EMBEDDINGS OF TOPOLOGICAL MANIFOLDS

BY
Erik KJAER PEDERSEN

It is the purpose of this paper to combine the methods of [8] and [9] to
prove Haefliger type embedding theorems for topological manifolds. We prove
the following embedding theorems:

THEOREM 1. Let M be a topological manifold with boundary dim (M) = m,
m > 6, and let
aemn(M, M), r<m-—3.

Assume that (M, OM) is 2r — m + 1 connected. Then a can be represented by a
locally flatly embedded disc

fr (D, 87 > (M, 0M).

The proof is modeled on the similar PL proofin [3] using the above mentioned
modifications of the techniques.

THEOREM 5. Let K be a finite k-dimensional complex, M™ a topological
manifoldm > 6, m — k > 3, and f a continuous map, f- K - M, so that

a(f) =0 fori=2k —m+ 1.

Then there is a complex K' of dimension k', k' < k, such that K' is locally tamely
embedded in M, and a simple homotopy equivalence h: K — K' so that the
diagram
KL M
NG U
K !
is homotopy commutative.
Finally we obtain the ‘“‘Haefliger type” theorem:

THEOREM 7. Let f: M? — V% be a map of topological manifolds, q > 6,
qg — p = 3, M closed, and assume that

() =0 fori<2p—¢q— 1

Then f is homotopic to a locally flat embedding.

Theorem 7 is proved as in the PL case using surgery and the normal theory
due to Rourke and Sanderson classifying neighborhoods of topological man-
ifolds [10] although we avoid the use of nonstable transversality. It generalizes
the theorem of Lees [5]. Lees assumes the spaces are connected rather than the
map.
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For the proof of Theorem 1 we need a general position lemma.

DEerINITION 2. Let P? be a PL complex and M™ a topological manifold and
fi (P, P') > (M, OM) a continuous map, P’ a subcomplex of P. We say that fis
in general position if K = im (f) has the structure of a complex such that f is
PL, K = M is locally tamely embedded and the double point set S,(f) < P
is of dimension at most 2p — m.

LemMmaA 3. Let M be a topological manifold, dim (M) = 6 and
f: (D', 871 - (M, 0M)
a continuous map, m — r > 3. Then f is homotopic to a map in general position.

Proof. By the relative version of Lees’ immersion theorem (see [10]) the
map
F: (DS x R"" > (D, S > (M, M)

is homotopic to an immersion, since any bundle over D" is trivial. Therefore
we may assume that F is an immersion, so we can cover D" by finitely many
open sets U; and shrink fibers so that F| U; x R*™", i=1,2,...,5is an
embedding. Let {Z;} be a compact refinement of the covering {U{ such that Z;
is a subcomplex of D". The proof will be by induction on the following state-
ment. There is an isotopy 4} of D" x R™™"and subcomplexes Q; of D" such that
Uj<i Z; = int (Q;) and F o h! | Q; is in general position.

The induction starts trivially, so assume we have obtained the statement for
i — 1. We may then as well assume this true originally and denote F o 4}_, by
Fand fo h!_, by f. Consider V = F(U; x R"™") = M. V has a PL structure
induced by F. Let K;_; = im (Q,). Then by the induction hypothesis K;_, is a
PL complex locally tamely embedded in M, and of codimension at least 3.
Therefore by [2] (see [9, Theorem 2]) we can change the PL structure of ¥ so
that a compact regular neighborhood of K;_, n Vis PL embedded. Hence if
we shrink U; and the fibers, we may assume K;_,; n V' < Vis a PL embedding.
We shrink U, so little that U, still contains Z;. Since /> Q;_; — K;_, is PL the
restriction of fto U; n Q,_, is PL, so as before by shrinking U; and Q;_; we
can find an isotopy of U; x R™™" that fixes everything outside a compact set
and a neighborhood of U; n Q;_,, hence may be assumed to fix Q;_; n U; %
R™™" and moves f| U; to a PL embedding. The restriction of fto Q;_; n U;
is already in general position in the PL sense, so by PL general position we may
move U, as above so that we end up having f in general position in a closed
neighborhood Q; of | J;<; Z ;. This ends the induction step.

