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1. Introduction

In this paper we make the standard conventions that all topological groups
G are locally compact and have a countable basis for their topologies, all multi-
plier representations of G are unitary and Borel, and all Hilbert spaces are
separable.
The purpose of this paper is to prove the following theorem.

THEOREM I.I. Let G be a locally compact yroup, K an open normal subyroup
of G, and a a multiplierfor G. Suppose that K has only Type I a-representations.
Let g, be the a-dual space ofK. Then g, "/G is countably separated if G has only
Type I a-representations.

Note that the assumption that K have only Type I a-representations is
superfluous, for if G has only Type I a-representations, then any open subgroup
of G has only Type I a-representations (Kallman I-6, Proposition 2.1]).

This theorem generalizes a result of C. Moore (see Auslander-Moore [1,
Corollary to Theorem 9, p. 110]), who proved this result with the additional
assumption that G/K is Abelian. It will prove to be of great importance in a
forthcoming paper of the author (Kallman [6]). Theorem 1.1 will be proved
gradually in a sequence of intermediate propositions. The ideas which go into
the following proof seem to have little overlap with the ideas in Auslander-
Moore [1]. The present proof seems to be relatively short and straightforward,
and avoids completely the extremely difficult measure-theoretic arguments of
Auslander-Moore [1].

In Section 2 we prove a very simple corollary to a beautiful theorem of K.
Kunugui [9] in set theory.2 As far as the author knows, this is the first time that
Kunugui’s result has been used in group representations. This corollary is of
vital importance for the proof of Theorem 1.1. Section 3 is devoted to the study
of certain Borel sets and mappings. We prove Theorem 1.1 in Section 4 in a
sequence of elementary lemmas. In Section 5 we present a slight generalization
of a result of Kaniuth [7-1, which is a useful supplement to Theorem 1.1. We
follow M. Smith [-11-1 quite closely here.
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See the two books by Dixmier ([2] and [3]), Auslander-Moore [1], and
Mackey [10] for the basic results and notation in operator theory and group
representations which we will use.

It is a pleasure to thank D. Mauldin for pointing out Kunugui’s result.

2. A corollary to a theorem of Kunugui

Let Y be a locally compact Hausdorff space with a countable basis for its
topology. Let C(Y) be the family of all closed subsets of Y. C(Y) is a compact
Hausdorff space in a natural topology (Fell [4]). Moore has noted that C(Y)
is a complete separable metric space (Auslander-Moore [1, pp. 67-68]). His
argument goes as follows. Y is a complete separable metric space. Let d(., .)
be a complete metric on Y defining the topology of Y. For each y in Y, let b(y)
be the supremum of those numbers r such that the closed unit ball B(y, r) of
radius r at y is compact. Let

dy(B) inf (1, b(y)/2, d(y, B))

where d(y, B) is the distance from y to B. For fixed y, B - dy(B) is continuous.
If [y, [n > 1] is a countable dense set in Y, let d,(B) dy.(B). Then the
d,(.) separate points in C(Y) and define an embedding of C(Y) into a countable
product of unit intervals. A mappingf from a Borel space to C(Y) is a Borel
mapping if and only if d,(f(.)) is a Borel mapping for each n.

PROPOSITION 2.1. Let X be a standard Borel space and Y a locally compact

Hausdorffspace with a countable basis for its topology. Let

zr X x Y X and 72 X x Y.-- Y

be the natural coordinate projections. Let C be a Borel subset of X Y such
that 2(rc-l(x) c C) is closedfor all x in X. Then the mapping

X 2(7-1(X)f’3 C)

ofX C(Y) is a Borel mapping.

Proof For each x in X, let C(x) rc2(rc; l(x) c C). C(x) is an element of
C(Y). Fix y in Y. It suffices to show that x dy(C(x)) is a Borel mapping.
Fix e > 0. We only need show that [x ldy(C(x)) < e] is a Borel subset of X.
But

d(C(x)) min (1, b(y)/2, d(y, B))

If e > min (1, b(y)/2),

Ix d,(C(x)) < e] X.

