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1. Introduction

Let X be a smooth complete irreducible curve of genus 9 defined over an
algebraically closed field, and let J be the Jacobian variety of X. The n-fold
symmetric product X(n) is a smooth variety which represents the effective
divisors of degree n on the curve. Once a reference point p X has been fixed
there is a map qn: X(n) J such that q,(np) is the identity on J, and q, is
uniquely determined up to automorphism of J. If n > 29 1, X(n) becomes
in this way a locally trivial projective fibred bundle over J. Both the variety
X(n) and the morphism q, are classical objects of study. There is also recent
work about them, for example by Mattuck [8-1, [9], [10], Schwarzenberger [12],
Kempf [5], Kleiman and Laksov [6], and a summary of many results in the
book of Gunning [4].
Over the complex field MacDonald [7] determined the structure of the

cohomology ring H*(X(n), Z). His formulae, suitably interpreted, say that for
every n, H*(X(n), Z) is generated via q* as an algebra over H*(J, Z) by a single
element z H(X(n), Z), and the relations that z satisfies are explicitly given.
We will prove in every characteristic a similar result for the Chow ring A(X(n))
of cycles with integer coefficients modulo rational equivalence; namely, we
show it is generated via q* as an algebra over A(J) by a single element z which
represents a cycle of codimension 1. We will also prove that the relations in
q*(A(J))[z] are analogous to the relations in q*,(H*(J, Z))[z].
MacDonald could compute H*(X(n), Z) directly, using Kunneth formulae

and a theorem of Grothendieck which relates the rational cohomology ring of
a space to the ring of the quotient space under a finite group of homeomorph-
isms. He used then the known structure of H*(J, Z) to establish the fact given
above. Now Kunneth formulae do not hold for the Chow ring and not much is
known about A(J). Our method is therefore different; it consists in studying
the geometry of the natural inclusion i: X(n 1)--* X(n) and in using the
Chern relations for the projective bundle X(2# 1) given in [8]. The main
point is to show that the morphisms

i.: A(X(n 1)) A(X(n)) and i*: A(X(n) --. A(X(n 1))

are respectively injective and surjective.
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We close this introduction proposing an open question. It is known [12-] that
X(n) is the projective fibred variety P(F,) associated to a suitable coherent sheaf
of modules F, over J. Because of our results about A(X(n)) it is natural to ask,
under what conditions on a base space S and a coherent sheaf of modules Fon S
is the extension A(P(F)) generated over A(S) by a single element? We have
some results in this direction for very special situations. Since they are quite
incomplete we will not present them here.

2. The injectiviW theorem

Let X be a smooth projective curve of genus g defined over an algebraically
closed field. The symmetric group on n letters S(n) acts on X[n-[, the n-fold
product of X, by permuting the factors. The symmetric product X(n) is the
quotient variety X[n]/S(n). It is smooth and projective, the quotient map

X(n)
is a finite separable morphism of degree n! [8]. We denote by [xx,..., x.] a
point in X[n] and by (xa,..., x.) its image in X(n), where x e X. The point
(xx, x.) may be thought of as representing the divisor Y.’ xi on X.

Fix once for all a point p e X and let m < n. We have a diagram

X [m] ,___ X In]
(1) ’"lt’m

im
X(m) X(n)

o

Here pr.,., is the projection onto the first m factors, j,. is the map which sends
a point

[x,...,x,] to [x,...,x,,p,...,p],

and ira,, is the map which sends

(xa,...,x) to (x,...,x,,,p,...,p).

We will explain 9 in a moment. Induced by (1) there is the diagram (2) between
the Chow groups

A(X [m]) ,(Jm’ n)*, A(X In])
Jm, n*

(2)
(i,, .),

A(X (m)) A(X (n))

We drop the subscripts on maps when no confusion exists and will often
simply write X(m) for the subvariety im,(X(m)) of X(n). The composite
morphism pro j is the identity, hence

(pro j), pr,j, and (pr j)* j*pr*

are both the identity; it follows from this that j, is injective and j* surjective.
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We would like analogous results connecting X(m) and X(n). From X(n) to
X(m) there is no morphism like pro,,, but there is a correspondence 9
7CmPrn mT[n i.e.

