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Introduction

Every finite projective Hjelmslev plane H possesses two integer invariants
denoted by and r. (See, e.g., [4].) Every point of H possesses precisely 2

neighbor points; r denotes the order of the projective plane canonically paired
to H. Such an H will be called a (t, r) PH-plane. In [3], Drake and Lenz
constructed the first examples of PH-planes with invariants (t, r), not a power
of r. These PH-planes were so constructed as to possess given PH-planes as
epimorphic images. The construction methods devised were most successful
when the given epimorphic images were taken to be 2-uniform PH-planes; i.e.,
PH-planes with r. In this note, we refine the methods of [3-] to obtain
PH-planes as preimages of strongly n-uniform PH-planes for arbitrary n. (See
Ill.) PH-planes with invariants (t, 2) are now known to exist for 41 values of
less than or equal to 1,000 (16 of the 41 thanks to the results of this note); they
are known not to exist for three values of but remain in doubt for the other 956
possible values.

1. Preliminaries

Of great importance to our construction is the following familiar lemma
couched in unfamiliar terms. (See [5] or [63.)

THEOREM 1.1 (K6nig’s Lemma). Let T be a tactical configuration with block
size and replication number both equal to r < oo. Let S {n1,..., nr} be a
labeling set. Then there is a function ffrom the flags of T to S such that each
point and each line of T occurs in r flags labeled by each of the r elements of S.

We refer the reader to [1] for the definitions of n-uniformity and strong
n-uniformity. If H is a strongly n-uniform PH-plane, then the invariants of H
are (t, r) where r"-t. We write P ( i) Q if P and Q are joined by at least
r lines, 0 _< _< n; P (-i)Q if P and Q are joined by exactly r lines,
0 _< < n; P (-n) Q if P Q. By [1, Definition 3.3, Proposition 3.3(2), and
Proposition 2.2(2)], we may define (, i) and (- i) dually for lines; i.e., g ( i) h
if [g c hl >_ r and g (-i) h if Ig c hl r i. The following result is part of
[1, Proposition 2.2] together with [-1, Proposition 3.6].
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PROPOSITION 1.2. Let H be a strongly (d + 1)-uniform PH-plane with in-
variants (t, r). Then the following properties hold:

(1) r.
(2) IfP and Q are distinct points of H, there exists an integer < d such that

P (-i) Q.
(3) If(P, g) is aria# ofH and is a positive integer < d + 1, then the number

of lines through P which meet g in at least r points is rd+ 1- i.
(4) (, i) is an equivalence relation on the points ofHfor O, 1,..., d + 1.
(5) Let lg c hl r ,0 < i< d,P g c h. Then

g c h (Xeg: X(d + i) P).

(6) (Property S.) Suppose that P, Q, g, h are points and lines ofH such that
Pegch, Qeg- h, lgh] =r,P(-j) Q,i +j < d. ThenQ(-i+j) h;
i.e., there exists a point X on h such that Q (_ + j) X but not point Y on h such
thatQ(i+j+ 1) Y.

The dual of a PH-plane H is again a PH-plane with the same invariants
(t, r) as H. The following result is then only a slight rewording of [1, Theorem
4.7].

THEOREM 1.3. A PH-plane H is strongly n-uniform if and only if H and the
dual ofH are both n-uniform PH-planes with the same invariants (t, r).

As a consequence of Theorem 1.3, all the properties dual to (2)-(6) of Prop-
osition 1.2 hold in a strongly (d + 1)-uniform PH-plane, and we shall refer to
these properties as (2)d,..., (6)d. We shall refer to all twelve properties through-
out the paper without direct mention of Proposition 1.2, referencing, e.g., (3)
or (5). We now change the notation of [1] and extract the following result
from [-1, Propositions 3.2 and 3.3]. (The sequences of subscripts on PH-planes
and maps below are the reverse of the ones given in [1-].)

PROPOSITION 1.4. Let /g a+ be a strongly (d + 1)-uniform PH-plane
with invariants (t r, r). Then there exist strongly i-uniform PH-planes ,3(’
with invariants (r -, r) for <_ <_ d + and epimorphisms I:+ - af’
such that (1)/ti(P) i(Q)/fand only ifP ( i) Q, (2) #(g) #i(h) tfand only
if# ( i) h and (3) #(P) #i(g)/fand only if there exist incident Q and h in the
inverse images (in /g) of l(P) and Ii(g). Also when j < i, the statement
#(P) (-j) Ii(Q) is equivalent to the statement P (-j) Q; the dual assertion
holds (for lines). In particular, every 1 preserves and reflects the neighbor
relation.

