A FORMULA FOR RAMANUJAN'S τ-FUNCTION

BY

DOUGLAS NIEBUR

A recent investigation by Morris Newman shows that $\tau(p) \equiv 0 \mod p$ for $p = 2, 3, 5, 7, \operatorname{and} 2411$ [1]. For his calculations Dr. Newman used a formula for $\tau(n)$ which involves $\sigma_3(n)$, the sum of the cubed divisors of n. Since a table of the exact values of $\sigma_3(n)$ was needed, his search for such p was limited to $p \leq 16,067$. This formula for $\tau(n)$ appears in [2] and a corrected version is given in [3]. In [2] there also appears a formula expressing $\sigma_3(n)$ in terms of $\sigma(n)$, the sum of the divisors of n. Thus it seemed possible that the ideas in [2] should lead to a formula for $\tau(n)$ in terms of $\sigma(n)$, which could then be used to extend Newman's search. This is indeed true and as is the case with most formulas in [2], once the formula is known, a simple proof of it can then be given. Using the new formula, Mr. K. Ferguson constructed a table of $\tau(p) \mod p$ for $3 \leq p \leq 65,063$ which contained no new solutions of $\tau(p) \equiv 0 \mod p$.

Since we have not found our formula in the literature and because it may be useful in other investigations, we state and prove it here.

THEOREM. Let $e(z) = \exp(2\pi i z)$ and let $\tau(n)$ be defined by the equation $\sum_{n=1}^{\infty} \tau(n)e(nz) = e(z) \prod_{n=1}^{\infty} (1 - e(nz))^{24}$. Let $\sigma(n)$ be the sum of the positive divisors of n. Then for $n \ge 1$,

$$\tau(n) = n^4 \sigma(n) - 24 \sum_{k=1}^{n-1} (35k^4 - 52k^3n + 18k^2n^2) \sigma(k) \sigma(n-k).$$

Proof. Let $\Delta(z) = e(z) \prod_{n=1}^{\infty} (1 - e(nz))^{24}$ and put

$$f(z) = -\log \Delta(z) = -2\pi i z + 24 \sum_{n=1}^{\infty} \frac{\sigma(n)e(nz)}{n}$$

As one easily sees, the theorem will be proved if the validity of the following equation is demonstrated:

$$2^{9} \cdot 3\pi^{6}\Delta(z) = 18[f'''(z)]^{2} + f'(z)f^{(5)}(z) - 16f''(z)f^{(4)}(z).$$

Call the right-hand side of this equation F(z). Then F(z) = F(z + 1) and the first Fourier coefficient of F is $2^9 \cdot 3\pi^6$. Hence, this equation will be proved if we show that $F(-1/z) = z^{12}F(z)$, since the space of cusp forms of weight 6 for the modular group is one-dimensional.

Received November 15, 1974.

12

. . .

The definition of f implies that
$$f(-1/z) = -\log z^{1/2} + f(z)$$
. Thus,
 $f'(-1/z) = -12z + z^2 f'(z)$,
 $f''(-1/z) = -12z^2 + 2z^3 f'(z) + z^4 f''(z)$,
 $f'''(-1/z) = -24z^3 + 6z^4 f'(z) + 6z^5 f''(z) + z^6 f'''(z)$,
 $f^{(4)}(-1/z) = -72z^4 + 24z^5 f'(z) + 36z^6 f''(z) + 12z^7 f'''(z) + z^8 f^{(4)}(z)$,
 $f^{(5)}(-1/z) = -288z^5 + 120z^6 f'(z) + 240z^7 f''(z) + 120z^8 f'''(z) + 20z^9 f^{(4)}(z) + z^{10} f^{(5)}(z)$.

Using these equations, we first find that

$$H(z) = f^{(4)}(z) + f'(z)f'''(z) - \frac{3}{2}[f''(z)]^2$$

is a cusp form of weight 4 for the modular group. Thus H(z) = 0. This is the well-known differential equation for $\Delta(z)$ which is also proved in [2]. It is pointed out in [2] that H(z) = 0 is equivalent to the fact that the Schwarzian derivative $[f]_z = (f'''(z)/f'(z)) - \frac{3}{2}(f''(z)/f'(z))^2$ equals $f^{(4)}(z)/[f'(z)]^2$.

If we now insert the above expressions for $f^{(j)}(-1/z)$ in the definition of F(-1/z) and collect like powers of z, we obtain

$$F(-1/z) = z^{12}F(z) - 12z^{11}H'(z) - 48z^{10}H(z) = z^{12}F(z).$$

REFERENCES

- 1. MORRIS NEWMAN, A table of $\tau(p)$ modulo p, p prime, $3 \le p \le 16067$, National Bureau of Standards, August 1972. (For a review, see Math. Comp., vol. 27 (1973), pp. 215-216.)
- 2. B. VAN DER POL, On a non-linear differential equation satisfied by the logarithm of the Jacobian theta functions, with arithmetical applications I, II, Indag. Math., vol. 13 (1951), pp. 261-284.
- 3. H. L. RESNIKOFF, On differential operators and automorphic forms, Trans. Amer. Math. Soc., vol. 124 (1966), pp. 334-346.

UNIVERSITY OF MARYLAND COLLEGE PARK, MARYLAND