Suppose that e _< min (1, b(y)/2). Then B(y, e), the closed unit ball about y
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of radius e, is compact, and dr(C(x)) < e if and only if d(y, C(x)) < e. Choose
a sequence 0 < el < e2 < ""T e. Then

[x dy(C(x)) < e] [x d(y, C(x)) < e]

U n,(n;’(B(y, e.)) c C).
n>l

But for each n > 1, r (B(y, en)) c C is a Borel subset of X Y, and

re; (B(y, ,,)) c rc[ l(x) C

is compact for each x in X. Hence, by the main result of Kunugui [9],

zca(rc; (B(y, .)) c C)

is a Borel subset of X. Hence, [x ldy(C(x)) < e] is always a Borel subset of
X. Q.E.D.

3. Some preliminaries

The purpose of this section is to recall a few facts about multiplier representa-
tions of groups and C*-algebras and to combine some facts in the literature to
show that a certain set is a Borel set.

Recall the following well known facts. Let G be a locally compact group. A
multiplier for G is a Borel mapping co of G G into the complex numbers of
modulus one such that: (1) co(e, a) co(a, e) for all a in G; (2) co(ab, c).
co(a, b) co(a, bc)co(b, c) for all a, b, c in G. A Borel mapping n of G into the
unitary operators on a separable Hilbert space is called an co-representation of
G in case n(ab) co(a, b)n(a)n(b) for all a, b in G. Let D(G, co) be the Banach
space D(G) with the multiplication

(fy)(t) ff(s)9(s-it)co(s, s-It)- ds

and with the *-operation f*(t) f(s-)co(s -, s)A(s-1). One easily checks
that D(G, co) is a Banach *-algebra, and that if zr is an co-representation of G,
then (f) If(s)rt(s)ds is a *-representation of D(G, co). Conversely, one
may show that each *-representation of D(G, co) arises in this manner from a
unique co-representation of G. Furthermore, the co-representation of G is
irreducible (nondegenerate) if and only if the corresponding representation of
U(G, co) is irreducible (nondegenerate). Denote by C*(G, co) the C*-com-
pletion of L(G, co). Thus, there is, in the usual manner, a one-to-one corre-
spondence between the co-representations of G and the *-representations of
C*(G, co), with irreducible (nondegenerate) representations corresponding to
irreducible (nondegenerate) representations. Denote by (,o the equivalence
classes of irreducible unitary co-representations of G. Identify do, as a topological
and Borel space with C*(G,^co).
For each n 1, 2,..., c, let H, be a fixed n-dimensional separable Hilbert

space. If A is a separable C*-algebra, denote by Rep, (A) the set of representa-
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tions of A into the bounded linear operators on Hn. Repn (A) is a complete
separable metric space in a natural topology. Irr (A), the irreducible elements
of Rep (A), and the nondegenerate elements of Rep (A) are both G0’s in
Rep (A). Repn (G, co) (Irr (G, co)) is similarly defined, and is identified as a
topological and Borel space with the nondegenerate elements of Repn (C*(G, co))
(with Irr (C*(G, co))).

LEMMA 3.1. The mapping rc rc K of Rep (G, co) into Repn (K, co) is
continuous ifK is a closed subgroup of G.

Proof. This follows easily from a trivial generalization of Dixmier I-3,
Proposition 18.1.9, p. 316-]. The details are left to the reader. Q.E.D.

LEMMA 3.2. Let A be a separable C*-alyebra, < p, q <_ , r an integer,
M a topological space, rn zero a mapping ofM into Rep, (A), and rn re’ a
mapping of M into Rep (A). Then the set of rn in M such that the interlacing
number of rc and re’ is less than or equal to r is a Go in M.

Proof This is a simple generalization of Dixmier [3, Lemme 3.7.3, p. 76],
and the details are left to the reader. Q.E.D.

