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O. Introduction

The problem of determining conditions which imply that one piecewise linear
manifold embeds in another or that two piecewise linear embeddings are
isotopic has been studied through many approaches. One such approach which
provides a connection between these two problems is the concept of a con-
cordance between two embeddings. In 1966, J. F. P. Hudson [7] proved that,
if the codimension is at least three, the existence of a concordance between two
embeddings implies the existence of an isotopy. In other words the "block" arc
components of the space of embeddings correspond bijectively to the usual arc
components, cf. [16], [17]. Thus it is natural to hope that a similar approach
might prove helpful in an attempt to determine the higher homotopy groups of
the (semisimplicial) complex of embeddings by studying the block-homotopy
groups (or concordance-homotopy groups [1]) of the embeddings and to de-
termine the relationship between these two structures. Indeed C. Morlet [15]
has given a method attacking the first part of the problem and a somewhat less
successful method for the second part. In [13] the author has provided another
approach to this latter problem which leads to more satisfactory results. The
purpose of this paper is to describe the implications of this method and its
consequences in light of Morlet’s block-homotopy results.

In Section the main results are stated and related to previous results. Section
2 contains a discussion of the definitions while Section 3 is devoted to the heart
of the development, an analysis of several special cases. The more general
results are proved in Section 4. The last section contains a useful calculation of
some homotopy groups of eLVn+k,k.

I wish to thank D. Newquist and F. Quinn for conversations which were of
great assistance during the preparation of this paper and extend my appreciation
to the referee for his valuable comments.

1. The main results

By employing a basic result of the study of concordance and isotopy of em-
beddings of balls in manifolds the following theorem will be proved.

TI-IEOgEM 3.2. Let f: (Dm, E x) (N, ON) be a proper piecewise linear
embedding. If nj(N) O, j <_ k, and n rn >_ 3 the relative th homotopy
group comparing the space of embeddings and the block space is zero when
i<n+k-m-2.
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This result and an extension of Morlet’s sequence for the block homotopy
of embedding spaces gives a useful calculation in Theorem 3.12. In the special
case of a sphere a calculation of Rourke and Sanderson is recovered [173.
Specifically

(3.15) ni((*, E")) - ni(G,+, G,), n > 2.

As a consequence one proves Theorem 3.18 which, in the case of a sphere,
reduces to the statement

(3.19) 0o: ni(do(Dm, D x Z"; j)) ni+,,(G,+l, G,)

is an isomorphism for < 2n 3 and an epimorphism for 2n 3. A
generalization of this result plays a key role in the general case and in a special
case gives an answer to a question of Zeeman [18], cf. Husch [6].
COROLLARY 3.21. If n > 3 there are compatible homomorphisms

Ok 7ri(do(D ,k, D ,n+k; j)) rCi+m(Gn+k + 1, Gn)

which are isomorphisms if < 2n + k 3.

The case rn 0 proves the conjecture of Zeeman and provides information
well beyond his range. This same result provides the proof of Theorem 5.1
which says that if n _> 3, then

rCi( V PL,,+k,k) G,)

is an isomorphism for < 2n + k 3. This is a substantial extension of an
old result of Haefliger and Wall 1-4, Theorem 3].

In Section 4 an extension of Morlet’s "Lemme de disjonction" is stated and
could be used (as he does) to study embedding spaces. In this paper another
method is used to give the basic comparison between the homotopy groups of
the space of embeddings, d(M, N), n m _> 3, and the block space of em-
beddings, dT(M, N), in Theorem 4.2. Although the theorem is rather compli-
cated its corollaries, 4.8 and 4.9, state that the respective ith homotopy groups
are isomorphic if < n rn 2, for general N, and < 2(n m) 2 if
N D". Thus the strength of the theorem is not in its generalities but, rather,
in its application to specific cases.

2. Definitions

All of the definitions and results concern either the simplicial, block, or piece-
wise linear categories. For the definitions and properties of the simplicial cat-
egory see Curtis [2], for the block category see Rourke and Sanderson [16],
and for the piecewise linear category see either Zeeman [18] or Hudson [8].

