_{11}$ |
|  | 2 | $+b_{4} b_{7}+b_{3} b_{8}+b_{1} b_{10}$ |
|  | 3 | $+b_{3} b_{4}^{2}+b_{3}^{2} b_{5}+b_{1} b_{4} b_{6}+b_{1} b_{2} b_{8}+b_{1}^{2} b_{9}$ |
|  | 4 | $\begin{aligned} & +b_{2} b_{3}^{3}+b_{1} b_{3}^{2} b_{4}+b_{1} b_{2} b_{4}^{2}+b_{1}^{2} b_{4} b_{5}+ \\ & +b_{1}^{2} b_{3} b_{6}+b_{1}^{2} b_{2} b_{7}+b_{1}^{3} b_{8} \end{aligned}$ |
|  | 5 | $+b_{1} b_{2}^{2} b_{3}^{2}+b_{1}^{3} b_{4}^{2}+b_{1}^{2} b_{2}^{2} b_{5}$ |
|  | 6 | $+b_{1}^{2} b_{2}^{3} b_{3}+b_{1}^{3} b_{2}^{2} b_{4}+b_{1}^{4} b_{2} b_{5}$ |
|  | 7 | $+b_{1}^{3} b_{2}^{4}+b_{1}^{4} b_{2}^{2} b_{3}+b_{1}^{5} b_{2} b_{4}$ |
|  | 8 | $+b_{1}^{5} b_{2}^{3}$ |
| $u_{12}$ | 1 | $b_{12}$ |
|  | 3 | $+b_{3}^{2} b_{6}+b_{1}^{2} b_{10}$ |
|  | 5 | $+b_{1}^{2} b_{2}^{2} b_{6}$ |
| $u_{13}$ | 1 | $b_{13}$ |
|  | 2 | $+b_{6} b_{7}+b_{3} b_{10}+b_{1} b_{12}$ |
|  | 3 | $+b_{3} b_{4} b_{6}+b_{1} b_{6}^{2}+b_{1} b_{2} b_{10}$ |
|  | 4 | $+b_{1} b_{2} b_{4} b_{6}+b_{1}^{2} b_{5} b_{6}$ |
|  | 5 | $+b_{1}^{2} b_{2} b_{3} b_{6}+b_{1}^{3} b_{4} b_{6}$ |
|  | 6 | $+b_{1}^{3} b_{2}^{2} b_{6}$ |
| $u_{14}$ | 1 | $b_{14}$ |

The computations are made easier by the following
Lemma 1.2. The coefficients $\gamma_{s}^{(m)}$ satisfy the relations

$$
\gamma_{2 s}^{(2 n)}=\left(\gamma_{s}^{(n)}\right)^{2}, \quad \gamma_{2 s+1}^{(2 n)}=0, \quad \gamma_{2 s}^{(2 n+1)}=\gamma_{2 s}^{(2 n)}
$$

For example, we have (using $f=1$ and omitting tensor products):

$$
u_{12}=b_{12}+\gamma_{12}^{(1)}+\gamma_{10}^{(3)} u_{2}+\gamma_{8}^{(5)} u_{4}+\gamma_{6}^{(7)} u_{6}+\gamma_{4}^{(9)} u_{8}+\gamma_{2}^{(11)} u_{10},
$$

$\gamma_{12}^{(1)}=0, \quad \gamma_{10}^{(3)}=\gamma_{10}^{(2)}=\left(\gamma_{5}^{(1)}\right)^{2}=0, \quad \gamma_{8}^{(5)}=\gamma_{8}^{(4)}=\left(\gamma_{2}^{(1)}\right)^{4}=0, \quad \gamma_{6}^{(7)}=\gamma_{6}^{(6)}=$ $\left(\gamma_{3}^{(3)}\right)^{2}=\xi_{1}^{6}+\xi_{2}^{2}, \gamma_{4}^{(9)}=\gamma_{4}^{(8)}=\left(\gamma_{1}^{(2)}\right)^{4}=0, \gamma_{2}^{(11)}=\gamma_{2}^{(10)}=\left(\gamma_{1}^{(5)}\right)^{2}=\xi_{1}^{2}$, the last since

$$
\gamma_{1}^{(5)}=\gamma_{0}^{(4)} \gamma_{1}^{(1)}+\gamma_{1}^{(4)} \gamma_{0}^{(1)}=1 \cdot \xi_{1}+0 \cdot 1=\xi_{1}
$$

Substituting for $\xi_{1}, \xi_{2}, u_{6}, u_{10}$, we have

$$
\begin{aligned}
u_{12} & =b_{12}+\left(b_{1}^{6}+b_{3}^{2}+b_{1}^{2} b_{2}^{2}\right) b_{6}+b_{1}^{2}\left(b_{10}+b_{1}^{4} b_{6}\right) \\
& =b_{12}+b_{3}^{2} b_{6}+b_{1}^{2} b_{10}+b_{1}^{2} b_{2}^{2} b_{6}
\end{aligned}
$$

as given in the table.
It is easy to compute the algebraic filtration of a given element in $H_{*}\left(M O ; Z_{2}\right)$, since the image of $\tilde{H}_{*}\left(M O(n) ; Z_{2}\right)$ is precisely the subspace spanned by all monomials $b^{E}$ of algebraic degree $\leq n$ (see [13] for example).

The lemma also shows that in order to solve for $u_{2 m}$ we only have to know the expression for $u_{2 n}, n<m$ and $\xi_{r}$ with $2^{r}-1 \leq m$ since $\gamma_{2 s}^{(2 n+1)}=\left(\gamma_{s}^{(n)}\right)^{2}$, and the exponents of monomials in $\xi$ with nonzero coefficients in $\left(\gamma_{s}^{(n)}\right)^{2}$ are all even. This explains why in the following table we have been able to go up to $u_{42}$.

