A FORMULA FOR RAMANUJAN'S τ-FUNCTION

BY
\section*{Douglas Niebur}

A recent investigation by Morris Newman shows that $\tau(p) \equiv 0 \bmod p$ for $p=2,3,5,7$, and 2411 [1]. For his calculations Dr. Newman used a formula for $\tau(n)$ which involves $\sigma_{3}(n)$, the sum of the cubed divisors of n. Since a table of the exact values of $\sigma_{3}(n)$ was needed, his search for such p was limited to $p \leq$ 16,067. This formula for $\tau(n)$ appears in [2] and a corrected version is given in [3]. In [2] there also appears a formula expressing $\sigma_{3}(n)$ in terms of $\sigma(n)$, the sum of the divisors of n. Thus it seemed possible that the ideas in [2] should lead to a formula for $\tau(n)$ in terms of $\sigma(n)$, which could then be used to extend Newman's search. This is indeed true and as is the case with most formulas in [2], once the formula is known, a simple proof of it can then be given. Using the new formula, Mr. K. Ferguson constructed a table of $\tau(p) \bmod p$ for $3 \leq p \leq$ 65,063 which contained no new solutions of $\tau(p) \equiv 0 \bmod p$.

Since we have not found our formula in the literature and because it may be useful in other investigations, we state and prove it here.

Theorem. Let $e(z)=\exp (2 \pi i z)$ and let $\tau(n)$ be defined by the equation $\sum_{n=1}^{\infty} \tau(n) e(n z)=e(z) \prod_{n=1}^{\infty}(1-e(n z))^{24}$. Let $\sigma(n)$ be the sum of the positive divisors of n. Then for $n \geq 1$,

$$
\tau(n)=n^{4} \sigma(n)-24 \sum_{k=1}^{n-1}\left(35 k^{4}-52 k^{3} n+18 k^{2} n^{2}\right) \sigma(k) \sigma(n-k) .
$$

Proof. Let $\Delta(z)=e(z) \prod_{n=1}^{\infty}(1-e(n z))^{24}$ and put

$$
f(z)=-\log \Delta(z)=-2 \pi i z+24 \sum_{n=1}^{\infty} \frac{\sigma(n) e(n z)}{n}
$$

As one easily sees, the theorem will be proved if the validity of the following equation is demonstrated:

$$
2^{9} \cdot 3 \pi^{6} \Delta(z)=18\left[f^{\prime \prime \prime}(z)\right]^{2}+f^{\prime}(z) f^{(5)}(z)-16 f^{\prime \prime}(z) f^{(4)}(z)
$$

Call the right-hand side of this equation $F(z)$. Then $F(z)=F(z+1)$ and the first Fourier coefficient of F is $2^{9} \cdot 3 \pi^{6}$. Hence, this equation will be proved if we show that $F(-1 / z)=z^{12} F(z)$, since the space of cusp forms of weight 6 for the modular group is one-dimensional.

[^0]The definition of f implies that $f(-1 / z)=-\log z^{12}+f(z)$. Thus,

$$
\begin{aligned}
& f^{\prime}(-1 / z)=-12 z+z^{2} f^{\prime}(z) \\
& f^{\prime \prime}(-1 / z)=-12 z^{2}+2 z^{3} f^{\prime}(z)+z^{4} f^{\prime \prime}(z) \\
& f^{\prime \prime \prime}(-1 / z)=-24 z^{3}+6 z^{4} f^{\prime}(z)+6 z^{5} f^{\prime \prime}(z)+z^{6} f^{\prime \prime \prime}(z) \\
& f^{(4)}(-1 / z)=-72 z^{4}+24 z^{5} f^{\prime}(z)+36 z^{6} f^{\prime \prime}(z)+12 z^{7} f^{\prime \prime \prime}(z)+z^{8} f^{(4)}(z) \\
& f^{(5)}(-1 / z)=-288 z^{5}+120 z^{6} f^{\prime}(z)+240 z^{7} f^{\prime \prime}(z)+120 z^{8} f^{\prime \prime \prime}(z) \\
&+20 z^{9} f^{(4)}(z)+z^{10} f^{(5)}(z) .
\end{aligned}
$$

Using these equations, we first find that

$$
H(z)=f^{(4)}(z)+f^{\prime}(z) f^{\prime \prime \prime}(z)-\frac{3}{2}\left[f^{\prime \prime}(z)\right]^{2}
$$

is a cusp form of weight 4 for the modular group. Thus $H(z)=0$. This is the well-known differential equation for $\Delta(z)$ which is also proved in [2]. It is pointed out in [2] that $H(z)=0$ is equivalent to the fact that the Schwarzian derivative $[f]_{z}=\left(f^{\prime \prime \prime}(z) / f^{\prime}(z)\right)-\frac{3}{2}\left(f^{\prime \prime}(z) / f^{\prime}(z)\right)^{2}$ equals $f^{(4)}(z) /\left[f^{\prime}(z)\right]^{2}$.

If we now insert the above expressions for $f^{(j)}(-1 / z)$ in the definition of $F(-1 / z)$ and collect like powers of z, we obtain

$$
F(-1 / z)=z^{12} F(z)-12 z^{11} H^{\prime}(z)-48 z^{10} H(z)=z^{12} F(z)
$$

References

1. Morris Newman, A table of $\tau(p)$ modulo p, p prime, $3 \leq p \leq 16067$, National Bureau of Standards, August 1972. (For a review, see Math. Comp., vol. 27 (1973), pp. 215216.)
2. B. VAN DER Pol, On a non-linear differential equation satisfied by the logarithm of the Jacobian theta functions, with arithmetical applications I, II, Indag. Math., vol. 13 (1951), pp. 261-284.
3. H. L. Resnikoff, On differential operators and automorphic forms, Trans. Amer. Math. Soc., vol. 124 (1966), pp. 334-346.

University of Maryland
College Park, Maryland

[^0]: Received November 15, 1974.

