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It is the purpose of this paper to combine the methods of [8] and [9] to
prove Haefliger type embedding theorems for topological manifolds. We prove
the following embedding theorems:

THEOREM 1.
m >_ 6, and let

Let M be a topoloyical manifold with boundary dim (M) m,

nr(M, OM), r < m 3.

Assume that (M, OM) is 2r m + connected. Then can be represented by a
locally flatly embedded disc

f: (Dr, Sr-l) (M, t3M).

The proofis modeled on the similar PL proofin [3-] using the above mentioned
modifications of the techniques.

THEOREM 5. Let K be a finite k-dimensional complex, M a topological
manifoM m > 6, m k > 3, andfa continuous map, f: K M, so that

n,(f) 0 for > 2k m + 1.

Then there is a complex K’ ofdimension k’, k’ < k, such that K’ is locally tamely
embedded in M, and a simple homotopy equivalence h’K--, K’ so that the
diagram

KY._M
hX

K’
is homotopy commutative.

Finally we obtain the "Haefliger type" theorem"

THEOREM 7. Let f: MP Vq be a map of topological manifolds, q >_ 6,
q p >_ 3, M closed, and assume that

zt,(f) 0 for < 2p q- 1.

Then J’is homotopic to a locally flat embedding.
Theorem 7 is proved as in the PL case using surgery and the normal theory

due to Rourke and Sanderson classifying neighborhoods of topological man-
ifolds [-10] although we avoid the use of nonstable transversality. It generalizes
the theorem of Lees [5]. Lees assumes the spaces are connected rather than the
map.
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For the proof of Theorem we need a general position lemma.

DEFINITION 2. Let P’ be a PL complex and M a topological manifold and
f: (P, P’) - (M, 0M) a continuous map, P’ a subcomplex of P. We say thatfis
in general position if K im (f) has the structure of a complex such that f is
PL, K c M is locally tamely embedded and the double point set S2(f) c P
is of dimension at most 2p m.

LEMMA 3. Let M be a topoloyical manifold, dim (M) > 6 and

.f: (D’, S’-’) --. (M, 3M)

a continuous map, m r >_ 3. Then.f is homotopic to a map in general position.

Proof. By the relative version of Lees’ immersion theorem (see [lO]) the
map

F: (D’, S"-t) x R (D’, S’-) (M, cM)

is homotopic to an immersion, since any bundle over D’ is trivial. Therefore
we may assume that F is an immersion, so we can cover D’ by finitely many
open sets U and shrink fibers so that F[ U x R"-’, 1, 2,..., s is an
embedding. Let {Z} be a compact refinement of the covering { U{ such that Z
is a subcomplex of D’. The proof will be by induction on the following state-
ment. There is an isotopy h of D’ x R"-" and subcomplexes Q of D’ such that
_< Z c int (Qi) and F h Q is in general position.
The induction starts trivially, so assume we have obtained the statement for

1. We may then as well assume this true originally and denote F h]_ by
F andf h_ byfi Consider V F(U x R’-’) c M. V has a PL structure
induced by F. Let K_ im (Qi). Then by the induction hypothesis K_ is a
PL complex locally tamely embedded in M, and of codimension at least 3.
Therefore by [2] (see [9, Theorem 2]) we can change the PL structure of V so
that a compact regular neighborhood of K_ c V is PL embedded. Hence if
we shrink U and the fibers, we may assume K_ V V is a PL embedding.
We shrink U so little that U still contains Z. Since.f: Q_ K_ is PL the
restriction off to Ui c Q_ is PL, so as before by shrinking U and Q_ we
can find an isotopy of U x R"-’ that fixes everything outside a compact set
and a neighborhood of U c Q_ , hence may be assumed to fix Q_ c u x
R"-’, and moves f U to a PL embedding. The restriction off to Q_ r U
is already in general position in the PL sense, so by PL general position we may
move U as above so that we end up having f in general position in a closed
neighborhood Q of [,)i_<i zi. This ends the induction step.
We now only need the following trivial lemma before the proof of Theorem 1.