We now only need the following trivial lemma before the proof of Theorem 1.

LeEMMA 4. Let M be a manifold and assume (M x I, M x 0, M x 1) is
written as the union of two triads V and W:

M x I,M x 0, M x 1) =<V U weo _V,6+W).
0+V=0-W
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Then if n(V, 0.V) = Oforj < r,r > 2,thenny(W, 0, W) = 0forj <r — 1.

Proof. Van Kampen’s Theorem applied to W and V shows that n,(W) =
n,(M x I) since r > 2; hence n,(W) = n,(M x 1) = n, (0. W). Let M
denote the universal covering space of M and denote inverse images in M x I
by ~. Then

~ o~ ~ ~ i~ ~)
Hj ((V,04+V)=Hj (M x I, W) = H(W, 0, W)
by excision and the long exact sequence for the triple 0; W <« W =« M x L

Proof of Theorem 1. The proof is by induction on the following statement:
fr (D', 87 - (M, oM)

is homotopic to f;, and M has a collar in M that is decomposed as

0+V=0-W

(@M x [0,1],0M x 0,0M x 1) = <V U W,a_V,0+W>

where V is obtained from d_V = 0M x 0 by adjoining handles of dimension
less than 2r — m + 1 — i, f{7 (V) is a collar of dD" in D" and

fil D = (7D = [ (V) > M~V

is a locally flat embedding.

We start the induction by homotoping f'to f,,, a map in general position as in
Lemma 3. Let S,(f,) be the double point set of f,. Then since the codimension
of S,(fy) in D" is at least 3 we can find a complex Z, in D" of dimension
dim (S,(fy)) + 1, i.e. of dimension less than 2r — m + 2 so that S,(f,) = Z,
and 0D" L Z, simplicially collapses to dD" (see [3]). Let R, be the image of Z,,.
Then R, is a subcomplex of im (f,) of dimension at most 2r — m + 1, and by
Newman’s engulfing theorem [7] we may assume that R, is contained in some
collar of OM, R, = oM x [0, 1]. Let N, be a regular neighborhood of R, in
OM x [0, 1] that intersects im (f,) in a regular neighborhood of R, in im (f;)
(see [9]). Then f (N,) is a regular neighborhood of Z, so it collapses to dD".
This picture is clearly homotopic to the picture where we have glued on a collar
on 0D" and dM, so do that and put

Vo=0M x [—1,0] U Ny, Wy =0M x [—1,1] — V,.
This then starts the induction. Assume the hypothesis for /. Denote
S = 71V,

i.e. the image of D" with a collar of the boundary deleted, by B". Then B" is
locally flatly embedded,

B c M-V,

and therefore extends to an embedding

B, x R™"c M — V,

13
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by [9, Lemma 3]. By Lemma 4 and Theorem 1 of [8], W, has a strong deforma-
tion retract, 0W; U K;, where K is a locally tamely embedded complex of dimen-
sion at most max (2, 2r — m — i + 1). Using [2] we may change the PL
structure on B" x R™7" and shrink the fibers so that

K, B" x R"" < B" x R""

is a PL embedding. We then isotop B" so that B" is PL embedded in B" x R™™"
and finally such that K; and B" are in general position. This isotoping B" can
obviously be done as a homotopy of f;. Let C; = K; n B". Then, since B" is of
codimension at least 3, C; is of dimension at most 2r — m — i — 2 so we can
find a complex Z; in B" of dimension one higher so that Z; U dB" simplicially
collapses to 0B" and Z; contains C;. Consider

KiUZiCKiUBrCM—Vi.