Objects in the simplicial and block categories are distinguished by a tilde (’)
appearing over the objects in the block category. Thus n(X) and n()) denote
the ith homotopy groups of an object in the simplicial category and the ith
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block-homotopy groups of a related object in the block category. It will be
important to compare these groups by including them in an exact sequence, cf.
Morlet [15-],

(x)--, (27)-, ’(x)--,.
This is accomplished by defining zr[(X) to be the group ni(., X).

Let M and N denote compact piecewise linear manifolds of dimensions rn and
n and boundaries c3M and ON, respectively. Let A denote the standard s
dimensional simplex, I [0, 1], rJ [-r, r], (rJ)" rD", and Z"-x c3D".
A subspace (K, Ko) of a space (L, Lo) is said to be proper if K\Ko = L\Lo. A
piecewise linear mapf: (K, Ko) (L, Lo) is proper if (f(K), f(Ko)) is a proper
subcomplex of (L, Lo).

2.1. DEFINITION. Given a proper piecewise linear embedding of a proper
subcomplex of (M, 3M) in (N, ON), f: (K, Ko) --* (N, ON), let o(M, N; f)
denote the simplicial complex of locally unknotted proper piecewise linear
embeddings of (M, cqM) into (N, ON) extendingf. That is the simplicial complex
whose s simplices are proper piecewise linear embeddings

F: (m, cgm) x A (N, cgN) x A

1: A A
such that:

(i) the diagram is commutative;
(ii) F-X(c3N x As) t3M x AS;
(iii) F[(K, Ko) A =f 1;
(iv) for any simplex A linearly embedded in As, (N x A, F(M x A)) is a

locally unknotted manifold pair.

Iffis not specified this complex is denoted by g(M, N). If

f: (M, c3M) - (N, ON)

then by o(M, N; f)(o(M, N; f[ K)) we understand

(M, N; f l((gM, OM))(oZ(M, N; f (9(M) w K, gM)))

and f also provides the basepoint of the spaces.
The block complexes, o(M, N;f) and o(M, N), are defined as above except

that condition (i) is replaced by:

(i) for all faces A’ of As, F (M, M) x A’ is an embedding of (M, M)
A’ into (N, tN) x A’.

2.2. DEFINITION. Let (K, Ko) be a piecewise linear space. The complexes of
proper piecewise linear homeomorphisms of (K, Ko) onto itself which are fixed
on Ko are denoted (K, Ko) and (K, Ko). If K is a manifold the subcomplex
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of (K, Ko) of homeomorphisms which are fixed on c(K) w Ko is denoted by
9fro(K, Ko). If Ko is empty these spaces are denoted by JCf(K) and
respectively.

2.3. Remark. Inasmuch as all the definitions have analogues in the block
category which are apparent, given those in the simplicial category, only the
simplicial definitions will be given.

2.4. DEFINITION. The complexes of germs of proper embeddings of (M, 0M)
into (N, dN) extending f and of germs of homeomorphisms of K which fix Ko
are denoted by (o(M, N; f) and d(K, Ko), respectively. The first, for
example, consists of the simplices of the complexes of proper embeddings of
neighborhoods (U, Uo) of (K, Ko) into (N, tgN) which extend f[ (K, Ko).

2.5. DEFINITION. The complex of proper piecewise linear maps of (L, Lo)
into (E, L)) extending f: (K, Ko) - (E, L) is denoted by

//((L, Lo), (L6, L);f).

If (L, Lo) (E, L6) this complex is denoted by /#(L, Lo; f).

2.6. DEFINITION. Let i: (Lo, Lo) (L, Lo) denote the inclusion. The sub-
complex of J#(L, Lo; i) consisting of homotopy equivalences is denoted by
/(L, Lo), that is to say if F is an s-simplex of r4(L, Lo) there is another s-simplex
G of .6(L, Lo) such that FG and GF are homotopic to the identity through
homotopies which are fixed on Lo, leave L\Lo setwise invariant, and respect the
projection to A* x 1. If L is a manifold and Lo tgL then (L, L0) is denoted
by A(L). The subcomplex of those equivalences keeping a subcomplex K fixed
is denoted by Ae(L)r.