Table 1.3
Algebraic filtration of polynomial generators

| Generators | Algebraic <br> filtration | Top term |
| :---: | :---: | :---: |
| $\xi_{1}$ | 1 | $b_{1}$ |
| $u_{2}$ | 1 | $b_{2}$ |
| $\xi_{2}$ | 2 | $b_{1} b_{2}$ |
| $u_{4}$ | 3 | $b_{1}^{2} b_{2}$ |
| $u_{5}$ | 3 | $b_{1} b_{2}^{2}$ |
| $u_{6}$ | 1 | $b_{6}$ |
|  |  |  |
| $\xi_{3}$ | 5 | $b_{1}^{3} b_{2}^{2}$ |
| $u_{8}$ | 7 | $b_{1}^{6} b_{2}$ |
| $u_{9}$ | 7 | $b_{1}^{5} b_{2}^{2}$ |
| $u_{10}$ | 5 | $b_{1}^{4} b_{6}$ |
| $u_{11}$ | 8 | $b_{1}^{5} b_{2}^{3}$ |
| $u_{12}$ | 5 | $b_{1}^{2} b_{2}^{2} b_{6}$ |
| $u_{13}$ | 6 | $b_{1}^{3} b_{2}^{2} b_{6}$ |
| $u_{14}$ | 1 | $b_{14}$ |


| Generators | Algebraic <br> filtration | Top term |
| :---: | :---: | :--- |
| $\xi_{4}$ | 12 | $b_{1}^{9} b_{2}^{3}$ |
| $u_{16}$ | 15 | $b_{1}^{14} b_{2}$ |
| $u_{17}$ | 15 | $b_{1}^{13} b_{2}^{2}$ |
| $u_{18}$ | 13 | $b_{1}^{12} b_{6}$ |
| $u_{20}$ | 13 | $b_{1}^{10} b_{2}^{2} b_{6}$ |
| $u_{22}$ | 9 | $b_{1}^{8} b_{14}$ |
| $u_{24}$ | 15 | $b_{1}^{10} b_{2}^{4} b_{6}$ |
| $u_{26}$ | 11 | $b_{1}^{6} b_{2}^{2} b_{14}$ |
| $u_{28}$ | 11 | $b_{1}^{6} b_{2}^{4} b_{14}$ |
| $u_{30}$ | 1 | $b_{30}$ |
| $u_{32}$ | 31 | $b_{1}^{30} b_{2}$ |
| $u_{34}$ | 29 | $b_{1}^{28} b_{6}$ |
| $u_{36}$ | 29 | $b_{1}^{26} b_{2}^{2} b_{6}$ |
| $u_{38}$ | 31 | $b_{1}^{28} b_{2}^{2} b_{6}$ |
| $u_{40}$ | 33 | $b_{1}^{30} b_{2}^{2} b_{6}$ |
| $u_{42}$ | 35 | $b_{1}^{32} b_{2}^{2} b_{6}$ |

Remark. By looking at Table 1.3 one is tempted to conjecture that algebraic filtration of an element in $\pi_{*}(M O)$ is detected by

$$
Z_{2}\left[b_{1}, b_{2}, b_{6}, b_{14}, b_{30}, \ldots\right]
$$

This certainly seems to be the case for $\xi_{r}$ and $u_{n}$, but unfortunately breaks down in $\pi_{10}(M O)$.

## 2. Structure of ${ }^{\text {alg }} E^{0} \pi(M O)$

The computations in Section 1 are already enough to show that the answer to Question 1 is "no", since $\left[R P^{2 n}\right]$ are known to be indecomposable.

Proposition 2.1. Given $n$, let $r$ be the smallest integer such that $2 n+1<2^{r}$; then the algebraic filtration of $\left[R P^{2 n}\right]$ is $2^{r}-2 n-1$.

Proof. By choice of $r$, if $x \in H^{1}\left(R P^{2 n}\right)$ is the generator, $(1+x)^{2 r}=1$, so $(1+x)^{-2 n-1}=(1+x)^{2 r-2 n-1}$ and the coefficient of $x^{2 r-2 n-1}$ is 1 , and this power of $x$ is nonzero.

Remark. According to the Proposition 2.1, alg. filt. $\left[R P^{12}\right]=16-13=3$, but alg. filt. $u_{12}=5$. The discrepancy is even more dramatic later-for example: alg. filt. $\left[R P^{28}\right]=32-29=3$, but alg. filt. $u_{28}=11$. Notice that through dimension 10 , however, the filtrations of $u_{2 n}$ are the same as those of $\left[R P^{2 n}\right]$. Indeed we have Table 2.2.

Table 2.2
[ $\left.R P^{2 n}\right]$ in terms of $u_{n}$ 's

$$
\begin{aligned}
& {\left[R P^{2}\right]=u_{2}} \\
& {\left[R P^{4}\right]=u_{4}+u_{2}^{2}} \\
& {\left[R P^{6}\right]=u_{6}} \\
& {\left[R P^{8}\right]=u_{8}+u_{4}^{2}+u_{2}^{2} u_{4}+u_{2}^{4}} \\
& {\left[R P^{10}\right]=u_{10}+u_{2}^{5}} \\
& {\left[R P^{12}\right]=u_{12}+u_{6}^{2}+u_{4}^{3}+u_{2}^{2} u_{8}+u_{2} u_{5}^{2}}
\end{aligned}
$$

Conjecture. The algebraic filtration of $\left[R P^{2 n}\right]$ is the best possible for a polynomial generator of $\pi_{*}(M O)$ in dimension $2 n$.

The following table exhibits a $Z_{2}$-basis for ${ }^{\text {alg }} E^{0} \pi(M O)$ and shows that the answer to Question 2 is "no," the first counterexample occuring in dimension 10.