(3) g(X1,... Xn) (Xil,... Xim),
(i)

the sum being taken over all m-subsets of 1,..., n. More formally, the corre-
spondence 9 is given by its graph F c X(n) x X(m), where

F In, x m](F’),

F’ being the graph of the projection map pr, m. The correspondence 9 gives a
morphism 9," A(X(n)) - A(X(m)) defined on representative cycles by

9,(Z) Prx(m)((Z x X(m))"

The key Corollary below shows that the composite morphism

9,(im, n)," A(X(m)) A(X(m))

is "close" to being the identity map. We study it now.

LEMMA 1. The morphism 9,(ira. n), is induced by the cycle (im., X id)*F on
X(m) X(m).

Proof

since

We have in fact

9,i,Z prx(m)(((i,Z) x X(m)). r)

prx(m)((i x id),(Z x X(m)). F)

prx(m)((Z x X(m))’(i x id)*r)

prx(m) (i x id) prx(m)

where the two projections are taken respectively on X(n) x X(m) and X(m) x
X(m).

Let Xo(m) X(m) X(m 1) be the complement of X(m 1) in X(m).
Let A be the diagonal subvariety of X(m) x X(m). Let Ao be the diagonal sub-
variety of Xo(m) x Xo(m) and

z: Xo(m) x Xo(m)’+ X(n) x X(m)

be the embedding induced by i,., x id.
Everything follows from"

PROPOSITION 1. *F Ao.
The proof depends on algebraic-geometric calculations which are deferred to

Section 3.
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COROLLARY 1. Let p*" A(X(m)) A(Xo(m)) be the morphism induced by
restriction, then p*g,i, p*.

Proof We prove that the equality holds already in the group of cycles. To
begin with, note that by (3),

gi(x Xm) g(x Xm, P, P)

(x,..., Xm) + (P, XZ,..., Xm) +’’"

where all the points on the right except the first have some of the xi’s replaced
by p. Therefore set theoretically, by Lemma 1,

(im, id)-F A + D

where D X(m) x X(m 1). By Proposition it follows that as cycles

(im, id)*F A + Y

where supp Y X(m) x X(m- 1).
Now let Z be an arbitrary cycle in X(m). We have by Lemma 1,

y,i,Z Prx(m)[(im, id)*r" (Z x X(m))]

prx(m)[A" Z x X(m)] + prx(m)[Y" Z x X(m)]

=Z+Z
where supp Za X(m 1). Therefore

p*y,i,Z p*Z + p*Z p*Z

which proves the corollary.

THEOREM 1.

is injective.

For every rn < n, the morphism

(im,,)," A(X(m)) A(X(n))

Proof. By induction over m. When rn 0 we interpret X(O) as a single
reduced point and have io,,X(O) (p,..., p). Thus the theorem is true for
rn 0 since X(n) is complete. Assume now the statement to be true for (m 1)
and for every n > (m 1). There is a diagram, commutative except for g,,
whose rows are right-exact by [1] and exact on the left by the induction
hypothesis.

0 A(X(m 1)) ,<!"-’’ "!* A(X (m)) o* A(Xo(m)) ,0

0 A(X(m 1)) <-"">* A(X(n)). A(X(n)- X(m 1)) :0
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SO if z A(X(m)), then

(im,,,),(z) 0 => P*g,(im, n),(Z) 0

=*" p*(z) 0 by Corollary

=* z (i,,_ a,,,),(z’) for some z’ A(X(m 1)) by exactness

==> (im_ l,n),(Z’) 0

z’ 0 by induction

3. Proof of Proposition q

The set-theoretical part is given by"

LEMMA 2. -X(F) Ao.

Proof Consider a typical point of Xo(m) x Xo(m):

(x,...,x,,; y,..., ym), x # p, y 4= p;
then

e(x; y) (xa,..., Xm, P,...,P; YX,’’’, Y,,) (which is a point ofF)

*> {y,..., y} = {xx,..., Xm, P,...,P}

<*" (Y, Y2,..., Y,,,) (x, x2,..., x,,)

*> (x,..., x,,; y,..., y,,) e Ao.
It follows from the lemma that

(4) e*F dA0 for some integer d > 0.

