INVARIANT SUBSPACES OF LINEAR TRANSFORMATIONS

BY
Donald W. Hadwin

A (not necessarily bounded) linear transformation on a Banach space is intransitive if it has a proper closed invariant subspace; otherwise it is transitive. The general invariant subspace problem asks whether a separable infinitedimensional Banach space can possess bounded transitive linear transformations.

Shields [5, Theorem 1] constructed a transitive (not necessarily bounded) linear transformation on a separable infinite-dimensional Hilbert space. Later Halmos [4, p. 898] asked whether a bounded transitive linear transformation can have an intransitive square (or inverse). This paper extends Shields' techniques to answer similar questions for (not necessarily bounded) linear transformations on a separable infinite-dimensional Banach space.

The first theorem (Theorem A) shows that a linear transformation L can be found such that every nonconstant polynomial in L and L^{-1} is transitive.

The second theorem (Theorem B) shows that it is possible to find a transitive linear transformation whose square does not have dense range. Such a transformation can never be bounded.

The third theorem (Theorem C) shows that it is possible to find a transitive linear transformation with both an intransitive square and an intransitive inverse.

In Theorems A and C certain classes of polynomials are excluded. This is necessary in Theorem A because scalar operators are never transitive and in Theorem C because if $m L+b$ is intransitive and $m \neq 0$, then L is intransitive.

Theorem A. If Y is a separable infinite-dimensional Banach space, then there is a bijective (not necessarily bounded) linear transformation L on Y such that for every pair p, q of polynomials, not both constant, $p(L)+q\left(L^{-1}\right)$ is transitive.

Theorem B. If Y is a separable infinite-dimensional Banach space, M is a closed infinite-dimensional subspace of Y, and p is a nonconstant polynomial, then there is a (not necessarily bounded) linear transformation L on Y such that:
(i) $p(L)(Y) \subset M$;
(ii) if q is any polynomial with $1 \leq \operatorname{deg} q<\operatorname{deg} p$, then $q(L)$ is transitive;
(iii) $\left.p(L)\right|_{M}$ is transitive.

Theorem C. If Y is a separable infinite-dimensional Banach space, then there is a bijective (not necessarily bounded) linear transformation L on Y such that L
is transitive, but such that $p(L)+q\left(L^{-1}\right)$ is intransitive for every pair p, q of polynomials with $p(x)+q(1 / x)$ not of the form $m x+b(m \neq 0)$.

Since the proofs of these theorems are mostly algebraic, we shall state and prove them in a completely algebraic setting (Theorems $\mathrm{A}^{\prime}, \mathrm{B}^{\prime}, \mathrm{C}^{\prime}$). To connect the "algebraic" theorems to their "Banach space" counterparts we need a fact (Lemma 5) about closed subspaces of a separable infinite-dimensional Banach space.

Throughout, X will be a fixed vector space over a field F, and \mathscr{M} will be an infinite collection of infinite-dimensional proper subspaces of X. (In the Banach space application the role of \mathscr{M} will be played by the collection of all proper closed infinite-dimensional subspaces.) Write $\mathscr{M}=\left\{M_{\alpha}: \alpha \in A\right\}$, where A is the smallest ordinal with card $A=\operatorname{card} \mathscr{M}$ (where "card" denotes cardinality). We shall always assume that card $A>\aleph_{0}$, and that, for each α in $A, \operatorname{dim} M_{\alpha} \geq$ card A (where "dim" denotes linear dimension).

A linear transformation on X is \mathscr{M}-intransitive if it has a nonzero invariant subspace that is either finite-dimensional or in \mathscr{M}; otherwise it is \mathscr{M}-transitive.

The symbols Z and Z^{+}will denote the sets of integers and nonnegative integers, respectively. If $S \subset X$, then $\vee S$ denotes the linear span of S, and S^{\prime} denotes the set-theoretic complement of S.

Theorem A^{\prime}. There is a bijective linear transformation L on X such that $p(L)+q\left(L^{-1}\right)$ is \mathscr{M}-transitive for every pair p, q of polynomials such that $p(x)+q(1 / x)$ is not constant.

Proof. We begin by defining a function $f: A \times(Z \cup\{\infty\}) \rightarrow X$ so that:
(1) $f(A \times(Z \cup\{\infty\}))$ is linearly independent;
(2) for all (β, n) in $A \times Z, f(\beta, n) \in M_{\beta}$ if and only if $n \neq 0$.

Let α be any ordinal in A, and suppose that $f(\beta, n)$ has been defined for all $\beta<\alpha$ and n in $Z \cup\{\infty\}$ so that (1), (2) hold when A is replaced by

$$
\{\beta \in A: \beta<\alpha\}
$$

Since
$\operatorname{dim} \vee f(\alpha \times(Z \cup\{\infty\})) \leq \max \left(\operatorname{card} \alpha, \aleph_{0}\right)<\operatorname{card} A \leq \operatorname{dim} M_{\alpha} \leq \operatorname{dim} X$, we can choose vectors $f(\alpha, n)$ for each n in $Z \cup\{\infty\}$ so that (1), (2) hold when A is replaced by $\{\beta \in A: \beta \leq \alpha\}$. Using transfinite induction we can extend f to all of $A \times(Z \cup\{\infty\})$ so that (1), (2) hold.