Let Rep (G, co) be the union of the Rep, (G, co) with the natural topology
and Borel structure, and let Irr (G, co) be the union of the Irr, (G, co) with the
natural topology and Borel structure.

LEMMA 3.3. The subset of Irr (K, 09) Irr (G, co) of all (a, b) such that a is
a direct summand of b K is a Borel set.

Proof Let < p, q < oz. It suffices to show that the subset of Irr (K, co) x
Irrq (G, co) of all (a, b) such that a is direct summand of b K is a Borel set. Let

M Irrp (K, co) x Irrq (G, co), n(a,b a, rc,b b K.

Both m m and m m are continuous. Take r 0 in Lemma 3.2. Lemma
3.3 now follows since a is a direct summand of b K if and only if the interlacing
number between a and b K is greater than or equal to 1. Q.E.D.

Note that if b is in (o and a is in/’, we may unambiguously discuss whether
or not a is a direct summand of b K. In the following proposition we assume
that K and G have only Type I co-representations.

PROPOSITION 3.4. The subset of( ,o of all (a, b) such that a is a direct
summand of b K is a Borel set.

Proof. Since both K and G have only Type I co-representations, there exist
Borel sets B and C, in Irr (K, co) and Irr (G, co) respectively, such that/’ and
(,o are Borel isomorphic to B and C, respectively. Let D be the Borel set de-
scribed in Lemma 3.3. Then the set of (a, b) such that a is a direct summand of
b IK may be identified with (B C) c D, and hence is a Borel set. Q.E.D.
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4. Proof of Theorem 1.1

In this section we gradually prove Theorem 1.1 in a sequence of lemmas.
If H is a closed subgroup of G and a is an equivalence class of representations

of H, we denote by U(a, H, G) the equivalence class of representations of G
induced by a from H to G. Let x be an element of/. Since G/K is discrete,
note that

[blb in (’, has x as a direct summand]
[g(a, G, G) la in Gx,̂ a lK a multiple of x],

as follows easily from an application of Mackey theory.
Let re" Gx - Gx/K be the natural quotient mapping. There exists a multiplier

cox for Gx, an element b of d", and a multiplier 0)2 of Gx/K such that 0" a -a(rff.)) (R) b is a one-to-one mapping of (Gx/K) ^’2 onto [ala in (, a lK
a multiple of x].
LEMMA 4.1. a O(a) is continuous in the Fell topology.

Proof Let a a in (Gx/K) ^‘’-. Let be in Rep (G/K, CO2) be such that
a, and let r/be in Rep (Gx, cox) such that 0 b. Let act on the Hilbert

space H, and let r/act on the Hilbert space K. @(.)) (R) r/(.) acts on H (R) K.
Choose nonzero vectors v in H and w in K. It suffices to show that we may
approximate

<((=(.)) (R) ,(.))(v (R) w), v (R) w> <(=(.))v, v><n(.)w, w> ,(.)

uniformly on compact sets by positive definite functions associated with the
O(a) (make a simple modification in Dixmier [3, Proposition 18.1.5, p. 315-]).
Let C be a compact set in G. re(C) is a finite set in G/K. For large 7, choose a
positive definite function 4 on G/K associated with a which is close to
<(rr(.))v, v> on re(C). For such a ,, (.) (rc(.))(r/(.)w, w> is a positive
definite function associated with O(ar), and Or(’)approximates (.)uniformly
on C. Q.E.D.

LEMMA 4.2. (G/K) o,,_ is compact & the Fell topology.

Proof. C*(Gx/K, 0)2) has an identity, namely the Dirac delta function at the
identity. Hence, (Gx/K) ^’’ is compact in the Fell topology by Dixmier [-3,
Proposition 3.3.7, p. 64]. Q.E.D.