Table 2.3
A basis for ${ }^{\text {alg }} E^{0} \pi_{k}(M O)$ for $k \leq 14$

| Dimension | Basis: class of | Filtration |
| :---: | :---: | :---: |
| 2 | $u_{2}$ | 1 |
| 4 | $u_{4}$ | 3 |
|  | $u_{2}^{2}$ | 2 |
| 5 | $u_{5}$ | 3 |
| 6 | $u_{2} u_{4}$ | 4 |
|  | $u_{2}^{3}$ | 3 |
|  | $u_{6}$ | 1 |
| 7 | $u_{2} u_{5}$ | 4 |
| 8 | $u_{8}$ | 7 |
|  | $u_{4}^{2}$ | 6 |
|  | $u_{2}^{2} u_{4}$ | 5 |
|  | $u_{2}^{4}$ | 4 |
|  | $u_{2} u_{6}$ | 2 |
| 9 | $u_{9}$ | 7 |
|  | $u_{4} u_{5}$ | 6 |
|  | $u_{2}^{2} u_{5}$ | 5 |
| 10 | $u_{2} u_{8}$ | 8 |
|  | $u_{2} u_{4}^{2}$ | 7 |
|  | $u_{2}^{3} u_{4}$ | 6 |
|  | $u_{2}^{5}$ | 5 |
|  | $u_{10}$ | 5 |
|  | $u_{4} u_{6}$ | 4 |
|  | $\alpha_{10}=u_{2}^{3} u_{4}+u_{5}^{2}$ | 4 (drop of 2) |
|  | $u_{2}^{2} u_{6}$ | 3 |
| 11 | $u_{2} u_{9}$ | 8 |
|  | $u_{2} u_{4} u_{5}$ | 7 |
|  | $u_{2}^{3} u_{5}$ | 6 |
|  | $v_{11}=u_{2} u_{9}+u_{11}$ | 5 (drop of 3) |
|  | $u_{5} u_{6}$ | 4 |
| 12 | $u_{4} u_{8}$ | 10 |
|  | $u_{2}^{2} u_{8}$ | 9 |
|  | $u_{2}^{2} u_{4}^{2}$ | 8 |
|  | $u_{2}^{4} u_{4}$ | 7 |
|  | $u_{2}^{6}$ | 6 |
|  | $u_{2} u_{10}$ | 6 |
|  | $u_{2} \alpha_{10}$ | 5 |
|  | $u_{2} u_{4} u_{6}$ | 5 |
|  | $u_{2}^{3} u_{6}$ | 4 |
|  | $\alpha_{12}=u_{2}^{2} u_{8}+u_{4}^{3}+u_{2} u_{5}^{2}+u_{2} u_{4} u_{6}$ | 3 (drop of 6) |
|  | $v_{12}=u_{12}+u_{2} u_{4} u_{6}$ | 3 (drop of 2) |
|  | $u_{6}^{2}$ | 2 |
| 13 | $u_{5} u_{8}$ | 10 |
|  | $u_{4}^{2} u_{5}$ | 9 |
|  | $u_{2}^{2} u_{4} u_{5}$ | 8 |
|  | $u_{2}^{4} u_{5}$ | 7 |
|  | $u_{2} v_{11}$ | 6 |

Table 2.3 (continued)

| Dimension | Basis: class of | Filtration |
| :---: | :---: | :---: |
|  | $\alpha_{13}=u_{5} u_{8}+u_{4} u_{9}+u_{2} u_{11}$ | 6 (drop of 4) |
|  | $u_{2} u_{5} u_{6}$ | 5 |
| 14 | $\beta_{13}=$ | $u_{4}^{2} u_{5}+u_{2}^{2} u_{9}+u_{2}^{2} u_{4} u_{5}$ |
| $v_{13}=$ | $u_{5} u_{8}+u_{4} u_{9}+u_{2} u_{11}+u_{13}$ | 4 (drop of 5) |
|  | $u_{2} u_{4} u_{8}$ | 11 |
|  | $u_{2}^{3} u_{8}$ | 10 |
|  | $u_{2}^{3} u_{4}^{2}$ | 9 |
|  | $u_{2}^{5} u_{4}$ | 8 |
|  | $u_{6} u_{8}$ | 8 |
|  | $\alpha_{14}=$ | $u_{2}^{3} u_{8}+u_{5} u_{9}+u_{2}^{3} u_{4}^{2}$ |
|  | $u_{2}^{u}$ | 8 |
|  | $u_{4}^{2} u_{6}$ | 7 |
|  | $u_{4} \alpha_{10}$ | 7 |
|  | $u_{2}^{2} u_{4} u_{6}$ | 7 |
|  | $u_{2}^{2} \alpha_{10}$ | 6 |
|  | $u_{2}^{4} u_{6}$ | 6 |
|  | $u_{2} v_{12}$ | 5 |
| $\beta_{14}=$ | $u_{2} u_{4}^{3}+u_{2}^{3} u_{8}+u_{2}^{2} u_{5}^{2}+u_{2} u_{12}$ | 4 |
| $\gamma_{14}=$ | $u_{6} u_{8}+u_{4} u_{10}+u_{2}^{2} u_{4} u_{6}$ | 4 |
|  | $u_{2} u_{6}^{2}$ | 4 |
| $\delta_{14}=$ | $u_{4}^{2} u_{6}+u_{2}^{7} u_{10}$ | 3 |
|  | $u_{14}$ | 3 |

## 3. Generators for $\pi_{*}(M O)$

In this section we recall the construction of the polynomial generators for $\pi_{*}(M O)$ by Boardman [3], Brown [4], [5], Dold [8], Kozma [11] and examine their algebraic filtration.