LFMMa4. Let M be a manifoMandassume (M x I, M x 0, M x 1) is
written as the union of two triads V and W:

(M x I,M x O,M x 1) =(Vo+v=o_w W,_V,+W).
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Then if zj(V, O+ V) Oforj < r, r > 2, then rcj(W, O+ W) Oforj < r 1.

Proof Van Kampen’s Theorem applied to W and V shows that rl(W)
zl(M x I) since r > 2; hence zl(W)-nl(M 1)= zl(O+W). Let
denote the universal covering space of M and denote inverse images in r I
by Then

Hj+ 1( V, c3+ V) Hj+ l(/r x I, if) Hj(I, O+ W)
by excision and the long exact sequence for the triple O+ W c c r x L

Proof of Theorem 1. The proof is by induction on the following statement"

f: (D", S"-1) (M, cM)

is homotopic tof, and OM has a collar in M that is decomposed as

(?M x [O, 1],?M x O,M x 1) =(Vo/v=o_w) W,_V, c3+W)
where V is obtained from c_ V 0M x 0 by adjoining handles of dimension
less than 2r rn + i, f-l(V) is a collar of cD" in D and

f[D --f l(v)" D" --f (V) M V

is a locally flat embedding.
We start the induction by homotopingfto fo, a map in general position as in

Lemma 3. Let Sz(fo) be the double point set offo. Then since the codimension
of S2(fo) in D" is at least 3 we can find a complex Zo in D" of dimension
dim (S2(fo)) + 1, i.e. of dimension less than 2r- rn + 2 so that S2(fo) Zo
and ?D" w Zo simplicially collapses to OD" (see [3]). Let Ro be the image of Zo.
Then Ro is a subcomplex of im (fo) of dimension at most 2r rn + 1, and by
Newman’s engulfing theorem [-7] we may assume that Ro is contained in some
collar of cM, Ro cM x [0, 1]. Let No be a regular neighborhood of Ro in
OM x [0, 1] that intersects im (fo) in a regular neighborhood of Ro in im (fo)
(see [9]). Thenfl(No) is a regular neighborhood of Zo so it collapses to cD".
This picture is clearly homotopic to the picture where we have glued on a collar
on OD and cM, so do that and put

Vo c3M [-1,0] wNo, Wo cM x [-1, 1] Vo.
This then starts the induction. Assume the hypothesis for i. Denote

f(D f: V)),

i.e. the image of D with a collar of the boundary deleted, by B". Then B" is
locally flatly embedded,

and therefore extends to an embedding

Br x R"- c M- Vi
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by [9, Lemma 3]. By Lemma 4 and Theorem of [8], W has a strong deforma-
tion retract, tgW w K, where K is a locally tamely embedded complex of dimen-
sion at most max (2,2r- m- i+ 1). Using [2] we may change the PL
structure on B x R and shrink the fibers so that

K B R c B R

is a PL embedding. We then isotop B so that B is PL embedded in B
and finally such that K and B are in general position. This isotoping B can
obviously be done as a homotopy off. Let C K c Br. Then, since B is of
codimension at least 3, C is of dimension at most 2r m 2 so we can
find a complex Z in B of dimension one higher so that Z w tgB simplicially
collapses to tgB and Z contains C. Consider

K w Z Ki t3 B c M

By Newman’s engulfing theorem K w Z w V is contained in a collar 0M I
of the boundary, so we let N be a regular neighborhood of K w Z that inter-
sects Ks w B in a regular neighborhood of Ki w Z in K u B (see [9]),
hence intersects B in a regular neighborhood of Z. Define

v,+, V, N,, W,+, =M [0,]-
Then V,/ is obtained from M by adjoining handles of dimension at most
2r m since that is the dimension of Zi. f/Tv (Vi+ ) is a collar neigh-
borhood ofD sincef/ (Ni) is a regular neighborhood of Zi and Zi simplicially
collapses to Br.