Since G has only Type I e-representations and has a countable basis for its
topology, there exists a countable ordinal 3 and an ascending family [Ua[
fl < 7] of open sets in ( such that Uo 0, Ur G, if fl < ), is a limit ordinal,
then Ua a,<a Ua,, and if fl is nonzero and not a limit ordinal, then Ua
Ua-1 is a dense locally compact Hausdorff subset oft Ua_ with a countable
basis for its topology (see Dixmier [3, 4.5.7, pp. 94-95]).
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LEMMA 4.3. For each x in g, , there exists an ordinal fl such that

[blb in g, b lK has x as a direct summand] (Ua+x Ua)

is closed in ( Ua + Ua), and if fl’ > fl, then

[b b in d, b lKhasxasadirectsummand] (d UIj,) O.

Proof. For brevity of notation, let

C(x) [blb in (, b lK has x as a direct summand].

Using previous notation and results,

C(x) [ U(a, Gx, G) a in AG,, a[ K a multiple of x]

[U(O(a), Gx, G) la in (G/K)^].

But (G/K)^’ is compact, 0 is continuous, and induction is continuous (Fell
[5, Theorem 4.1]). Hence, C(x) is compact in the Fell topology. Consider
[fl’lfl’ < , C(x) c ((" Ua,) b]. Let fl be the smallest such fl’. fl is not
a limit ordinal, for if it were Ua [a,< a Ua,. Since C(x) is compact, there
would exist fl’ < /3 such that C(x) is contained in Ua,, a contradiction. Hence,
fl has a predecessor fl 1.

C(x) (t: u_) O.

C(x) c (Ua Ua_) C(x) c (( Ua_), a compact subset of d, for
( Ut_ is closed. Since Ua Ua_ is open in d Ua_x, C(x) c (Ua
Ua_) is compact in Ua Ua_. Since Ua Ua_ is Hausdorff in its relative
topology, C(x) c (Ua Ua_) is closed in (Ua Ua_x). Q.E.D.

Use the same notation as in Lemma 4.3.

LEMMA 4.4. For each x in and ordinal fl < ,
C(x) (u/

is an F in U/ U.
Proof. Use previous notation. For a in (G/K) ’, let f(a) U(O(a), G, G).

f(.) is continuous. Hence f-(U+ U) is the intersection of a closed set
and an open set in (G/K)^’. Hence,

f-’(Ut+l Ut) U c,,
n>l

where each C, is compact in (G,/K) ^’. But as in Lemma 4.3, each f(C,) is
compact and therefore closed in Ua+x Ua. Q.E.D.

Proof of Theorem 1.1. Let B be that subset of/ consisting of all
pairs (a, b) such that b[ K has a as a direct summand. Let zrx"/ x t --,/
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be the natural projection onto the first coordinate, and if2: / X Cat C the
natural projection onto the second coordinate. Let fl < V and consider

( x (u+ v)).
This is a Borel subset of R x d, each of whose vertical sections is an F, by
Lemma 4.4. Hence,

( ( (+ v))) G
is a Borel subset of by the main theorem of Kunugui [9]. Let

D C U (c c,).
’>

Since y is countable, each D is a G-invariant Borel subset of. Again, since
y is countable and < D, it suffices to show that each D/G is countably
separated. Consider

’(D) (R x (U+ U)) n B,

a Borel subset of D ,.x (U + U). For each x in D,
(x) (:’(x) n (R x (u+ u)) n B)

is closed in U+ U by Lemma 4.3. Hence, x E(x) is a Borel mapping of

D into C(U+ U) which is constant on G-orbits. An elementary applica-
tion of Mackey theory shows that x E(x) also separates those orbits. Hence,
D/G is countably separated. Q.E.D.

5. A slight variant of a result of Kaniuth

This section may be regarded as an addendum to the previous sections. Let
G be a locally compact group, e a multiplier for G, and K an open normal
subgroup of G. When does G have only Type I e-representations? K must
have only Type I e-representations (Kallman [6, Proposition 2.1]) and at/G
must be countably separated. Furthermore, using previous notation, each
Gx/K must have only Type I co2-representations. The purpose of this section is
to show that for this to be the case, Gx/K must be almost Abelian.