Boardman generators for $\pi_{*}(M O)$ are defined in terms of the standard generator $\omega \in M O^{1}\left(R P^{\infty}\right)$ which under the Boardman homomorphism $B$ (see Adams [2], for example) have image

$$
B(\omega)=x+b_{1} x^{2}+\cdots+b_{n} x^{n+1}+\cdots,
$$

where $b_{n} \in H_{n}(M O)$ are the generators we have used in Section 1 and $x \in H^{1}\left(R P^{\infty}\right)$ is the nonzero element in cohomology. Let

$$
m: R P^{\infty} \times R P^{\infty} \rightarrow R P^{\infty}
$$

be the standard multiplication with $m^{*} x=x \otimes 1+1 \otimes x$. Then $\omega$ is not primitive under the diagonal in $M O^{*}\left(R P^{\infty}\right)$ induced by $M O^{*}(m)$, but there is a unique primitive $\pi \in M O^{1}\left(R P^{\infty}\right)$ satisfying the condition

$$
B(\pi)=x+\alpha_{1} x^{2}+\alpha_{2} x^{4}+\cdots+\alpha_{n} x^{2^{n}}+\cdots
$$

(Boardman [3], see also Bröcker and tom Dieck [6]); then

$$
\pi=\omega+\beta_{2} \omega^{2}+\beta_{4} \omega^{5}+\cdots+\beta_{n} \omega^{n+1}+\cdots
$$

where $n \neq 2^{r}-1$ and $\beta_{n} \in \pi_{n}(M O)$ are the Boardman polynomial generators. Table 3.1 lists the Hurewicz images of the Boardman generators.

Table 3.1

| Generator | Block | Hurewicz image | Algebraic filtration |
| :---: | :---: | :---: | :---: |
| $\beta_{2}$ | 1 | $b_{2}$ | 1 |
| $\beta_{4}$ | 1 | $b_{4}$ | 3 |
|  | 2 | $+b_{2}^{2}$ |  |
|  | 3 | $+b_{1}^{2} b_{2}$ |  |
| $\beta_{5}$ | 1 | $b_{5}$ | 3 |
|  | 2 | $+b_{2} b_{3}+b_{1} b_{4}$ |  |
|  | 3 | $+b_{1} b_{2}^{2}$ |  |
| $\beta_{6}$ | 1 | $b_{6}$ | 1 |
| $\beta_{8}$ | 1 | $b_{8}$ | 7 |
|  | 2 | $+b_{4}^{2}$ |  |
|  | 3 | $+b_{2} b_{3}^{2}+b_{2}^{2} b_{4}+b_{1}^{2} b_{6}$ |  |
|  | 4 | $+b_{2}^{4}$ |  |
|  | 5 | $+b_{1}^{4} b_{4}$ |  |
|  | 6 | $+b_{1}^{4} b_{2}^{2}$ |  |
|  | 7 | $+b_{1}^{6} b_{2}$ |  |
| $\beta_{9}$ | 1 | $b_{9}$ | 7 |
|  | 2 | $+b_{4} b_{5}+b_{3} b_{6}+b_{2} b_{7}+b_{1} b_{8}$ |  |
|  | 3 | $+b_{1} b_{4}^{2}$ |  |
|  | 4 | 0 |  |
|  | 5 | $+b_{1}^{4} b_{5}$ |  |
|  | 6 | $+b_{1}^{4} b_{2} b_{3}+b_{1}^{5} b_{4}$ |  |
|  | 7 | $+b_{1}^{5} b_{2}^{2}$ |  |
| $\beta_{10}$ | 1 | $b_{10}$ | 5 |
|  | 5 | $+b_{1}^{4} b_{6}+b_{2}^{5}$ |  |
| $\beta_{11}$ | 1 | $b_{11}$ | 6 |
|  | 2 | $+b_{5} b_{6}+b_{4} b_{7}+b_{3} b_{8}+b_{2} b_{9}+b_{1} b_{10}$ |  |
|  | 3 | $+b_{3} b_{4}^{2}+b_{3}^{2} b_{5}+b_{2}^{2} b_{7}+b_{1}^{2} b_{9}$ |  |
|  | 4 | $\begin{aligned} & +b_{2} b_{3}^{3}+b_{2}^{2} b_{3} b_{4}+b_{1} b_{3}^{2} b_{4}+b_{1} b_{2} b_{4}^{2}+b_{2}^{3} b_{5} \\ & +b_{1}^{2} b_{4} b_{5}+b_{1} b_{2}^{2} b_{6}+b_{1}^{2} b_{3} b_{6} \end{aligned}$ |  |
|  | 5 | + $b_{2}^{4} b_{3}+b_{1} b_{2}^{2} b_{3}^{2}+b_{1}^{3} b_{4}^{2}$ |  |
|  | 6 | $+b_{1} b_{2}^{5}$ |  |
| $\beta_{12}$ | 1 | $b_{12}$ | 3 |
|  | 3 | $+b_{4}^{3}+b_{2} b_{5}^{2}+b_{3}^{2} b_{6}+b_{2}^{2} b_{8}+b_{1}^{2} b_{10}$ |  |
| $\beta_{13}$ | 1 | $b_{13}$ | 3 |
|  | 2 | $+b_{6} b_{7}+b_{5} b_{8}+b_{4} b_{9}+b_{3} b_{10}+b_{2} b_{11}+b_{1} b_{12}$ |  |
|  | 3 | $+b_{1} b_{6}^{2}$ |  |

We express in Table 3.2 the $\beta_{i}$ in terms of our generators $u_{i}, v_{i}$ from Sections 1 and 2.