To show d we use the diagram

Xo[m] x Xo[-,] X[] X[,,,]

Xo(m) x Xo(m) X(n) x X(m)

in which Xo[m-] rt,7, *(Xo(m)) and/ j,,,, x id. We will pull both sides of
(4) up via zt,, x r= and for this purpose must study this map.
The group S(n) x S(m) acts on X[n] x X[m] permuting the coordinates in

each factor. The graph F’ of pr,,,, consists of all the points of the form

r’ {Ix1,..., x.;

The isotropy groups of F’, i.e., the subgroup G of S(n) x S(m) which sends F’
into itself, is evidently given by

G {(s, t) Is(i) t(i), 1,..., m}.
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We choose left coset representatives mod G, zl,. zN where N n !/(n m) !,
taking as the first m! coset representatives the elements of the subgroup H of
S(n) x S(m) which operates only on the first m coordinates of X[n]. (This is
possible since H c G { }.)

LEMMA 3. r*(F) EN1 Tj(Ft).

Proof. Since G is the isotropy group of F’, zi(F’) zj(F’) if j and
r-l(n(F’)) n-I(F) zj(F’). Because z is an automorphism of X[n] x
X[m] which commutes with n, the coefficient with which each z(F’) appears in
n*(F) is equal to the coefficient h _> of F’. By the projection formula,

n m tF r,rc*(F) r, h’zj(F’)

Since each z(F’) is, as a set, a covering of F of degree m! (n m)!, it follows
that n! m! >_ hNm! (n m)!. Hence h 1. This completes the proof.

Let A’ (resp. A;) denote the diagonal subvariety in X[m] x X[m] (resp.
Xo[m] x Xo[m]). The group S(m) x S(m) acts on X[m] x X[m] and L
{(s, t) Is(i) t(i)} is the isotropy group of A’. Choose coset representatives
al, t2,..., m which map to zl, z2,..., z, under the natural embedding of
S(m) x S(m) in S(n) x S(n) as the subgroup which leaves fixed the last (n m)
coordinates of X[n] in X[n] x X[m].

COROLLARY 2. (gin /l:m)*(Ao) 2t o’i(A)).

Proof. It is enough to show
m!

( x )*(A) o,(A’)

and this follows from Lemma 3 since we have F A when m n.

LEMMA 4. With the above notations

fl- (zj(F’)) 0 /fj > rn !,

t-,(z(r,)) a(A,) ifj <_ m!.

Proof. Assume first j > m!. Consider a point of Xo[m] x Xo[m]:
z [xl,...,Xm;yl,...,ym], xi #p,y p.

Then
fl(z) [xi, Xm, P, P; Yl, Ym]"

Sincej > m !, it follows that zj does not belong to the subgroup of S(n) x S(m)
which permutes the last (n m) coordinates of X[-n-]; hence some p appears
among the first m coordinates of zf (fl(z)). Now

(z) (r’) () (/(z)) e r’,
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SO the first m coordinates of (zj)- (fl(z )) are equal to the last m if fl(z) zj(F’);
but the last m coordinates of (z)-a(fl(z)) are just the y’s and therefore contain
no p. We have then a contradiction with the above statement, hence

fl- ((r’)) O.

On the other hand ifj

_
m !, then

"j([Xl, Xn X1,..., Xm])

[x(),..., x,(,); x,..., Xm]

Xoj(1)’ Xrj(m), Xm + 1, Xn Xl, Xm]
from which it is clear fl-l(zj(F’)) o-j(A)).

LEMMA 5. fl*(z(F’)) 0 /fj > m!,

fl*(zj(F’)) rj(A)) /fj _< m!.

Proof. From Lemma 4 all we need to prove is that (F’) intersects trans-
versally fl(Xo[m] x Xo[m]) for j _< m!, which is obvious since x(F’) is the
graph of a projection from X[n] to X[m].

We now complete the proof of Proposition 1. Applying Qr,, x rim)* to the
left side of (4) we get

( x =m)**F /*=*r

E (A;)

by Lemma 3

by Lemma 5.

Applying (re,. x re,.)* to the right side of (4) we get, by Corollary 2,
m!

(7 X rCm)*(dAo) d. trj(A)).