Let G be a countable discrete group, and let o) be a multiplier for G. We
denote by UI the left regular m-representation of G, the m-representation of G
induced by I (see Mackey [10, p. 274] for the definition of the right regular
m-representation). Recall that UI acts on the Hilbert space of all square-
summable functions on G by (Ut(a)f)(c) f(a- c). co(c- , a)- . Let 6
denote the Dirac delta function at the identity of G. One computes that
T p(T) (Tf, 6) is a faithful finite normal trace on the von Neumann
algebra generated by Ut, and that each T in this von Neumann algebra has an
expansion T ZaG 2aU(a) which converges in the trace norm. The 2 are
uniquely determined, and formal sum and product correspond to operator
sum and product.
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PROPOSITION 5.1. Suppose UI is Type I. Then G has a normal Abelian sub-
9roup offinite index.

It is well known that the converse of this proposition is false in general. This
proposition was proved by Kaniuth [7] for o9 trivial. We follow Martha Smith
[11]. The proof, modulo some very simple modifications, is the same. We give
some of the details for the convenience of the reader.

Let A denote the normal subgroup of G consisting of all elements with only a
finite number of conjugates. G is called an FC group in case G A.

LEMMA 5.2. Let Tbe an element ofR(UI), the yon Neumann algebra generated
by UI. Then T is central if and only if

ib lab )aog(b, b- 1) og(b, b- ab)og(ab, b x)

for all a and b in G, where T a 2,UI(a)
This lemma is a computation, using the easily verified fact that UI(b)

UI(b-X)og(b, b-X). Using this lemma, it follows easily that if T is central in
R(UI), then 2a is nonzero only if a is in A.
The following lemma is modeled on Theorem 5 of Kaplansky [8].
LEMMA 5.3. G/A is finite.

Proof R(UI) is a finite von Neumann algebra with a trace vector which is
cyclic and separating. Hence, R(UI) and R(UI) are antiisomorphic. Hence,
if Q is a central projection such that R(UI)Q is a Type Im von Neumann algebra,
then R(UI)’Q is also a Type I,, von Neumann algebra. We show that R(UI) is
a II1 von Neumann algebra if G/A is infinite. If G/A is infinite and R(UI) has
a Type I summand, then there is a central projection Q as above. Q will be
zero, however, for there exists an infinite collection of nonzero, mutually ortho-
gonal, mutually equivalent projections with sum the identity in the commutant
of the center of R(UI). For let Qj be multiplication by the characteristic
functions of the G/A cosets. Using the fact that central elements of R(UI) are
supported by A, a simple computation then shows that the Qj commute with
the center of R(UI). Furthermore, if Qj is multiplication by the characteristic
function of b-1A, then UI(b)QUI(b) is multiplication by the characteristic
function of A. Since each unitary operator UI(b) certainly commutes with the
center of R(UI), the lemma is proved, for the sum of the Qj is the identity.

Q.E.D.

LEMMA 5.4. It suffices to prove Proposition 5.1 in case G is an FC group.

Proof. By the proof (but not the statement) of Proposition 2.1, Kallman [6-],
the left regular og-representation of A is Type I. A is of finite index in G by
Lemma 5.3. Hence, if A has a normal Abelian subgroup of finite index, G also
has a normal Abelian subgroup of finite index by Poincar’s Lemma. Hence, it
suffices to prove Proposition 5.1 in case G is an FC group. Q.E.D.

Thus, we can (and do) assume that G is an FC group.
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LEMMA 5.5. Suppose that G has an n-dimensional 09-representation. Then ifa
and b commute, we have that to(a, b)" 09(b, a)".

Proof Let c be an n-dimensional 09-representation. Then 09(a, b)rc(a)7(b)
7(ab) 7r(ba) to(b, a)Tr(b)rr(a). Now take the determinant of both sides of
this equation and make elementary cancellations. Q.E.D.