Table 3.2

| $B$-generator | Expression | Algebraic <br> filtration | Comment <br> on filtration |
| :---: | :--- | :---: | :---: |
| $\beta_{2}$ | $u_{2}$ | 1 | best |
| $\beta_{4}$ | $u_{4}+u_{2}^{2}$ | 3 | best |
| $\beta_{5}$ | $u_{5}$ | 3 | best |
| $\beta_{6}$ | $u_{6}$ | 1 | best |
| $\beta_{8}$ | $u_{8}+u_{4}^{2}+u_{2}^{2} u_{4}+u_{2}^{4}$ | 7 | best |
| $\beta_{9}$ | $u_{9}+u_{4} u_{5}$ | 7 | best |
| $\beta_{10}$ | $u_{10}+u_{2}^{5}$ | 5 | best |
| $\beta_{11}$ | $u_{11}+u_{2} u_{9}+u_{5} u_{6}+u_{2}^{3} u_{5}$ | 6 | off by 1 |
| $\beta_{12}$ | $=v_{11}+u_{5} u_{6}+u_{2}^{3} u_{5}$ | $v_{12}+\alpha_{12}+u_{6}^{2}$ | 3 |
| $\beta_{13}$ | $u_{13}+u_{2} u_{11}+u_{4} u_{9}+u_{5} u_{8}$ | 3 | best |
|  | $=v_{13}$ |  | best |
|  |  |  |  |

It turns out that $\beta_{2 n}=\left[R P^{2 n}\right]$, so we conjecture that at least the evendimensional Boardman generators have the minimal algebraic filtration. We now introduce a new set of polynomial generators for $H_{*}(M O)$ (in analogy with the generators $m_{k}$ for $H_{*}(M U ; Z)$, see Adams [2]). Let us identify $M O^{*}\left(R P^{\infty}\right)$ with its image in $H_{*}(M O) \widehat{\otimes} H^{*}\left(R P^{\infty}\right)$ under the Boardman homomorphism $B$, so

$$
\omega=x+b_{1} x^{2}+\cdots+b_{n} x^{n+1}+\cdots
$$

Define the elements $m_{k} \in H_{*}(M O)$ by setting

$$
x=\omega+m_{1} \omega^{2}+\cdots+m_{k} \omega^{k+1}+\cdots ;
$$

then $m_{k}=b_{k}+$ decomposables, so they form a new set of polynomial generators of $H_{*}(M O)$. Notice that $m_{2 k}=B_{2 k}^{-2 k-1}$ by the Burmann-Lagrange inversion formula (since $2 k+1=1$ in $Z_{2}$ ), so $m_{2 k}=h\left[R P^{2 k}\right]$ (compare Adams [2] for [CP ${ }^{n}$ ]). Table 3.3 gives the $m_{i}$ in terms of $b_{i}$ (notice that the table also gives $b_{i}$ in terms of $m_{i}$, as well).

It is particularly easy to express the Boardman generators in terms of the polynomial generators $m_{k}$. By definition

$$
\begin{aligned}
& x=\omega+m_{1} \omega^{2}+\cdots+m_{k} \omega^{k+1}+\cdots \\
& \pi=\omega+\beta_{2} \omega^{3}+\cdots+\beta_{n} \omega^{n+1}+\cdots, n+1 \neq 2^{r} \\
& \pi=x+\alpha_{1} x^{2}+\alpha_{2} x^{4}+\alpha_{3} x^{8}+\cdots+\alpha_{r} x^{2 r}+\cdots
\end{aligned}
$$

so since $x^{2^{r}}=\omega^{2 r}+m_{1}^{2 r} \omega^{2^{r+1}}+\cdots+m_{k}^{2 r} \omega^{2 r(k+1)}+\cdots$ we get Table 3.4 by equating coefficients.

Remark. Of course, the recursion relations give us immediately that $\beta_{2 n}=m_{2 n}$.

Table 3.3

| $m_{i}$ | Block | Expression in $b$ 's | Algebraic filtration |
| :---: | :---: | :---: | :---: |
| $m_{1}$ | 1 | $b_{1}$ | 1 |
| $m_{2}$ | 1 | $b_{2}$ | 1 |
| $m_{3}$ | 1 | $b_{3}$ | 3 |
|  | 2 | $+b_{1} b_{2}$ |  |
|  | 3 | $+b_{1}^{3}$ |  |
| $m_{4}$ | 1 | $b_{4}$ | 3 |
|  | 2 | $+b_{2}^{2}$ |  |
|  | 3 | $+b_{1}^{2} b_{2}$ |  |
| $m_{5}$ | 1 | $b_{5}$ | 2 |
|  | 2 | $+b_{1} b_{4}+b_{2} b_{3}$ |  |
| $m_{6}$ | 1 | $b_{6}$ | 1 |
| $m_{7}$ | 1 | $b_{7}$ | 7 |
|  | 2 | $+b_{3} b_{4}+b_{2} b_{5}+b_{1} b_{6}$ |  |
|  | 3 | $+b_{2}^{2} b_{3}+b_{1} b_{3}^{2}+b_{1}^{2} b_{5}$ |  |
|  | 4 | $+b_{1} b_{2}^{3}+b_{1}^{2} b_{2} b_{3}+b_{1}^{3} b_{4}$ |  |
|  | 5 | $+b_{1}^{4} b_{3}$ |  |
|  |  | $+b_{1}^{5} b_{2}$ |  |
|  | 7 | $+b_{1}^{1}$ |  |
| $m_{8}$ | 1 | $b_{8}$ | 7 |
|  | 2 | $+b_{4}^{2}$ |  |
|  |  | $+b_{2} b_{3}^{2}+b_{2}^{2} b_{4}+b_{1}^{2} b_{6}$ |  |
|  | 4 | $+b_{2}^{4}$ |  |
|  | 5 | $+b_{1}^{4} b_{4}$ |  |
|  | 6 | $+b_{1}^{4} b_{2}^{2}$ |  |
|  | 7 | $+b_{1}^{6} b_{2}$ |  |
| $m_{9}$ | 1 | $b_{9}$ | 6 |
|  | 2 | $+b_{4} b_{5}+b_{3} b_{6}+b_{2} b_{7}+b_{1} b_{8}$ |  |
|  | 3 | 0 |  |
|  | 4 | 0 |  |
|  | 5 | $+b_{1} b_{2}^{4}+b_{1}^{4} b_{5}$ |  |
|  | 6 | $+b_{1}^{4} b_{2} b_{3}+b_{1}^{5} b_{4}$ |  |
| $m_{10}$ | 1 | $b_{10}$ |  |
|  | 5 | $+b_{2}^{5}+b_{1}^{4} b_{6}$ |  |
| $m_{11}$ | 1 | $b_{11}$ |  |
|  | 2 | $+b_{5} b_{6}+b_{4} b_{7}+b_{3} b_{8}+b_{2} b_{9}+b_{1} b_{10}$ |  |
|  | 3 | $+b_{3} b_{4}^{2}+b_{1} b_{5}^{2}+b_{3}^{2} b_{5}+b_{2}^{2} b_{7}+b_{1}^{2} b_{9}$ |  |
|  | 4 | $+b_{2} b_{3}^{3}+b_{2}^{2} b_{3} b_{4}+b_{1} b_{3}^{2} b_{4}+b_{1} b_{2} b_{4}^{2}$ |  |
|  |  | $+b_{2}^{3} b_{5}+b_{1}^{2} b_{4} b_{5}+b_{1} b_{2}^{2} b_{6}+b_{1}^{2} b_{3} b_{6}$ |  |
|  |  | $+b_{1}^{2} b_{2} b_{7}+b_{1}^{3} b_{8}$ |  |