THEOREM 1.5 [-1, Theorem 5.4].
strongly n-uniform for some n.

Every finite Desarguesian PH-plane is
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Let ff {No, Na,..., N} be a set of square (0, 1)-matrices, each of order
s2, such that the following conditions are satisfied"

T NTN(1.1) NiN J for #j,

q q

(1.2) E NiN > 2J, E N fN > 2J.
i=0 i=0

Then is called a set of auxiliary matrices. Here J denotes the matrix of all l’s,
and we write [xij] > [yifl if the two matrices are the same size and xj > yj
for all i, j. The proof and statement of I-3, Theorem 5.1 ] together with Theorem
1.5 above yield the following result.

THEOREM 1.6. Let r be any prime power, d be any nonnegat&e integer. Then
there exists a set of r + auxiliary matrices No,..., Nr of row size r 2d. The
concatenated matrix (No N,) is the incidence matrix of a point neighborhood
ffd+ of a strongly (d + 1)-uniform Desar#uesian PH-plane fa+ with in-
variants (t, r) (r, r). Each Ni corresponds to a single line neighborhood of
.+ 1. The matrix (Nro Nf)r is the incidence matrix of a line neighborhood
of g/ga + with each Ni corresponding to a single point neighborhood.

In truth, the quoted results only assure that d+ is strongly n-uniform
for some n. Since there are r + line neighborhoods which intersect a given
point neighborhood of nontrivially, the projective plane paired to gcg has
order r. Since there are r 2d points in a point neighborhood of gt, the invariant
t of g is r d. Now Proposition 1.2 (1) yields n d + 1. The following result
is !-3, Proposition 4.1].

PROPOSITION 1.7. Let A [Aj] be a (0, 1)-matrix where each A ij is square
of order 2. Define aj to be 0 if A ij is the O-matrix, otherwise. Suppose B
[aij] is the incidence matrix of a projective plane of order r. Suppose also that
Aik(Ajk)r J when j and Aik, Ajk 0; (Aik)r(Aij)= J when k j and
A ik, Aj O. Assume also that

r2+r r2+r

X Aij(Aij)T > 2J, (A,j)TAij > 2J.
j=O j=O

Then A is the incidence matrix of a (t, r) PH-plane.

The following easy consequence of Proposition 1.7 was used without explicit
statement in [3].

THEOREM 1.8. The existence ofa set {No,..., Nq} ofq + auxiliary matrices
ofrow length s2 implies the existence ofa PH-plane with invariants (t, r) (s, q)
provided q is the order of a projective plane.

Proof Let B [aj] be an incidence matrix for a projective plane of order
q. Replace each aj by a square matrix Aij of order s2 as follows" if aj 0,
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take Aj to be the 0-matrix; if aj 1, take A to be one of the N. By K6nig’s
Lemma, this may be done in such a manner that each row and column of B will
receive each N as a replacement. The result now follows from Proposition 1.7.

2. Labeling the flags of a point neighborhood
of a strongly (d + )-uniform PH-plane

In this section, we shall frequently write {j,..., k} (with only the first and
last numbers specified) to mean the set of all positive integers such that
j < < k. We now take r, d, t, N, ra+ 1, a+ to be integers and structures
which satisfy all the conditions of Theorem 1.6. Now let a+ be the nontrivial
incidence structure consisting of a (d)-equivalent point class of,Va+ together
with a (d)-equivalent line class of 4/d/ 1. By nontrivial, we mean only that the
structure contains at least one flag (Q, #). Let h be an arbitrary line of
Thenlychl > ra. LetPtTch. EitherQhor# h. In the latter case,
(2)d implies that I# c hi r d. Then (5) and (2) imply that g c h consists of all
neighbors of P which lie in #, hence that Q (_0) P. Then (6) implies the exist-
ence of a point R on h such that R (=d) Q. In every case, h contains a point of
--d+ 1. By duality, every point R of --d+ lies on a line h of q-d+ 1. Now (3) and
(3)d imply that -d+ is a tactical configuration with block size and replication
number both equal to r. We take S {0,..., r 1}; applying (4), (4)d, and
Theorem 1.1, we obtain the existence of a function fa+ 2, defined on the flags of
all ofVd/ and satisfying the conclusion of Theorem 1.1 on each nontrivial -d.