Comparing with the above we see that d l, hence Proposition is proved.

4. The surjectivity theorem

To prove the surjectivity of i* "A(X(n)) A(X(m)) a natural approach
would be to consider the morphism

9*: A(X(m)) A(X(n))

induced by the transpose of F in X(m) X(n). However this is not convenient
to work with since there are multiplicities involved which are awkward to
compute. We therefore use a somewhat different method from the one used
for the injectivity theorem.
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We continue to let X(j) denote not only the jth symmetric product, but also
its image in X(m) via the immersion ij, m. As before X(0) represents a point, so
that in an expression like X(k) x X(0) it can be omitted; if n < 0 we take
X(n) 0. We define

D(m) {(xl,..., Xm) e X(m) xi xj for some - j}.

D(m) is a closed subvariety of X(m); it is empty ifm < 1, otherwise dim D(m)
m 1. By abuse of notation we often write D(s) instead of is, m(D(s)).

DEFINITION 1. We say a subvariety Y of X(m) is in regular position if every
component intersects all the subvarieties X(i) and D(i) properly, 0,..., m.

It follows that if Y is of codimension and in regular position, then for
0,...,m,

(5)
dim Y c X(m i) m t-

dim Y D(m i) m 1

or Y c X(m i) 0

or Y D(m i) O.

Remark 1. If Y is in regular position in X(m) then Y c X(m i) is in
regular position in X(m i). This follows easily from (5) and the isomorphisms

im_i,m’. [Y c X(m i)] c X(m j) Y c X(m j),

O<j<m-i
(6)

im_i,m’. [Y X(m i)] c O(m j) Y O(m j),

O<j<m-i

where the varieties on the left are to be interpreted as lying in X(m i) and
those on the right in X(m).

Let ,: X(m- r) X(r) X(m) be the finite morphism of degree
C(m, r) defined by

(Xl,... Xm_r) X (y,..., y,) (xl,..., Xm_r, Yl,’’ Yr)"
o is the identity map.By our conventions, if r 0 then 7rm

DEFINITION 2. We say a subvariety V of X(m) is of type r, if for some sub-
variety A c X(m- r),

(7) V rc(A x X(r)).

Remark 2. If V is irreducible and of type r, the variety ,4 in (7) can be taken
to be irreducible. Every subvariety V is of type 0, according to our conventions
with A V. If V has type m, then V X(m) and ,4 X(0).

LEMMA 6. If V is of type r every component is of type r.
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Proofi Let A U A,, V U V be the decompositions in irreducible
components. Then

 7.(A x U x U
j

Since the ,(Ai x X(r)) are irreducible, for eachj there exists an i(j) such that
Vj Zrm(Ai(j) X(r)). Therefore V is of type r.

From now on V denotes an equidimensional subvariety of type r and cod
in X(m). We may take A equidimensional in (7), according to Remark 2. With
these assumptions we have by (7), dim V m and dim A m r.

PROPOSITION 2. V and A being as described above, V is in regular position in
X(m) if and only if A is in regular position in X(m r).

Proof If either r m or r 0 the assertion is trivial by Remark 2. Thus
we assume 0 < r < m and proceed in several steps.

V intersects properly all the X(m i), 0 < < rn

., A intersects properly all the X(m r -j), 0 < j <_ rn r.

This is by definition equivalent to

(8) dim VcX(m i) < rn t-- dim A c X(m r j) < rn r j

The proof is as follows. A point y in V has the form

y (aa,...,am_,,xx,...,x,) wherea (aa,...,am_,)A.

If y V c X(m i), a subset of p’s appears in

(ax,. am_,, XX,..., X).

Say j > 0 of these p’s occur in a. Then

a A c X(m r j) (by definition) Aj.

The other i- j p’s appear in (xx,..., x,), which belongs therefore to
X(r + j), hence

r-i+jy e 7m_ (Aj X(r- + j)).

Conversely every point in rCm_+j(Aj X(r + j)) is a point of V X(m i)
so that

(9) VcX(m i) U rc,-J+j(Aj x X(r- +j)).
J

Now the rc’s are finite, hence

dim(VcX(m- i)) max dim(Aj x X(r- +j)),
j <_i, j <_m-r
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that is,

dim(VX(m- i))_< m- t-

:dimAj_< (m- t- i)- (r- +j) rn- r- t-j,

for all j < min (i, m r).
This proves (8).