Let S be the subgroup of the torus generated by all numbers of the form
to(a, b), where a and b are in G. Since G is countable, S is also countable. We
form the group (G, to)o as follows. (G, to)o as a set is G S, with the multi-
plication

(g, t)’(h, s) gh,
og(0, h)

(G, to)o is countable and S is central. Note that there is a one-to-one corre-
spondence between o-representations of G and ordinary representations of
(G, to)o whose restriction to (e, s) is s. For if rc is an to-representation of G,
then n(t/, t) trr(#) is an ordinary representation of (G, 09)0.

LEMMA 5.6. (G, 09)0 is an FC #roup.

Proof. One computes that (a, t)-1 (a-1, t-lto(a, a-1)) and that

(a, t) (b, s) (a, t)- (aba- 1, s09(a, a- 1)09(ab, a- 1)- to(a, b)- 1)
Since G is an FC group, the centralizer of any element b of G is of finite index
in G. Hence, it suffices to show that the set of distinct elements of the form
(a, 1).(b, 1) (a, 1)-1, a centralizing b, is finite. But if a centralizes b,

(a, 1). (b, 1). (a, 1)- (b, to(b, a)/09(a, b))

Now G certainly has a finite-dimensional to-representation, for the left regular
09-representation of G is Type I and generates a finite von Neumann algebra.
Hence, for some fixed positive integer n, co(b, a)/09(a, b) is an nth root of unity,
by Lemma 5.5, whenever a and b commute. Hence, (G, 09)0 is an FC group.

Q.E.D.

If A and B are subgroups of a group C, let (A, B) be the subgroup of C
generated by [a-lb-labla in A, b in B]. Note that in our construction of
(G, 09)o, we have an exact sequence

S (G, 09)o G e.

Let n: (G, 09)0 - (G, to)o/S G be the natural quotient mapping. If H is a
subgroup of G, we let (H, 09)0 n-l(H). Note that in general (H, to)o -(H, to H)o. We denote by Uo the representation of (G, 09)0 corresponding to
the to-representation UI of G.

LEMMA 5.7. Suppose that H is a subgroup of G, and that Q is a central pro-
jection in R(UI) such that QR(U) and QR(U H) are Type I yon Neumann
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alyebras. IfC is the centralizer of(H, 09)0 in (G, 09)0, then QUg(pqp-lq -1) Q
for every p in c and q in (G, 09)0.

Proof This follows from Lemma 5.6 and a simple modification of Lemma 2,
Smith [ ]. Q.E.D.

LEMMA 5.8. Let H, C, and Q be as in Lemma 5.7. Then Oz(C), G) is finite.

Proof Let Q 2aeG aUI(a) ’e O. QU(pqp-lq -1) Q for all p
in C and q in G. This implies that

12el--I,<,,--)1.

Since 2aG I)a[ z <: , (re(C), G) is finite. Q.E.D.

LEMMA 5.9. (G, G) is finite.

Proof Use Lemma 5.6, Lemma 5.8, and simple modifications in the third
paragraph of the proof of Theorem 1, Smith [1 1], to obtain this result. Q.E.D.

In what follows, let Qn be the central projection in the center of R(UI) such
that Q,R(UI) is a Type I von Neumann algebra and ,>_1 Qn L

LEMNA 5.10. The Qn have support in (G, G).

To prove this one only need copy the proof of Lemma 3, Smith [11].

Proof of Proposition 5.1. Use Lemma 5.7, Lemma 5.8, and simple modifica-
tions in the third paragraph of the proof of Theorem 2, Smith [11], to conclude
that there is a subgroup C of finite index in (G, O))o such that

U(aba-lb-1) I for all a and b in C.

But one easily checks that this implies rc(aba-lb-) is the identity. Hence,
re(C) is Abelian and of finite index in G. rr(C) may be assumed to be Abelian
by Poincar6’s Lemma. Q.E.D.
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