By Newman’s engulfing theorem K; U Z; U V is contained in a collar 0M x [
of the boundary, so we let N; be a regular neighborhood of K; U Z, that inter-
sects K; U B" in a regular neighborhood of K; U Z; in K; U B" (see [9]),
hence intersects B” in a regular neighborhood of Z;. Define

Vi+1 = ViUNi, Wi+l = 5M X [0, 1] - Vi+1‘

Then V;,, is obtained from M by adjoining handles of dimension at most
2r — m — i — 1 since that is the dimension of Z;. f;31(V;, ) is a collar neigh-
borhood of D" since f;; 1(N;) is a regular neighborhood of Z; and Z; simplicially
collapses to 0B".

Eventually we get the dimension of K to be 2, so when we put K; in general
position to B" the intersection becomes empty and therefore when we have
completed that step we have obtained that f'is homotopic to a map f; such that
there is a collar of 0M in M with f7'(0M x I) a collar of éD" in D" and
filfi'(M — aM x [0, 1])is a locally flat embedding. It is now easy to homo-
top f'so as to pinch off the collar where f'is not yet an embedding.

We now show how this can be used to embed complexes in topological man-
ifolds up to homotopy type.

THEOREM 5. Let K* be a finite complex, M™ a topological manifold, m > 6,
m — k >3, and f a continuous map, f: K - M, such that n(f) = 0 for
i <2k — m + 1. Then there is a complex K’ of dimension k', k' < k, such that
K' is locally tamely embedded in M, and a simple homotopy equivalence h: K — K’
such that the diagram

K-L.Mm
AN ¢
K ’
is homotopy commutative.

Theorem 5 follows immediately from Theorem 1 in [8] and the following

proposition.
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PROPOSITION 6. Let M™ be a topological manifold of dimension m > 6, and
let K* be a PL complex, m — k > 3, and f a continuous map f: K — M such that
n(f) = Ofori < 2k — m + 1. Then there is a codimension 0 submanifold N of
M and a simple homotopy equivalence h: K — N such that the diagram

K-L.Mm
h\y
N

is homotopy commutative.
Proof. Filter K by simpleces of nondecreasing dimension
0=K,cK,c--cK, =K

where K., is obtained from K; by adjoining a simplex. The proof will be by
induction on the following statement: There is a codimension 0 submanifold N;
of M and a homotopy of f'to f; such that f(K;) = N;andf; | K;: K; » N;isa
simple homotopy equivalence.

It is trivial to start the induction so assume the statement for j. K;,, =
K; Us--1 D" for some r, and f; | D" determines an element in (M, N;). We
want to prove that the map

7!,(M - Nja aNj) - nr(Ma Nj)

is onto. For r < m — r — 1 this is trivial since N; is obtained from dN; by
adjoining handles of dimension > m — r, so
as well as

(M — N;) = n(M)

is an isomorphism for s < m — r — 2 and onto for s = m — r — 1. For
r = m — r > 3 we have as above

ny(N;, ON;)) = 0 fors <r — 1
and
(M — N;, 0N;) =0 fors <r—1

and since r — 1 > 2 this implies by Blakers-Massey [1] that
ns(M - Nj’ aNj) - 7Ts(M’ Nj)

is an isomorphism for s < 2r — 3 and onto for s = 2r — 2.
Incaser > m — r we have, since r < k,that2k — m + 1 > 2son,(K) =
ny(M); since r > 3, n,(K;) = n,(K) and

n(N;) = ny(K) = ny(Ny) = ny(M — Nj)
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so all fundamental groups are the same. We denote universal covering-spaces
by T and we have

HS<M, N;) = s((M ) a N)
by excision, but

H(M,N) =0 fors<min(r— 1,2k —m + 1)
SO
(M N;,o0N) =0 fors <min(r — 1,2k — m + 1)

and as before 7 (N;, ON;) = O fors < m — r — 1 so by Blakers-Massey [1]
s(M N;, 0N;) - n(M, N;)

is onto for s < min(r — 1, 2k —m + 1) + m —r — 1 = 2k — r. Hence
we can choose a map

«: (D", S > (M — N,, 0N))

representing f; | D". Since n(M — N;, N;) = Ofors < min(r — 1,2k — m + 1),
o can, by Theorem 6, be chosen to be a locally flat embedding which can be
extended to an embedding

A: (D, $Y) x R"" - (M — N,, oN))

(see [9, Lemma 3]). We now define N;,; = N; U A(D" x B™"") where B™™"
is the unit ball in R"~". Since K; = K;,; = Kare cofibrations we can homotop
fj to fj. 1 such that we get a Mayor-Vietories diagram

K1 Njiy
¢ \b r Ji+1 = S rpm-—r
K, prLL N, A(D'B™")
N) 2 N <
Sr—l A(sr—le—r)

where f;,; is a simple homotopy equivalence on the 3 small terms hence on
K;. . This ends the induction step.