(10) If,4 intersects properly D(m r), then V intersects properly D(m).

To see this it is enough to prove V D(m) because our assumptions on r
imply that D(m) has codimension 1. Since ,4 D(m r) there is a point
a (a,..., a,_,) A such that a a for - ./. Fix a point

(x,. x,) e X(r)
so that x - xi, x 4= a for all i, j, k. Then (a, x) D(m), hence V D(m).
We may now complete the proof of the proposition. We have, according to

the hypotheses, still to show that

dim(VD(m- i)) <_ rn t- i- 1,0 < < rn

dim (A D(j)) < j- 1, 0 < j <_ rn r.

We begin with the reverse implication. First of all, we have

V D(m i) V X(m i)) D(m i), by(6),

dim(VX(m- i)) < rn t- i, by(8),

hence it is enough to prove that no component, say T, of V X(m i) is
contained in D(m i). Now we have from (9).

V X(m- i)= (3 m--"-i+2(A2i x X(r- i+ j),

therefore using the argument in Lemma 6 there is a component, S say, of some

A such that T m-"-+’-o x X(r + j)). Since by hypothesis, A is in
regular position in X(m r), then by Remark 1, S is in regular position in
A(m r -j); hence by (10) taking V and A to be T and S respectively, T
intersects properly D(m i) = X(m- i), that is T : D(m i).
To prove the other implication, notice that im-,,(A c D(j)) = V D(j)

hence
dim (A D(j)) <_ dim (V c D(j)) < j 1.

This completes the proof.

The hypotheses about V and A continue as they were for Proposition 2. We
define W X(m + 1)and V* X(m) by

X) n++’l(A X(r + 1)),W Zrm+(V x
()

V* 7mr+l((A c X(m r 1)) x X(r + 1))
where the first factor is being viewed as a subvariety of X(m r 1).
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LEMMA 7. If V is of tape r and in regular position, then either V* is of type
r + 1, in regular position, and dim V* dim V, or else V* O.

Proof. If not empty, then clearly V* is of type r + and

dim V* dim(A cX(m r- 1)) + (r + 1).

By Proposition 2, A is in regular position in X(m r), thus A c X(m r 1)
is in regular position in X(m r 1) and of dimension (m r 1) or
empty. This implies by Proposition 2 that either V* 0 or V* is in regular
position, of dim (m t) dim V.

PROPOSITION 3. If V is in regular position and irreducible, then W is irre-
ducible, and as cycles we have i* W V + V1 where supp V1 c V*m,m+

Proof. We have the diagram

X(m)
y
>X(m) x X

X(m + 1)

wheref(x) (x) x p, therefore (W) f- z- (W) and since we will show
the cycles are all defined,

(12)

We study first n* W. Let

i* W f*Tz* W.

(13) g-l(W) U Zi

be the decomposition in irreducible components. Because F is irreducible, W is
also; re* W is defined, since n is finite, and n-(W) is equidimensional.
We have then n* W dT, d > 1. We prove now that

(14) zt* W T.
Because n is a finite surjective morphism between smooth varieties it is flat
[3, IV, vol. 2, 6.1.5.]. Denoting for simplicity’s sake X(m)x X Y,
X(m + 1) Z, we have then

(15) rc*W l(Oy, T,/m,Or, T,) T

where m, denotes the maximal ideal in the local ring Oz, w and denotes the
length of an artinian module. By Proposition 2, A is in regular position; again
by Proposition 2 so is W. Hence W is not contained in D(m + 1), which is
easily seen to be the branch locus of n. Because rc is unramified at W we have
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therefore m,Or, r, mr,, the maximal ideal of Or, r,; hence

l(Or, r,/mwOr, r,) 1,
which proves (14).
The next step is to show that set-theoretically

(16) i-(W) V w V*.

To begin with, it is easy to check that

(17) rc-a(W) (V x X)w S,

where we put

(18) S {(aa,...,8,...,am_,,xa,...,x,+) x ail(a,...,%-,)eA}.