For 2 < < d + 1, let V #(rd) where the p are the epimorphisms of
Proposition 1.4. Then each r, is the point neighborhood of a strongly/-uniform
PH-plane with invariants (t r i- 2, r). As above we obtain the existence of a
function.f,, defined on the flags of r, and satisfying the conclusion of Theorem
1.1 on each nontrivial ,St’; for this function, we take S to be the set

(2.1) {0, r d +

(In case d + 1, this merely repeats the definition of the preceding para-
graph.) Each flag (P, 9) of d+ defines a sequence of flags

(P’ #,(P),9‘= ,(9)), i= 2,3,...,d+ 1.

We define f on the flags ofVd+ by the rule
d+l

(2.2) f(P, 9) 1 + f(P’, 9’).
i=2

Clearlyfis a map into the set { 1,..., rn}, andf(P, g) f(Q, h) is equivalent
to the assertion thatf(P , ) f(Q, h) for all i. Let l(d + 1, i), 0 < < r,
denote the incidence structure consisting of the points of 4rd+ and the lines of
a single neighbor class of lines of oegd+l we may choose each (d + 1, i) so
that it is represented by the incidence matrix N,. Suppose now that f(P, 9)
f(P, h) where P, , h are point and lines from some ff(d + 1, i). Then (2)n
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implies that g ( 1) h, and we make the induction assumption that g ( 1) h.
By Proposition 1.4, gi (i 1) h i. The two assertions, gi (i 1) h and
fi(pi, gi) fi(pi, hi), together imply that gi hi; i.e., that g (, i) h. By
induction, g (d + 1) h; i.e., g h. We have proved the following result:

(2.3) Let P be an arbitrary fixed point of an arbitrary Y’(d + 1, i) ’.
Then the restriction off to the flags (P, x) ofW is a one-to-one mapping onto
{1,..., ra}.
Dualizing the last few lines of the above argument yields:

(2.4) The restriction off to the flags (X, g) of X, g a fixed line of V’, is a
one-to-one mapping onto {1,..., re}.
Next we prove:

(2.5) Let P (- i) Q for some P e W, some positive integer _< d. Then there
exists an integer k such that

{f(P, x): P, Q e x} {kr + 1,..., (k + 1)ri}.

We begin by labeling the lines which join P to Q by gj, < j < r i. Then
(5)4 implies that gj (d + i)gt g for all j; i.e., (gj)b gb for all
b < d + i. This means that fb+=-fb(Pb, (gj)b) is independent ofj and
divisible by r *. Since

d+l

fb(pb,(gi)b)< r i,
b=d-i

there exists an integer k such that {f(P, g)} c {kr + 1,..., (k + 1)ri). The
truth of (2.5) now follows from (2.3), and the dual argument yields the following
conclusion:

(2.6) Let g(-d + 1- i)h for some h cr, some positive integer
d + < d. Then there exists an integer k such that

{f(X, g): Xe g c h} {krn+t-i + 1,..., (k + 1)rn+t-

Now let P (- i) Q for some positive < d; P, Q e g. Then (5)4, (3) and (2)
imply the existence of a line h such that P, Q c h and h (-d + i) g. By
(2.6), there exists a k such that

f(P, g),.f(O, g) e {krn+ ’-i + 1,..., (k + 1)rn+

If X e g such that P ( + l) X, the same argument yields the existence of a k’
such that

f(P, g),f(X, g) e {k’rn-i + 1,..., (k’ + 1)rn-} D.

By (3)4, there are precisely rn-i such X; hence (2.4) implies that f(Q, g) D.
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We have proved:

(2.7) If P (- i) Q and P, Q g, then for some integer k,

f(P, g),f(Q, g) {krd+l-i + 1,..., (k + 1)ra+l-};
but for no integer k, is it the case that

f(P, g),f(Q, g) {kra-i + 1,..., (k + 1)rn-}.

3. The constructions

To state our main result, we must consider the following inequality"

(3.1) ( rJ) (r + 1) <- t + 1 <- r2b(r +

THEOREM 3.1. Let b >_ O, s > l, r > 2, q be integers such that (3.1) holds,
r is a prime power, and there exists a set ofq + auxiliary matrices ofrow length
s2. Then there exists a set of r + auxiliary matrices of row length (rZbs)2 and
(consequently) an (r2bs, r) PH-plane.