Eventually we get the dimension of Ki to be 2, so when we put K, in general
position to B the intersection becomes empty and therefore when we have
completed that step we have obtained thatf is homotopic to a mapf such that
there is a collar of cM in M with f/-1(tgM 1) a collar of tgD in D and
f f- 1(M tgM [0, 1]) is a locally flat embedding. It is now easy to homo-
topfso as to pinch off the collar wherefis not yet an embedding.

We now show how this can be used to embed complexes in topological man-
ifolds up to homotopy type.

THEOREM 5. Let gk be a finite complex, M" a topological manifold, rn > 6,
rn- k > 3, and f a continuous map, f: K M, such that hi(f)= 0 for
< 2k rn + 1. Then there is a complex K’ ofdimension k’, k’ < k, such that

K’ is locally tamely embedded in M, and a simple homotopy equivalence h" K K’
such that the diagram

K Y__ M
h’,

K’
is homotopy commutative.
Theorem 5 follows immediately from Theorem in [8] and the following

proposition.
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PROPOSITION 6. Let M" be a topological manifold of dimension m > 6, and
let Kk be a PL complex, rn k > 3, andfa continuous mapf: K --. M such that
rci(f) Ofor < 2k rn + 1. Then there is a codimension 0 submanifoMN of
M and a simple homotopy equivalence h" K N such that the diagram

K f__f__M

N

is homotopy commutative.

Proof. Filter K by simpleces of nondecreasing dimension

0=Ko =K =...=K=K
where Ki+l is obtained from Ki by adjoining a simplex. The proof will be by
induction on the following statement" There is a codimension 0 submanifold Nj
ofM and a homotopy offto fj such thatfj(Kj) c Nj andfj Kj" Kj Nj is a
simple homotopy equivalence.

It is trivial to start the induction so assume the statement for j. Kj+
Kj [,Jsr-I D for some r, and fjlD" determines an element in rr(M, Nj). We
want to prove that the map

zrr(M Nj, c3Nj) zcr(M

is onto. For r < m r this is trivial since N is obtained from c3N by
adjoining handles of dimension > rn- r, so

s(0Nj) -- s(Nj)
as well as

(- Nj)-, ()

is an isomorphism for s _< m r- 2 and onto for s-- m r- 1. For
r-- m- r >_ 3wchavcasabovc

rcs(Nj,dNj) 0 fors < r-

and

%(M- Nj, 3Nj)---0 for s < r-

and since r > 2 this implies by Blakers-Massey [1] that

zr(M Nj, Nj) -- %(M, Nj)

is an isomorphism for s _< 2r 3 and onto for 2r 2.
In caser > m- rwehavc, sinccr_< k, that2k- m / >_ 2sozr,(K)

zr, (M); since r >_ 3, r,(Kj) - zr (K) and

:I(Nj) (K) (Nj) (M- Nj)T 7 7g
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SO all fundamental groups are the same. We denote universal covering-spaces
by and we have

H(ff/l, lj) ’ H((M Nj) ~Nj)
by excision, but

H(hqr,/j) 0 fors< min(r- 1,2k- m + 1)
so

rc,(M-- Nj,Nj) 0 fors < min(r- 1,2k- m + 1)

and as before r,(Nj, Nj) 0 for s < m r so by Blakers-Massey [1]

rc,(M mj, Nj) -- 7r,(M, mj)

is onto for s < min(r- 1, 2k- m + 1) + m- r- 2k- r. Hence
we can choose a map

: (O’, S"-) --, (m Nj, ON.)

representingfj D’. Since r,(M- Ni, N) 0 for s _< min (r- 1, 2k m + 1),
can, by Theorem 6, be chosen to be a locally flat embedding which can be

extended to an embedding

A: (D’, S’-) x Rm-" (M gj, ogj)

(see [9, Lemma 3]). We now define Nj+ Nj L) A(D" x Bm-r) where Bm-r

is the unit ball in Rm-’. Since Kj c Kj+ c Kare cofibrations we can homotop

f tof /1 such that we get a Mayor-Vietories diagram

Kj+I Ni+1
Ki D’ "+: NI A(D’Bm-’)

St-1 A(Sr-lBm-r)
where f+ is a simple homotopy equivalence on the 3 small terms hence on

K+I. This ends the induction step.