We wish to show that the Boardman generators are algebraically obvious in exactly the same sense as our generators $u_{n}$ in Section 1. Let $H$ be the EilenbergMac Lane spectrum representing cohomology with $Z_{2}$ coefficients, $t: M O \rightarrow H$ the Thom class $1 \in H^{0}(M O)$. We have $t_{*} b_{n}=0$ if $n \neq 2^{r}-1$ and $t_{*} b_{2^{r-1}}=$

Table 3.4
$\alpha, \beta \quad$ Expression in $m_{k}$

$$
\begin{aligned}
& \alpha_{1}=m_{1} \\
& \beta_{2}=m_{2} \\
& \alpha_{2}=m_{3}+m_{1}^{3} \\
& \beta_{4}=m_{4} \\
& \beta_{5}=m_{5}+m_{1} m_{2}^{2} \\
& \beta_{6}=m_{6} \\
& \alpha_{3}=m_{7}+m_{1} m_{3}^{2}+m_{1}^{4} m_{3}+m_{1}^{7} \\
& \beta_{8}=m_{8} \\
& \beta_{9}=m_{9}+m_{1} m_{4}^{2} \\
& \beta_{10}=m_{10} \\
& \beta_{11}=m_{11}+m_{1} m_{5}^{2}+m_{2}^{4} m_{3}+m_{1}^{3} m_{2}^{4} \\
& \beta_{12}=m_{12} \\
& \beta_{13}=m_{13}+m_{1} m_{6}^{2} \\
& \beta_{14}=m_{14} \\
& \alpha_{4}=m_{15}+m_{1} m_{7}^{2}+m_{1}^{8} m_{7}+m_{1}^{12} m_{3} \\
&+m_{1}^{1} m_{3}^{2}+m_{1}^{3} m_{3}^{4}+m_{3}^{5}+m_{1}^{15} \\
& \beta_{16}=m_{16} \\
& \beta_{17}=m_{17}+m_{1} m_{8}^{2} \\
& \beta_{18}=m_{18}
\end{aligned}
$$

$\xi_{r}$, by definition of the Milnor generators $\xi_{r} \in H_{*}(H)=A_{*}$, the dual of the Steenrod algebra over $Z_{2}$.

Lemma 3.5. The map $t_{*}: H_{*}(M O) \rightarrow A_{*}$ is given by $t_{*} m_{n}=0$ if $n \neq 2^{r}-1$, $t_{*} m_{2 r-1}=c_{*} \xi_{r}$, where $c_{*}: A_{*} \rightarrow A_{*}$ is the conjugation homomorphism.

Proof. The following diagram is commutative, where $B$ is the $B$ Boardman map and $\lambda$ is the Milnor homomorphism [14]:

that is,

$$
\bar{\omega}=\lambda\left(t_{*} \omega\right)=x+\xi_{1} x^{2}+\cdots+\xi_{r} x^{2^{r}}+\cdots
$$

(where we omit tensor signs) and

$$
x=\bar{\omega}+\left(t_{*} m_{1}\right) \bar{\omega}^{2}+\cdots+\left(t_{*} m_{k}\right) \bar{\omega}^{k+1}+\cdots,
$$

but we have $x=\bar{\omega}+\gamma_{1} \bar{\omega}^{2}+\cdots+\gamma_{s} \bar{\omega}^{2 s}+\cdots$, where $\gamma_{i}$ satisfy the recursion relation

$$
\xi_{r}+\xi_{r-1}^{2} \gamma_{1}+\xi_{r-2}^{4} \gamma_{2}+\cdots+\gamma_{r}=0
$$

that is, $\gamma_{r}=c_{*} \xi_{r}$, and the lemma follows.

We can now determine the coaction of the $m_{k}$ :
Corollary 3.6. Let $\mu_{*}: H_{*}(M O) \rightarrow A_{*} \otimes H_{*}(M O)$ be the coaction; then

$$
\mu_{*} m_{n}=\sum_{i} c_{*} \xi_{i} \otimes\left(M^{2 i}\right)_{n-i}
$$

where $M=1+m_{1} t+m_{2} t^{2}+\cdots$.
Proof. Proposition 9.4 of Adams [2] with $M U$ replaced by $M O$ and Lemma 3.5.