2.7. Remark. It is easy to see that zrj(A(L, L0) is isomorphic to

rcj(d//(L, Lo; i)),
via the inclusion, for j >_ 1.

2.8. DEFINITION. The complex of proper concordances of (germs of) proper
embeddings extending a proper embedding f: (K, Ko) - (N, 0N) of a proper
subcomplex of (M, tgM) is denoted by Cg(M, N;f)(cCg(M, N; f)). It is the
subcomplex of

(I x M, 1 x N; x f)(f#o(1 x M,I x N; x f))

whose s-simplices F satisfy

(i) F-l({0}) x m x As) {0} x M x Asand
(ii) F-l({1} x N x As) {1} x m x As.

2.9. DEFINITION. The complex of (germs of) proper isotopies of proper
embeddings extending a proper embedding f: (K, Ko) (N, N) of a proper
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subcomplex of (M, cM) is denoted by J(M, N;f)(fgC(M, N; f)). It is the
complex of paths in g(M, N; f)(fg(M, N; f)) or, equivalently, the subcomplex
of

6(I M, 1 x N;1 .f)(f#(l x M,I x N, x f))

such that, for any s-simplex F, the diagram

F:I x M x A-----, I x N x A

1:I x A I x A

is commutative.

2.10. DEFINITION. Letf: (M cOM) - (N, tgN) be a proper piecewise linear em-
bedding, cg(M, N;f[ K)(Cgo(M, N;f[ K)) and d;o(M, N;f[ K)(o(M, N;f[ K))
are the subcomplexes of Cg(M, N; f[ tgM w K) and ,(M, N; f tgM w K),
respectively, whose simplices F satisfy the property that

F ({0, 1} x M x A) x f x I(FI ({0}) M x A) x f x 1).

The analogous definitions for concordances and isotopies of germs of embed-
dings are also assumed.

Several simplicial fibrations and quasi-fibrations will be required in the next
section. These are recognized via standard methods, c.f [11, 13, 15], by employ-
ing Hudson’s s-covering isotopy theorem, Theorem 4.1 of [9].

2.11. PROPOSITION. Let

(Dk, z,k-1) (M, 6N) (N,

be embeddings with n k >_ 3 and n m >_ 3. In both categories

(i) 8(M, N; f lt(Dk) (M. N; f) - (Dk, m;.fi) is a simplicialfibration.
(ii) If D D x D,

#(M, N .f t(O’ x 1/2hi)) #(M, m .f t(O’ {0}))

fg(D’ x Di,N;filD’ x {0})

is a simplicial quasi-fibration.

2.12. Remark. Indeed Proposition 2.11(ii) would be a simplicial fibration
if the neighborhood of the germ had not been normalized to D x 1/2Dj. Further-
more these imply the existence of analogous fibrations for concordance and
isotopy spaces merely by employing Definitions 2.8 and 2.9, respectively. It is
the pairs of these fibrations that are actually required.

Finally a simple consequence of the handle-body theory of piecewise linear
manifolds will be required, cf. [-83. Briefly, suppose that M is a piecewise linear
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manifold and g" c3(Dr) x D --, cM is a piecewise linear embedding. Then
M’ M wo D x O is a piecewise linear manifold obtained from M by
attaching an r-handle to M. A handle-body decomposition for a manifold M
is a sequence of manifolds

Dm-- Mo c M1 ...c Ms+ M

where Mi+l is obtained from Mi by attaching an ri-handle.
2.13. PROPOSITION. Let M be a connected piecew&e linear man(fold; then M

has a handle-body decomposition such that r > ri+lJbr all i, and

(i)
(ii)

ifM 0 there is precisely one O-handle and one m-handle, and

if 3M v 0 there is precisely one O-handle and no m-handles.