THEOREM 7. Let f: Mp Vq be a map of topological manifolds, q < 6,
q p > 3, M closed, and assume that zci(f) 0 for < 2p q + 1. Then f
is homotopic to a locally flat embedding.
To prove Theorem 7 we need some lemmas.

LEMMA 8. With the assumptions of Theorem 7 there is a codimension 0 sub-
manifoM N of V such that rex(ON) - za(N) and a simple homotopy equivalence
h: M N such that the diayram

M-----.V

N
is homotopy commutative.
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Proof. There is a p-dimensional complex K which is simple homotopy
equivalent to M. K is obtained as follows. Let C be the total space of the
normal discbundle of M. Then C is a PL manifold and determines by definition
the simple homotopy type of M. We can then let K be a PL spine of D. The
codimension 0 submanifold N of V is now constructed by Proposition 6.

The proof of Theorem 7 is completed by the following lemma.

LEMMA 9. Let f: MVo Vq be a simple homotopy equivalence, M and V
topoloyical manifolds, M closed, q >_ 6, q -p > 3, and nl(dV) rtl(V) an
isomorphism. Thenf is homotopic to a locally flat embedding.

Proof It is proved in [10] that there is a classifying space BTopr for topo-
logical neighborhoods of codimension r. The classification goes via microbun-
dies" to a topological neighborhood P c Q one assings the stable microbundle
pair (zQ, i*zo.) which is then classified by BTop,. There is a map BTop - BGassigning to the microbundle pair the corresponding spherical fibration pair.
Since spherical fibration pairs split uniquely BG, is identified with BG, the clas-
sifying space for spherical fibrations of dimension r.

If M c W is a locally flat inclusion of topological manifolds of codimension
_> 3 we can take a regular neighborhood N of M in W (see [4]). By [11-1 the
map ON = N --* M is equivalent to a spherical fibration v, and VM V O) i*Vw
as spherical fiber spaces. Therefore the map BTo_pr- BG, is described as
follows" Take a closed regular neighborhood N, and turn ON- M into an
r-spherical fibration v. The classifying map for v is then M - BTop --, BG.
We now return to our problem. Consider r" V - M, a homotopy inverse to

f, and the restriction of r to V - M. This map is by Spivak [11] equivalent
to a spherical fibration " E - M. Let E() be the mapping cone of ; then
(E(), E()) is naturally homotopy equivalent to (V, cOV). Assume that the
map " M - BG lifts to BTopr"

M ------BG,

We then have M locally flatly embedded in a manifold and if we take a regular
neighborhood 14/" of M we get a fiber homotopy equivalence

(W,W) - (V,V)

M

and if the homotopy equivalence is homotopic to a homeomorphism we have
proved thatfis homotopic to an embedding. By Sullivan theory this is determ-
ined by the normal obstruction in [ W, G/TOP] [M, G/TOP] but we have
freedom in choice of the lifting of to B Top, corresponding to G/Top,. But
since r > 3 this space is homotopy equivalent to G/TOP by [10]. Hence we
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can choose our lifting so as to make the normal obstruction 0. This then ends
the proof once we show the existence of one lifting. However @ f*vv vu
as spherical fibrations, so stably vu @ (f*vv)-1, hence

M BG BG

lifts to BTOP, and since G,./Top,. G/TOP, : M BG,. lifts to BTop,.
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