We now apply f-1 to both sides of (17). Evidently

(19) f-X(V x X) V,

and also

(20) f-X(S) V*,

since

f(Y,..., Ym) S

":> (Y,. Ym) x p S

" (Yl,’’’, Ym) P (ax,. a,. am_r, Xl,. Xr+ 1) P,

where(al,...,ai_l,p, ai+l,...,am_r)A by(18),

*" (al,. ci,. am-r, X1,. Xr+ 1) e V*.

(17), (19), and (20) prove (16).
Comparing (17) with (13) we may set T1 V x X and thus T1 -- S for

i_> 2. Now by Lemma7, dim V* dim V, by(ll), dim W= dim V+ 1;
hencef* is well defined on the cycle *W and

i* W f* ( T), by (12) and (14),
or

i*W =f*(V X)+f*(,, Ti),
where suppf* (2 _> 2 T)

__
V* by (20). Now V x X intersects X(m) x p

transversally, hencef*(V x X) V, and therefore

i*W=V +f*(>i_2 r/), where suppf* (;, T) V*.

This completes the proof.
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Remark 3. With the above hypotheses and notations, if V is of type r but
not r + 1, then V V*, since V* is of type r + and therefore so is every
component by Lemma 6. It follows that V x X S becausef- a(V x X) V
whilef-l(S) V*. Hence by (17), S T for i> 2, and thus supp
f* (i >_ 2 Ti) V*.

THEOREM 2. i* A(X(n)) A(X(m)) is surjective.

Proof It is enough to show i* surjective for every m. By Chow’sm,m+l

moving lemma [1] the irreducible subvarieties V in regular position generate
A(X(m)). Hence it suffices to prove that for such a V,

(21) i* Y V for some cycle Y in X(m + 1).m,m/l

We fix the dimension and prove (21) for all subvarieties of that dimension by
descending induction over the type r of the subvariety.

If r > dim V, the result is trivially true, since no such V exists.
If r < dim V, then by Proposition 3,

(22) i* W V + V1 where supp(V1)c V*m,m+

Now V* is either empty or else it is in regular position and of type r + by
Lemma 7, hence all of its components V’ are such by Lemma 6. If V* 0
then (21) is proved since i* W V. Otherwise, by the induction step,

v’ i*m,m+(Z3 for some cycle Z
_
X(m + 1).

Since supp (V)
_

V* and they have the same dimension, V1 2 nV, n
integer’, hence V1 . i*m,m+ (niZ3 and therefore V i*m,m+ (W nZ3, by
(22), which proves (21).

5. The structure of A (X (n))

Let J be the Jacobian variety of X and p e X be the point fixed in Section 2.
Identifying J with the divisor classes of degree 0, there is a morphism

defined by
q, X(n) J

q,,(xx,..., x,) cl ( x, np)

The fiber q- l(y), y j, is therefore a projective space which represents the com-
plete linear system of effective divisors whose class is (y + n. cl (p)). The
dimension of such space is determined by Riemann-Roch theorem. For
m < n we have the diagram

(23)
X(m) "’----" X (n)
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Induced by (23) there is the corresponding diagram of Chow rings

a(X(m)) ’ ---2 (X

A(J) A(J)

which shows that i* is a morphism of A(J) algebras.
We want to determine the structure of A(X(n)) as an extension of A(J).
In the case n > 2g this was done by Mattuck [-8] who showed that

X(n) is then a projective bundle over J and computed the Chern relations. In
order to describe his results we write Wi q(X(i)), U (R)(Wi) where
(R)" J J is the morphism which maps y to (-y + c), c being the canonical
point, image of the canonical divisor, and we let

u cl (Uo_) A(J) if 0 < _< g

(24) u 0 ifi>gori< 0

’, cl (i,_ a. ,(X(n 1))) A(X(n)).

On J there is a vector bundle F,, n > 2g- 1, whose associated projective
bundle is X(n). The total Chern class is given by

n-o+
c(V,) E (-

0

and i,_l.,(X(n 1)) is a divisor in the class of the fundamental sheaf 0(1).
We put

0

(25) x (- 1)uz-0

PROPOSITION 4 (Mattuck). The structure of the extension A(X(n)) of A(J) is

9iven for n > 29 by the exact sequence

0 (z"-20+1) A(J)[z] A(X(n)) O,

where qb,, is the A(J) morphism defined by
We proceed now to deduce the structure of A(X(n)) as an extension of A(J)

in the general case.