3. Important special cases

A fundamental result in the study of concordances and isotopies is the follow-
ing theorem.

3.1. THEORF.M 1-13, 1.11]. Let f: (Dm, Zm-l)
_

(N, ON) be a proper piece-
wise linear embedding. If 7rj(N) O, j < k and n m > 3, then

7rs(c#e(Om,N),ce(Dre,N)) 0 if s < n + k m 3.

As an immediate consequence one has the following proposition relating the
homotopy and block-homotopy of embedding spaces. We note that Morlet
[15, p. 29] has this theorem with k replaced by/ min (n m 3, k).

3.2. THEOREM. Let f: (Om, ym-1) (N, ON) be a proper piecewise linear
embedding. If rcj(N) O,j < k and n m > 3 then rce((Dm, N;f)) Ofor
< n + k m 2 or, equivalently, the homomorphism

z(g(D, N; f)) (g(Dm, N;f))

is an isomorphism if < n + k- m 2 and an epimorphism if n +
k-m-2.

Proof. The proof is by induction on i, the case 0 being a direct con-
sequence of the definition. Consider the following commutative diagram,

rCi_ ,(Jce(Om, N; f)) __z_, 7ti(o(Dm, N; f))
Theorem3.1 Theorcm 3.2 (,)

rci_ (ce(Dm N; f)) i((Dm, N; f))

ni_(g(D x Dm, D x N;I x f) (gDEl-1 X Dm, D x N; 1 x f)
Theorem 3.2 (i-

which demonstrates that Theorem 3.1 and Theorem 3.2 for i- implies
Theorem 3.2 for i.
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Thus one is led to seek specific information concerning the homotopy groups
of these particular block embedding spaces. As observed, there are often special
"looping" and "delooping" identifications possible in the block category, For
example, if j: D -, D x N is given by j(x) (x, ,), where is a generic
notation for the basepoint of a space, then ni((Dm, D x N; j)) is equal to

7i+m((* N)), rCo(o(D’+m, Di+m N; x j))
and

rCo((Di+m, Di+m x N;1 x j)).

These identifications have provided interesting calculations, in [13], which are
extended here. This is accomplished by studying i(6(,, N)).

3.3. PROPOSITION. Let i(O) N\N N, N a piecewise linear manifold of
dimension n > 3, be a fixed point. Then

(i) (O", N;i] {0}) --, oZ(D", m) oz(,, m) is a fibration, and

(ii) de(N, 1/2D") ,0(N, ,) G,

is a weak quasi-fibration where is the composition of the germ homomorphism to

(D", O)followed by the inverse of the homotopy equivalence from d(Z"-l) given
by taking the germ of the cone.

3.4. Remark. There are corresponding fibrations in the block category.
Also the natural inclusion of oz(,, N) into 6(,, N) is a homotopy equivalence.

The following theorem, a direct extension of a result of Morlet [15, p. 19] to
the nonsimply connected case, provides a crucial ingredient at this point.

3.5. THEOREM. Let f: (M, OM) --, (N, ON) be a proper embedding, (E, Ee) a
regular neighborhood off(M, OM) in (N, ON) with inclusion . If n rn >_ 3
and n >_ 5 then there is an exact sequence

n,((E, N;

zri(e(N), o(N, E))

(3.6)
,(#ff((M, gM), (G/PL, ,)))

(((M, M, (a/PC, ,
where tl is the normal invariant.
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3.7. Remark. Because of deformation retracts in the other stages, the tildes
are actually only required at the stage zr((E, N; E0)). As noted by Morlet
this group also appears in the exact homotopy sequence of the weak fibration,

(3.8) d(E, N;tl E w f(M)) of(E, N;tl Eo) (q(M, N; f M).