Hint to the reader. In Theorem 3.2 we shall state the comparable result for
the odd power case (with r 2b+ 1). The proofs of the two cases are essentially the
same, and we leave the second to the reader. The conscientious reader will
likely save time by supplying his proof of Theorem 3.2 simultaneously with his
reading of the proof of Theorem 3.1.

Proof of Theorem 3.1. If b 0, Theorem 1.8 yields the desired conclusion,
so we assume henceforth that b > 1. Throughout the proof, we use the results
of Section 2 with 2b substituted for d. For the proof of Theorem 3.2, one must,
of course, substitute 2b + for d. By Theorem 1.6, there exists a set t/

{Mo, M,} of auxiliary matrices of row size r 4b which satisfy:
TMT M Jfori #=j(3.2) MMj .i

(3.3) M,M >_ 2J, MMi >- 2J;
i=0 i=0

(3.4) (Mo M,) is the incidence matrix of a point neighborhood ,/2b+
of a strongly (2b + 1)-uniform PH-plane t2b+ with invariants (?.2b, /,); each

Mi represents a single neighbor class of lines. In addition, (M MT)r is
the incidence matrix of a line neighborhood of ,.2b+ 1, SO represented that each
Ms corresponds to a single neighbor class of points.

By hypothesis, there exists a set (Lo,..., L} of auxiliary matrices of
row size S2 which satisfy"

(3.5) LiL LfL J for j;
q q

(3.6) E LiL >_ 2J, E LL >_ 2J.
i=0 i=0
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We now divide . into r + disjoint subsets , 0 _< < r, each with at least
+ r + + r b and at most r 2b elements. We denote [i[ by n(i) n. Then

2there exists a set Sofn / integers rk such that0 ro < r < < r, r
and S- {0} contains all of the following integers" jr b for < j <_ rb;
jrb+h + rb-h for < h < b, 0 <j < rb-h. (For the proof of Theorem 3.2,
one asks that S contain the following integers" jrb+ for < j < rb; jrb+h +
rb+- for < h _< b + 1, 0 <j < rb-h+l.) There exists asurjectivemap-
ping

F" {1,..., r 2b} i
such that F(#) F(v) when r,_ < kt, v _< r, < k < n. Then"

(3.7) F(#) v F,(v) ifp <jr < v, < j < r;
(3.8) Fi(#) v F(v) if# < jr+h + r- < v,

<_h<b,O<_j<r-h.

of M by a square matrix N} of order szNow we replace each element mj,

0, set N equal to the zero matrix.according to the following rule if rnj
and welet (Pj, gk) denote the flag of ,/,2b+ associated with m jkIf mjk

set

(3.9) Njk F(f(Pj, gk)).

Next we set

(3.10) Ni (N}k), 1 < j, k < r 4b

We obtain NiNf (Sk), where

(3.1 l) Sik [jl hTNjx\z kx]

If = l, then (3.2) and (3.5) imply the existence of an integer c such that

Nx(Nkx)T TNc(Sk) J.
x=l

(3.12)

We have

By the dual argument, (1.1) is satisfied.
Next we consider NN (Sgk), and compute

i=0

r4b

i=0 i=0

S"’2b F(y)" (Fi(y))r. Since the Fi’s are allBy (3.9) and (2.3), this sum is Y’.=o ,-.y=

surjective, (3.6) yields
q

(3.13) Tj > , LkL > 2J.
k=0
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We next examine Tjk withj #- k. Distinct points of a PH-plane are joined by
lines from only one neighbor class. Then (3.4) implies the existence of an integer
c such that Tjk ’-o Sjk Sk. We have

1.4b

(3.14) Tjk Nx(N,x)r.
x=l

Now let P, Pk be the points of 2b+ represented by the jth and kth rows of

We consider two cases. First suppose that P2 ( i) Pk where g b, and let
# be any line of 2b+ which joins P2 and Pk. (For the proof of Theorem 3.2,
we also assume g b.) Then (2.7) implies the existence of an integer h such that

(3.15) f(p, #) hr2 < v f(Pk, #).
Suppose that # is represented by the eth column of Mc. Then (3.9) yields

Ne Fc() and N F(v). Then (3.15) and (3.7) imply that N and Ne
are distinct elements of . By (3.5),

Ac T(3 16) N;, k/ J"

Since there are at least two lines # joining P to Pk, there are at least two values
of e for which (3.16) holds. Then (3.14) implies that

(3.17) T.k > 2J.