LEMMA 8. In A(X(n)) we have cl (i,_m.,,(X(n m)) m,.
The proof is given in [8] and consists essentially in lifting i,_ 1.,(X(n 1))

from X(n) to X[n] and in computing the self-intersections there.

LEMMA9. i* nn mm,

Proof We have

(26) (im, n)*(i* n(n) --m+m,
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by the projection formula and Lemma 8; also

(27) (im, n),( cl (im_l,.(X(m 1))

by Lemma 8. Comparing (26) with (27) we deduce the lemma because (ira,.).
is injective by Theorem 1. Note that a different proof of Lemma 9 is given in
[12].

We can now prove our main result.

THEOREM 3.
A(J)[z]

Let be as in (25), z a variable, and let I. denote the ideal in

(().z2O-1-.) ifn < 29 1I.
(. z.-2o+1) if n > 29

Then for every n the structure of the extension A(X(n)) of A(J) is determined by
the exact sequence

0-----, I.---, A(J)[z] A(X(n)) 0

where c. is the morphism ofA(J) algebras defined by c.(z) ., with . as in (24).

Proof
we define

If n > 2# the theorem is given by Proposition 4. If n < 29 2

(28)

We have then

qn i*n, 20- 120- 1"

qS.(z) i*n, 20 (])2g
i*n, 20- 1(20-1) by Proposition 4

(. by Lemma 9.

The morphism i* is surjective by Theorem 2 and b20 is surjective byn, 20-
Proposition 4, hence b. is surjective. To finish the proof we determine the
kernel of qS.. Let y A(J)[z]; we have

b.(y) 0 <: i*., 2o_ lq520_ l( y) 0 by (28)
<:> (i. 20-1).(i*n, Zo_l(20_l(y)) 0 by Theorem

,:I> 1)20_1(Z 20-1 n)lD20_1( Y) 0

by the projection formula and Lemma 9

. z2O 1-.. y () by Proposition 4

In [-7] MacDonald has given an analogous result for the cohomology ring
which we wish to make explicit here. There are natural maps

(29) A(J) H*(J, Z), A(X(n)) H*(X(n)Z), A(J)[z] H*(J, Z)[r/]
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(To conform to MacDonald’s notation we use the letter r/in place of z.) We
continue to denote the images of u, (,, , I under (29) by the same letters. Thus

U H2i(j, Z), n H2(X(n), Z),

In )r((): /,]20- -n), /,/ < 2ff 1

[(r/,-20+ 1), n _> 2e- 1

We set formally deg r/ 2.
Then the structure of H*(X(n), Z) as an extension of H*(J, Z) is determined

by the exact sequence

(30) 0-----, I,,----, H*(J, Z)[r/] *----" H*(X(n), Z)----, 0 where $,(r/)= (,.

Actually MacDonald never states his result precisely in this form. He can
describe H*(X(n), Z) directly as follows" let 1,..., 0, ,..., . be the
elements of degree which generate the exterior algebra H*(J, Z) and let r/
be as in (29). Define R, to be the ideal generated by the set

where i,..., ia, j,... ,Jb, k,..., kc are any distinct integers and a, b, c, q
are any integers such that a + b + 2c + q n + 1. Then according to
MacDonald the structure of H*(X(n), Z) is given by the exact sequence

0-----, R, H*(J, Z)[q] H*(X(n), Z)-----, 0

where ft, is as in (30).
If n > 2g 1, then I-7] there is essentially only one relation, i.e.,

R, (q,-2o+ I-I o(ii q)), n > 20- 1

To see that R, coincides with 1, for n > 2# 1, it suffices therefore to show
that

(31)

This could be done explicitly by expressing the u’s in terms of the (’s; however
it is clear since evidently R,, and both sides of (31) are monic polynomials
of degree t7 in r/.
For n < 29 2, one shows easily for the given generators of R, that

it follows therefore that R, I,, n < 2!7 2; hence the two ideals are equal
for all n.
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