This fibration provides a useful tool in the attempt to describe the homotopy
of block embedding spaces by considering a handle-body decomposition of a
general M and working inductively over the handles, cf. Morlet [15]. At this
point the case M is all that is required. Then (3.6) reduces to Morlet’s
sequence [15, Theorem 5], i.e., if dim N > 5 there is an exact homotopy
sequence

(3.9)

ni+I(G/PL)

Tc,(d(D", N))

T(e(N), o(g, D"))

(a/

which terminates with nl(G/PL).
An analogous sequence is

(3.10)

rci+ (G/PL)

z,(oZ(D’, N;’

,((N, ,), (,

r(G/PL)

also terminating with zI(G/PL). The basic method to arrive at such a sequence
is the framed surgery-transversality techniques which proved so successful [3],
[12], [17]. Alternatively, one can consider the inclusion of (O", D";t (0})
into (D", N;t {0}) and note that it is a homotopy equivalence. By taking
germs, this former space is easily recognized to be the homotopy type of PL(n)
[11]. Thus the exact sequence of the pair PL(n) c ,,, and the stability results
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of Rourke and Sanderson [-17, Theorem 0.3, Corollary 5.5, and Theorem 1.10]
give the following exact sequence, for _> 1,

/(a/etl

ni(PL(n)) ni((D", N;i[ {0}))
(3.11)

(a/g)

Then Proposition 3.3 (ii) and (3.11) give (3.10).

3.12. To. Ifn 5, then, for 1,

u(&,, N)) u,(o(N), o(N, *)).

.1. COROLLARY. If 5, te, for 1,

7[1(o(8, N)) - n,(A(N),, A(N, ,)).

Proof of Theorem 3.12 and Corollary 3.13. The exact sequences (3.9) and
(3.10) are related via the following homotopy lattice of a cube"

in which all rows and columns are exact sequences and all squares are com-
mutative except those involving four homomorphism which are anticommu-
tative [ 14-].

Since the homomorphisms relating the exact sequences are induced by in-
clusions the normal invariants of (3.9) are taken identically to those of (3.10),
that is the induced homomorphism on n(G/PL) is the identity. Consequently
zi(E3) is trivial and hence n(o(., N)) is isomorphic to ni() which is iso-
morphic to n((N), e(N, *)).
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The exact homotopy sequence of o(,, N) (,, N) splits so that

u(#(,, N)) - u,(oz(,, N)) ) T[l(oz(,, N)).

Thus Theorem 3.9 and the isomorphisms

i(g(,, N)) ,(N) ni(de(N), de(N),)

show that the exact sequence

,(0(N),, o(N, *)) ,(o(N), o(N, *)) ,(0(N), o(N),)

::’((,, S)) , N)) i(g(,, N))

also splits. These splittings give the isomorphism

[1(($, N)) ,(e(N),, o(N, *).

3.14. Remark. If one takes N Z" in Theorem 3.12 the result has a recog-
nizable answer. This follows from the observations that Z0(Z", *) is homotopy
equivalent to (Z"-) G,, Ze(Z", D") is contractible and, employing the
standard notation, that Ze(Z"), F,. Thus one has a version of the calculation
of Rourke and Sanderson [17, Corollary 2.18, p. 454] that

,(g(., ")) ,(a.+,, 6.), > 2,(3.15)

and

(3.16)

3.17. Problem.

rce’(g(., Z")) - rc(F., G.), n > 2.

The structure of r(Z0(N), ,0(N, *)) for other manifolds has
not been determined. This determination appears to be a difficult problem but
one which should be attacked so as to gain the most from this approach to
embedding spaces.

3.18. THEOREM. Let j: D -- O N be given by j(x) (x. ,). Then (f
rci(N) O, j <_ k, n > 5 the homomorphism

ci(o(Dm, D" x N; j)) --+ TC,+m(ie(U), fie(N, *))

is an isomorphism if < n + k 2 and an epimorphism f n + k 2.
(If N E" it is only necessary that n >_ 3.)

Proof of Theorem 3.18. This follows easily from Theorem 3.2, the observa-
tion that rci(ff(Dm, D N; j) is equal to 7Zi+m(ff(*, N)), and Theorem 3.12.
If N Z", (3.15) is employed in the place of the more general Theorem 3.12.