We now handle the remaining case; i.e., the case P (- b + i) Pk, < _< b.
(The case Pj P is trivial and is left to the reader.) (For the proof of Theorem
3.2, take _< _< b + 1.) The assumptions on Pj and P and assertion (2.5)
yield the existence of an integer h such that

{U(Pj, x)" Pj, Pk x} {hrb+i + 1,..., (h + 1)rb+i}.
Then there exists a line 91 joining Pj to P such thatf(P, 91) < hr+i + r-.
(For Theorem 3.2, we demand that f(Pj, gl) <- hr+ + r+l-.) Now (2.7)
implies that hr+ + r- < f(pk, 91). Similarly, there exist a line 92 through
Pj and P and an integer h’ such that

f(P, 9’2) < h’rb+i + rb-i < f(Pj, 92).

From (3.8), we obtain Fc(f(Pj, 9)) # Fc(f(e, #x)) for x 1, 2. As in the
proof of the first case, we obtain

(3.18) T., > 2J.

From (3.12), (3.13), (3.17), and (3.18), we conclude that ’=o NNr > 2J. By
duality, (1.2) is fulfilled by the set (No,..., N) i.e., V" is a set of r +
auxiliary matrices of order (t’2bS)2. The truth of Theorem 3.1 now follows
immediately from Theorem 1.8.

Next, consider the condition

(3.19) (rb +
=o r)(r + 1)< q + 1 < r 2+1(r + 1).
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THEOREM 3.2. Let b > 0, s > 1, r _> 2, q be integers such that (3.19) holds,
r is a prime power, and there exists a set of q + auxiliary matrices ofrow length
s2. Then there exist a set oft + auxiliary matrices ofrow length (r 2b+ 1,)2 and
an (r 2b+ is, r) PH-plane.

This theorem was proved in the case b 0 in [3]. The general proof is
similar to the proof of Theorem 3.1 and will be left to the reader.

4. Concluding comments

In [3-] the following theorem was proved.

THEOREM 4.1. Assume the existence ofa (t, r) PH-plane and a prime power q
such that q + t(r + 1). Then for an arbitrary positive integer b, there
exists a (tq b, r) PH-plane.

As an indication of the progress made to date on the existence problem for
finite PH-planes, we now survey the values of under 1,000 for which (t, 2)
PH-planes are known to exist. Theorem 1.6 yields existence for all powers of 2;
namely, 20 1, 2,..., 29 512. Theorem 4.1 with (t, r) (2, 2), (4, 2),
(8, 2), (16, 2) yields the seven additional t-values: 2.5b, < b < 3; 4.11b,
1 < b < 2; 8 23; 16.47. Next we apply Theorem 3.2 with b 0, r 5. By
Theorems 3.2 and 1.6, one may take s to be an arbitrary power of q, q to be any
prime power between 11 and 29. Then there exist sets of 6 auxiliary matrices
whose row lengths are (Sx)2 with x 11, 13, 16, 17, 19, 23, 25, 27, 29. Now
we apply Theorem 3.2 a second time with b 0, r 2, hence q 5 and s
equal to any of the nine values listed for 5x; we obtain eight new t-values which
go with r 2 (t 2.5.25 was already counted once). These 10 + 7 / 8
25 t-values are either well known (the 10) or are given by the results of [3].
Next we apply Theorems 3.1 and 3.2 in conjunction with Theorem 1.6, using

r 2, b and 2, to obtain the 12 new t-values: 4.9, 4.92, 8" 17, 8" 19
and 16x with x 23, 25, 27, 29, 31, 37, 41, 43. Lastly, we make a sequential
application of Theorems 3.2 and 3.1. Setting b 0, r 9, and q s in
Theorem 3.2 yields the existence of sets of 10 auxiliary matrices of row lengths
(9X)2 with x 19, 23, 25, and 27. Now we apply Theorem 3.1 with b 1,
r 2, q 9, and s equal to any of the four values listed for 9x. This yields our
final four values for t; namely, 36x with x 19, 23, 25, 27.
We remark that Kleinfeld [41 proved that for r 2, 3 is impossible; the

author [2-] has excluded the additional values 5, 7. To date, these three are
the only excluded values under or over 1,000.
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