THEOREM 7. Let f: MP — V% be a map of topological manifolds, q < 6,
q — p = 3, M closed, and assume that n(f) = Ofori < 2p — q + 1. Thenf
is homotopic to a locally flat embedding.

To prove Theorem 7 we need some lemmas.

LemMA 8. With the assumptions of Theorem 7 there is a codimension 0 sub-
manifold N of V such that n{(0N) = n(N) and a simple homotopy equivalence
h: M — N such that the diagram

M—V
N O
N
is homotopy commutative.
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Proof. There is a p-dimensional complex K which is simple homotopy
equivalent to M. K is obtained as follows. Let C be the total space of the
normal discbundle of M. Then Cis a PL manifold and determines by definition
the simple homotopy type of M. We can then let K be a PL spine of D. The
codimension 0 submanifold N of V is now constructed by Proposition 6.

The proof of Theorem 7 is completed by the following lemma.

LEMMA 9. Let f: M? — V% be a simple homotopy equivalence, M and V
topological manifolds, M closed, ¢ > 6, ¢ — p = 3, and 7,(0V) — = (V) an
isomorphism. Then f is homotopic to a locally flat embedding.

Proof. Tt is proved in [10] that there is a classifying space BTop, for topo-
logical neighborhoods of codimension r. The classification goes via microbun-
dles: to a topological neighborhood P < Q one assings the stable microbundle
pair (t, i*15) which is then classified by BTop,. There is a map BTop, — BG,
assigning to the microbundle pair the corresponding spherical fibration pair.
Since spherical fibration pairs split uniquely BG, is identified with BG,, the clas-
sifying space for spherical fibrations of dimension r.

If M = W is alocally flat inclusion of topological manifolds of codimension
>3 we can take a regular neighborhood N of M in W (see [4]). By [11] the
map 0N = N — M is equivalent to a spherical fibration v, and vy, = v @ i*vy,
as spherical fiber spaces. Therefore the map BTop, — BG, is described as
follows: Take a closed regular neighborhood N, and turn 0N — M into an
r-spherical fibration v. The classifying map for v is then M — BTop, — BG,.

We now return to our problem. Consider r: V' — M, a homotopy inverse to
/, and the restriction of r to 0V — M. This map is by Spivak [11] equivalent
to a spherical fibration ¢: E — M. Let E(¢) be the mapping cone of ¢; then
(E(&), E(¢)) is naturally homotopy equivalent to (¥, dV). Assume that the
map ¢: M — BG, lifts to BTop,:

BTop,

|

M —BG,

We then have M locally flatly embedded in a manifold and if we take a regular
neighborhood W of M we get a fiber homotopy equivalence

W,oW) =~ (V, V)
N
M

and if the homotopy equivalence is homotopic to a homeomorphism we have
proved that f'is homotopic to an embedding. By Sullivan theory this is determ-
ined by the normal obstruction in [W, G/TOP] = [M, G/TOP] but we have
freedom in choice of the lifting of ¢ to B Top, corresponding to G,/Top,. But
since r > 3 this space is homotopy equivalent to G/TOP by [10]. Hence we
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can choose our lifting so as to make the normal obstruction 0. This then ends
the proof once we show the existence of one lifting. However & @ f*v, = vy,
as spherical fibrations, so stably & = v,, @ (f*v,)" !, hence

M — BG, — BG
lifts to BTOP, and since G,/Top, = G/TOP, ¢£: M — BG, lifts to BTop,.
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