If N Z", n > 3, this becomes the useful fact [-13, Proposition 1.17]:

(3.19) 0o: rc,((Dm, D x Z"; j)) --+ rC,+m(G,+ a, G,)

is an isomorphism if < 2n 3 and an epimorphism if 2n 3.
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It is easy to see that, since E"\, is contractible,

7ci(o(am, .D X y-n;j))
is isomorphic to

rti((D x E, a X ;j)),

in both categories, wherej also denotes the inclusion j: o ._+ E". This informa-
tion and the appearance of rc(f(D x k, D x ,+k;j)) in questions con-
cerning embeddings of arbitrary manifolds as well as its connections with
make the following theorem and its corollary of some interest.

3.20. THEOREM. /f n _> 3 and j" D x ,k c D y-n+k denotes the in-
clusion the homomorphism

yti((D y-k, D .+k;j))+ yCi((D y-k, D y-.+k;j)

is an isomorphismfor < 2n + k- 3 and an epimorphismfor 2n + k- 3.

3.21. COROLLARY. If n > 3 there are compatible homomorphisms

Ok: rci(vZ(D x y.k, Dm x y-,+k;j) rti+m(G,+k+l G,)

which are isomorphisms if < 2n + k- 3 and epimorphisms if 2n + k- 3.

Proof of Theorem 3.20. The proof is by induction on k. The case k 0 is
simply the observation which precedes the theorem and Theorem 3.2. Suppose
the statement has been demonstrated for 0, 1, 2,..., k- 1. Consider the
fibration

(3.22) (D ,k, D x y-n+k;j Dm X *)--+ o(D X y-k, D

_+ (Dm, D y-n + j)

in both the categories and the inclusion of one in the other. Theorem 3.2 gives
conditions for the inclusion of base spaces to induce an isomorphism on homo-
topy groups. Thus we must consider the effect upon the homotopy groups of the
respective fibers. Information is supplied by considering the following fibrations
(in both categories), cf. [ 11 ] or [13-1.
(3.23) o(D x y-k, D x ,n+k;j Dm X Dk)

--+ (D X y-k, D X y-"+k;j Dm x ,)

--+ (9#(D x Zk, D x y-"+k;j Dm x *),

(3.24) e(D x Dk, D x D"+k;j Dm x (1/2Dkvo
--+ #(D x Dk,D x D"+k;jl Dm x (, w

--+ Cg(D x Dk, D x D"+k;j Dm x (, w

In the usual fashion (and in both categories) one observes that the base spaces of
(3.23) and (3.24) are identical and that the fiber of (3.23) and the total space of
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(3.24) are contractible. Finally the fiber of (3.24) has the homotopy type of
o(Dm+l Ek-1, Dm+l .,n+k-l.j), so that the induction hypothesis gives
conditions relating the homotopy groups of both categories which in turn gives
conditions on the homomorphism relating the groups of the fibers (3.22). By
the five lemma this implies that the induced homomorphism from

zi(g(D x Zk,D x E"+;j)) to zi(g(D x E,D x E"+;j))

is an isomorphism for < 2n / k- 3 and an epimorphism for 2n / k- 3.

ProofofCorollary3.21. Define

Ok: rti((D" x Ek, D" x E"+k; j)) ZC,+z(i.+k+,,

as follows: Let F: D x D x Ek D x D" x E"+k represent an element
of the homotopy group. Considering F as a concordance,

F:D x (D"+i+x x Zk) D x (D"+i- x E"+k),

apply Hudson’s concordance-isotopy theorem [9] to find an ambient isotopy,
H,, of

D x (D+i+ z.+k),

fixed on {0} x (D+i- x Z"+k) w D x O(D"+- x z.+k), such that

Hx [D x (D+-x x zk) F.