We now define (as in Section 1) a map $g: H_{*}(M O) \rightarrow A_{*} \otimes N_{*}$ of comodule algebras over $A_{*}$ by letting g: $H_{*}(M O) \rightarrow N_{*}$ be the algebra homomorphism defined by setting

$$
g\left(m_{n}\right)= \begin{cases}u_{n} & \text { if } n \neq 2^{r}-1 \\ 0 & \text { if } n=2^{r}-1\end{cases}
$$

We then have (and we invite the reader to check this) $g^{-1}\left(u_{n}\right)=\beta_{n}$, the Boardman generator, and $g^{-1}\left(c_{*} \xi_{r}\right)=\alpha_{r}$, where

$$
B(\pi)=x+\alpha_{1} x^{2}+\cdots+\alpha_{r} x^{2 r}+\cdots
$$

We now describe the generators of $\pi_{*}(M O)$ constructed by Ilan Kozma [11]. These are elements $T_{i} \in \pi_{i}(M O)$ satisfying the recursion relation

$$
m_{s-1}=\sum_{i d=s} m_{i-1} T_{d-1}^{i}
$$

Table 3.5
Kozma's generators

| Generator |  | Expression in $m_{k}$ | Algebraic <br> filtration |
| :---: | :--- | :---: | :--- |
| $T_{2}$ | $m_{2}$ | Comment |  |
| $T_{4}$ | $m_{4}$ | 1 | best |
| $T_{5}$ | $m_{5}+m_{1} m_{2}^{2}$ | 3 | best |
| $T_{6}$ | $m_{6}$ | 3 | best |
| $T_{8}$ | $m_{8}+m_{2}^{4}$ | 1 | best |
| $T_{9}$ | $m_{9}+m_{1} m_{4}^{2}$ | 7 | best |
| $T_{10}$ | $m_{10}$ | 7 | best |
| $T_{11}$ | $m_{11}+m_{2}^{4} m_{3}+m_{1}^{3} m_{2}^{4}+m_{1} m_{5}^{2}$ | 5 | best |
| $T_{12}$ | $m_{12}$ | 6 | off by 1 |
| $T_{13}$ | $m_{13}+m_{1} m_{6}^{2}$ | 3 | best |
|  |  | 3 | best |

Remark. Notice that $\beta_{2 n+1}=T_{2 n+1}$ for $n \leq 7$, but $T_{17} \neq \beta_{17}$.
The Dold generators $\pi_{*}(M O)$ are described as follows (Satz 3, p. 32 of Dold [8]-the notation is ours). Let $d_{2 n}=\left[R P^{2 n}\right]$, and if $n$ is odd and $n+1$ is not a power of 2 , let $n=2^{r}(2 s+1)-1$ and set $d_{2 n+1}=\left[P\left(2^{r}-1, s 2^{r}\right)\right]$, where
$P(a, b)$ for natural numbers $a, b$ is the smooth manifold of dimension $a+2 b$ obtained as a quotient of $\mathrm{S}^{a} \times C P^{b}$ under the action of $Z_{2}$ by $T(x, y)=$ ( $-x, \bar{y}$ ), where $x \in S^{a}$ and $y$ represents the homogeneous coordinates of a point in $C P^{b}$ and bar denotes conjugation.

Table 3.6
Dold's generators

| Generator | Expression in $u_{k}$ | Algebraic <br> filtration | Comment |
| :---: | :--- | :---: | :---: |
| $d_{2}$ | $m_{2}=u_{2}$ | 1 | best |
| $d_{4}$ | $m_{4}=u_{4}+u_{2}^{2}$ | 3 | best |
| $d_{5}$ | $u_{5}=u_{6}$ | 3 | best |
| $d_{6}$ | $m_{8}=u_{8}+u_{4}^{2}+u_{2}^{2} u_{4}+u_{2}^{4}$ | 1 | best |
| $d_{8}$ |  | 7 | best |
| $d_{9}$ | $m_{10}=u_{9}+u_{40}+u_{5}^{5}$ | 7 | best |
| $d_{10}$ |  | 5 | best |
| $d_{11}$ |  | 7 | off by 2 |
| $d_{12}$ | $m_{12}$ | 3 | best |
| $d_{13}$ |  | 3 | best |

Brown's generators are described [4], [5] as follows: if $n$ is even and $n=r_{1}+\cdots+r_{k}$ is the binary expansion of $n$ as a sum of distinct powers of 2 , then let $V^{n}=R P^{n}$ if $k=1$ and for $k>1$ let $V^{n}$ be a submanifold of

$$
K^{n+1}=R P^{r_{1}} \times \cdots \times R P^{r_{k-1}} \times R P^{r_{k}+1}
$$

dual to $x_{1}+\cdots+x_{k} \in H^{1}\left(K^{n+1} ; Z_{2}\right)$ where $x_{i}$ is the fundamental class of the $i$ th factor. The cobordism class of $V^{n}$ gives the even-dimensional Brown generators $\lambda_{n}$ for $\pi_{*}(M O)$. The odd-dimensional generators are obtained by a modification of Dold's construction $P(a, b)$ : if $N^{n}$ is an $n$-manifold, let $P(m, N)$ be the $(m+2 n)$-manifold obtained from $S^{m} \times N \times N$ by identifying

Table 3.7
Brown's generators

| Generator | Expression in $u_{n}$ | Algebraic <br> filtration | Comment |
| :--- | :--- | :---: | :--- |
| $\lambda_{2}$ | $u_{2}$ | 1 | best |
| $\lambda_{4}$ | $u_{4}+u_{2}^{2}=m_{4}$ | 3 | best |
| $\lambda_{5}=d_{5}$ | $u_{5}$ | 3 | best |
| $\lambda_{6}$ | $u_{6}+u_{2} u_{4}$ | 4 | off by 3 |
| $\lambda_{8}$ | $m_{8}$ | 7 | best |
| $\lambda_{9}=d_{9}$ | $u_{9}+u_{4} u_{5}$ | 7 | best |
| $\lambda_{10}$ |  | 8 | off by 3 |

$\left(x, y_{1}, y_{2}\right)$ with $\left(-x, y_{2}, y_{1}\right)$. The Brown polynomial generators $\lambda_{n}$ are defined in odd dimensions $n$ by letting $n=2^{r}(2 s+1)-1, s>0$ and letting $V^{n}=$ $P\left(2^{r}-1, V^{2 r s}\right)$, where $V^{\text {even }}$ has been defined before, and $\lambda_{n}=\left[V^{n}\right]$ is the Brown polynomial generator for dimension $n$. Notice that $P\left(m, R P^{n}\right)=$ $P(m, n)$ of Dold.