Let Ok[F] [H]. To show that Ok is well defined suppose that H and Ht’ are
two suchisotopies. Let H’ Ha-2.0 < < 1/2and H’ H_,1/2 < < 1.
H"]D x D x (D"+i-x x Zk) defines a concordance, along the second
factor, so that Hudson gives an ambient isotopy, G, fixed on

D x {0} x (D"+i-x x Zn+k) k.)Z0 X D x (D"+i-x x Zn+k)
wD x D x c3(D+i- x Z"+k)

such that GxlD x D x (Dm+- x ,k)= X F. G1H’ defines a homo-
topy between H and HI. Since rci(,, q) - rci(G,, Gq) all that remains is to
show that the sequences

r+ (g(D", D" x E,,+k)) --. TCi+,,,+ (G,,+k+ x, G,,+k)
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are related by homomorphisms so that the diagram is commutative. This is
accomplished by checking the construction. One can show that Ok is an iso-
morphism directly via transversality and surgery as in [3], [12], [17] or appeal
to the five lemma and use an inductive argument.

3.25. Remark. The corollary is simply the observation that

i(ff(D ,, D yn+k))
is isomorphic to

i+m(Gn+k+ 1, Gn).

4. Embeddings of manifolds

As mentioned in the introduction the basic approach is the comparison be-
tween the homotopy groups of the embedding and block embedding spaces. In
doing this a handle-body structure on a manifold is employed in addition to the
methods and results of Theorem 3.20.
The theorems which are proved here are slight extensions of the results of

Morlet [15]. The major differences are in the method of proof and applications
to some special cases where these results give substantial improvements. The
fundamental tool of Morlet is the "Lemme de disjonction." The following
generalization can be given.

4.1. "LEMME DE DISJONCTION". Let N be a manifold of dimension n, g, and h
disjoint proper embeddings of Dp and Dq in N, respectively. If n p > 3 and
nj(N) O, j < k, then

nffgoo(Dv, N; g), cgoo(Dv, N\h(Dq); g) 0 for < 2n p q 4.

Unfortunately this additional dimensional freedom is not sufficient to sub-
stantially improve upon his general results via the techniques of [15]. Another
approach, however, does give a slight improvement.
As noted in (2.13) every manifold admits a handle-body structure. Under

assumptions concerning the dimension of the manifold and its connectivity it is
possible to show that a certain dimensional range of handles are not required
other than the 0-handle, of course. This fact is reflected in the statement of the
main theorem.

4.2. THEOREM.
pose that

Let f: (M, OM) (N, ON) be a proper embedding and sup-

Dm-- Mo c M1 "" Ms+ M

No N1 ’" Ns+ N

is a handle-body structure on the pair such that < r < m for 0 < < s +
if OM Oand O < < sifOM O. Ifn- m > 3andns(N) O forj < k
then the homomorphism

n[(g(Mo, No ;fl Mo)) "- TCeI(g(M, N;f))
is an isomorphism if < n + 1 + fc m 2 and an epimorphism if n +
/ fc- m- 2, where/ min(k,n m- 1).
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Proof of Theorem 4.2. The proof is by induction on s and will first consider
the case cM :/= 0. For s 1, i.e., M M0, the result is trivial. Assume then
that the theorem has been proved for handles. Let

M, + M, wo Dr’ x D r,

and let i: Dm-r’ - M,+ denote the inclusion of the cell transverse to the handle.
Since n (m r,) >_ 3, Proposition 2.11 implies the existence of a pair of
fibrations"

dr(M,+ 1, N,+I ;fl i(om-rt)) dr(M,. 1, N,+I ;fl i(om-rt))

(4.3) g(M,+l, N, +1 f) dr(M, +1, N, +1 f)

dr(D’-r’, N,+I ;fl Din-") o(Dm-r’, N,+I f Dm-r’)
Theorem 3.2 implies the homomorphism relating the ith homotopy groups of the
base spaces is an isomorphism if < n + / + m and an epimorphism
ifi=n+ re+l-m- 1.
The fibers of (4.3) are next studied via the fibrations (4.4) where

j’1/2Dr’ Dm-r’ M,+ I.

$ dr(Mr+l, N,+I ;flJ(D"’ x Dm-r’))
(4.4)

g(D
",, -’,))

To accomplish this first note that the base spaces depend neither upon N norf
and are equivalent to the base space of the following fibrations.

(4.5)

The two total spaces of (4.5) are contractible via the Alexander isotopy [11],
[13-1 while the fibers are easily recognized as

and
dr(D.,-.,+ X Zrt- 1, Din-r,+ X En-m+’’- 1)

dr"(Dm-r,+l .r,-1, Dm-r,+l

respectively. Since n m + r, > 3 the inclusion induces an isomorphism
on homotopy for < 2(n- m) + l- 3 and an epimorphism for i=
2(n m) + 1- 3. As a consequence the homomorphism between the base
spaces of (4.5), and therefore (4.4), is an isomorphism for < 2(n m) + 2
and an epimorphism for 2(n m) + l- 2.
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This final step in the analysis is the recognition that the fiber of (4.4) is equiv-
alent to

Y(Mt, N,; f Mr) o(Mt, Nt; f Mr).
Since n m + r > 3 and rc(N) 0 for j < k standard arguments give
rci(Nt) 0for j< min(k,n- m + r,- 2). By hypothesisn- m + rt-
2 > n I- > n m so that the homomorphism between the hom-
otopy groups is an isomorphism if < n + + / m 2 and an epimorph-
ism if n + + k m 2 by induction. Employing (4.4) and (4.3) this
gives the theorem for c3M # 0.

If OM 0 it is necessary to add the m-handle and follow the same argument.
Surprisingly, one ends with precisely the same dimensional restrictions.

4.6. COROLLARY. Under the same assumptions as Theorem 4.2,

rt[’(o(M,N; f)) 0 if < n + m 2.

The proof is simply to show that r[(d(Mo, No;fl Mo)) 0 by employing
Theorem 3.2.

4.7. Remark. If the handle-body decomposition of M is sufficiently simple
one can employ Theorem 3.18 to give precise information. The most striking
example of this is Corollary 3.21 where, with m 0, one has an isomorphism,
forn _> 3.

Ok" rCi(g(Ek, E"+k)) rc(G,+k+ 1’ Gn)
for < 2n + k 3. In the general case one recovers Morlet’s results. For
example:

4.8. COROLLARY. Let f: (M, M) (N, 8N) be a proper embedding with
n- m > 3, then the homomorphism zi((M, N; f))- i(6(M, N; f)) is an
isomorphism for < n m 2 and an epimorphismfor n m 2.

4.9. COROLLARY. Letf: (M, 8M) (D", E"-a) be a proper embeddin# with
n m > 3, then the homomorphism i((M, D"; f)) - 7ri((M, D"; f)) is an
isomorphism if < 2n- 2m 2 and an epimorphism if 2n 2m 2.

5 An application to VPL
+k,k

Let PL(n + k, k) p(n+k, ,k) with PL(n) PL(n, 0) and define

V,L PL(n + k) and ’ PL(n + k)
,+k,k-

PL(n + k, k)
,+k,k- PL(n + k, k)

The spaces appear in fibrations as follows:

PL(n + k, k) #(E"+k, Ek) (E"+k, yk) PL(n + k, k)

PL(n + k)= g(E"+k,E) (E"+k,E) PL(n + k)

PLVP d(:k, Z"+k" ;o) _., (:k, z,+k. :o) ’n+k,kn+k,k
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Thus
no(VV’,+,,,D - r(’t(X’, X"+’, X)).

The methods of the previous section show that this is isomorphic to

7rrell((D1 x -1 D X En+k-

Theorem 3.20 implies that this is zero for _< 2n + k 3. Thus we have the
following proposition which extends a result of Haefliger and Wall [4, Theorem
3].

5.1 THEOREM. /fn > 3, then xi( v. zi(Gn+k,Vn+k,k) G.) is an isomorphism
for < 2n + k 3 and an epimorphism for 2n + k- 3.
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