## 4. The algebraic and geometric filtrations do not coincide

We shall show that the algebraic and geometric filtrations of $\pi_{*}(M O)$ are different by proving that the geometric filtration of $b_{14}=m_{14}=u_{14}=\left[R P^{14}\right]$ is greater than one. We show that this is a consequence of the work of J. F. Adams on the nonexistence of elements of Hopf invariant one [1]. The argument was pointed out to me by M. E. Mahowald. Let $Y$ be the fiber of the map $S^{0} \rightarrow H Z_{2}$, then the mod -2 homology of $Y$ is just the augmentation ideal with a shift down by one in grading: $H_{k}(Y)=\left(\bar{A}_{*}\right)_{k-1}$. Let $P$ be the suspension spectrum of $R P^{\infty}$ and let $J: P \rightarrow S^{0}$ be the stable $J$-map. Then since $J_{*}=0$ in homology, it factors through $j: P \rightarrow Y$.

Lemma 4.1. Let $x_{n}$ be the class in $H_{n}(P)$ dual to $x^{n} \in H^{n}(P)$, where $x$ is the non-zero element of $H^{1}(P)$. Then $j_{*}\left(x_{n}\right) \neq 0$.

Corollary 4.2. If $n=2^{r}-1$, then $j_{*}\left(x_{n}\right)=\left[\xi_{1}^{2 r}\right]$.
Proof. The element $x_{n}$ is primitive for $n+1=2^{r}$ under the coaction of $A_{*}$, but the only primitives of $A_{*}$ are elements $\xi_{1}^{2 s}$ (see [1]).

We now notice that $M O(1)$ is homotopy equivalent to $R P^{\infty}$ and under this homotopy equivalence the element $b_{n}$ corresponds to $x_{n+1}$. We shall show that $b_{14}$ is not in the image of the stable Hurewicz homomorphism, but for this it is sufficient to show that $j_{*} b_{14}=\left[\xi_{1}^{16}\right]$ is not spherical, but this was shown by Adams [1]. Indeed, if we let $h_{s}=$ class of $\left[\xi_{1}^{2 s}\right] \in \operatorname{Ext}_{A}^{1}\left(Z_{2}, Z_{2}\right)$, then $d_{2} h_{s}=$ $h_{0} h_{s-1}^{2}$ which is nonzero if $s \geq 4$. We have shown:

Corollary 4.3. If $n=2^{r}-2, r \geq 4$, then the geometric filtration of $b_{n}$ is at least 2.

Of course, we can ask: what is the geometric dimension of $b_{2^{r-2}}=\left[R P^{2^{r-2}}\right]$ for $r \geq 4$ ? We shall return to this question in a later note.

Preliminary examination indicates that ${ }^{\text {als }} F_{n}={ }^{\text {geo }} F_{n}$ for $n \leq 10$ and there is reason to suspect that $b_{14}$ is the lowest-dimensional example for which the two filtrations are distinct.

## References

[^1]3. J. M. Boardman, Stable homotopy theory, University of Warwick, Coventry, 1965.
4. R. L. W. Brown, Imbeddings, immersions, and cobordism of differentiable manifolds, Bull. Amer. Math. Soc., vol. 76 (1970), pp. 763-766.
5. ——, Immersions and embeddings up to cobordism, Canadian J. Math., vol. 13 (1971), pp. 1102-1115.
6. Th. Bröcker and T. tom Dieck, Kobordismentheorie, Lecture Notes in Mathematics, vol. 178, Springer-Verlag, 1970.
7. O. Burlet, Rational homotopy of oriented Thom spaces, Proc. Adv. Study Inst. Algebraic Topology, Aarhus Universitet, 1970, vol. I, pp. 20-22.
8. A. Dold, Erzeugende der Thomschen Algebra $\mathfrak{N}_{*}$, Math. Zeitschr., vol. 65 (1956), pp. 24-35.
9. S. Gitler, Immersion and embedding of manifolds, Proceedings of Symposia in Pure Mathematics, vol. 22 (1971), pp. 87-96.
10. M. W. Hirsch, Immersions of manifolds, Trans. Amer. Math. Soc., vol. 93 (1959), pp. 242-276.
11. I. Kozma, Witt vectors and complex cobordism, Topology, vol. 13 (1974), pp. 389-394.
12. A. Liulevicius, A proof of Thom's theorem, Comment. Math. Helv., vol. 37 (1962), pp. 121-131.
13. _, Homology comodules, Trans. Amer. Math. Soc., vol. 134 (1968), pp. 375-382.
14. J. W. Milnor, The Steenrod algebra and its dual, Ann. of Math., vol. 67 (1958), pp. 150-171.
15. H. A. Salomonsen, Bordism and geometric dimension, Aarhus Universitet, December 1971.
16. R. Tном, Quelques propriétés globales des variétés différentiables, Comment. Math. Helv., vol. 28 (1954), pp. 17-86.
17. R. Wells, Cobordism groups of immersions, Topology, vol. 5 (1966), pp. 281-294.

University of Chicago<br>Chicago, Illinois


[^0]:    Received January 10, 1973.
    ${ }^{1}$ Partially supported by a National Science Foundation grant.

[^1]:    1. J. F. Adams, On the nonexistence of elements of Hopf invariant one, Ann. of Math., vol. 72 (1960), pp. 20-104.
    2. —, Quillen's work on formal groups and complex cobordism, University of Chicago, 1970.