We now extend $f(A \times Z)$ to a Hamel basis for X by adding a set of the form $\{g(b, n):(b, n) \in B \times Z\}$. To be able to do this we only need an infinite linearly independent set which is independent from $f(A \times Z)$. However, $f(A \times\{\infty\})$ is such a set.

We now define a linear transformation L on X by defining $L(f(\alpha, n))=$ $f(\alpha, n+1)$ and $L(g(b, n))=g(b, n+1)$ for each α in A, b in B, n in Z, and then extending L to all of X by linearity.

Suppose that p, q are polynomials such that $p(x)+q(1 / x)$ is not constant. If $\operatorname{deg} p=n \geq 1$, then

$$
\left[p(L)+q\left(L^{-1}\right)\right] f(\alpha,-n) \notin M_{\alpha}
$$

while $f(\alpha,-n) \in M_{\alpha}$ for each α in A. On the other hand if $\operatorname{deg} q=m \geq 1$, then

$$
\left[p(L)+q\left(L^{-1}\right)\right] f(\alpha, m) \notin M_{\alpha}
$$

while $f(\alpha, m) \in M_{\alpha}$ for each α in A. Hence $p(L)+q\left(L^{-1}\right)$ leaves no M_{α} invariant. Since the application of $p(L)+q\left(L^{-1}\right)$ to a nonzero linear combination of basis vectors yields a linear combination involving at least one new basis vector, then $p(L)+q\left(L^{-1}\right)$ has no finite-dimensional invariant subspaces. Thus $p(L)+q\left(L^{-1}\right)$ is \mathscr{M}-transitive.

We next state a lemma whose proof is an elementary exercise in induction.
Lemma 1. If V is a vector space with a Hamel basis $\left\{e_{k}: k \in Z^{+}\right\}$, and if p is any polynomial with positive degree n, then there is a unique Hamel basis $\left\{f_{k}: k \in Z^{+}\right\}$such that:
(i) $f_{k}=e_{k}$ if $0 \leq k \leq n-1$;
(ii) if L is the linear transformation on V defined by $L\left(f_{k}\right)=f_{k+1}$ for each k in Z^{+}, then $p(L) f_{k}=e_{k+n}$ for each k in Z^{+}.

Theorem B^{\prime}. If p is a polynomial of positive degree and if M is a subspace of X with $\operatorname{dim} M=\operatorname{dim} X$, then there is a linear transformation L on X such that:
(i) $p(L)(X) \subset M$;
(ii) $q(L)$ is \mathscr{M}-transitive for every polynomial q with $1 \leq \operatorname{deg} q<\operatorname{deg} p$;
(iii) if for some α in $A, M \cap M_{\alpha} \neq M$ and $\operatorname{dim}\left(M \cap M_{\alpha}\right) \geq \operatorname{card} A$, then $p(L)$ does not leave $M \cap M_{\alpha}$ invariant.

Proof. Let $n=\operatorname{deg} p$ and $E=\{0,1, \ldots, n-1\}$. We can use the transfinite induction technique of the proof of Theorem A^{\prime} to construct a function $f: A \times E \times\left(Z^{+} \cup\{\infty\}\right) \rightarrow X$ so that:
(1) $f\left(A \times E \times\left(Z^{+} \cup\{\infty\}\right)\right)$ is linearly independent;
(2) $f(\beta, i, i) \notin M_{\beta}$ if $\beta \in A, 1 \leq i \leq n-1$;
(3) $f(\beta, i, j) \in M_{\beta}$ if $\beta \in A, j \in E, 1 \leq i \leq n-1, i \neq j$;
(4) $f(\beta, i, j) \in M$ if $\beta \in A, 1 \leq i \leq n-1<j<\infty$;
(5) $f(\beta, 1,0) \in M \cap M_{\beta}, f(\beta, 1, n) \notin M \cap M_{\beta}$ if $\beta \in A, M \cap M_{\beta} \neq M$, $\operatorname{dim}\left(M \cap M_{\beta}\right) \geq \operatorname{card} A ;$
(6) $f(\beta, i, \infty) \in M$ if $\beta \in A, i \in E$.

We now extend $f\left(A \times E \times Z^{+}\right)$to a Hamel basis for X by adding a set of the form $\left\{g(b, i):(b, i) \in B \times Z^{+}\right\}$such that $g(b, i) \in M$ whenever $b \in B, i \geq n$. To be able to do this we need that

$$
\operatorname{dim}\left(\vee\left[M \cap f\left(A \times E \times Z^{+}\right)^{\prime}\right]\right)=\operatorname{dim} X
$$

Since $\operatorname{dim} M=\operatorname{dim} X$, we only need that

$$
\operatorname{dim}\left(\vee\left[M \cap f\left(A \times E \times Z^{+}\right)^{\prime}\right]\right) \geq \operatorname{card} A
$$

We therefore need a linearly independent subset of $\vee\left[M \cap f\left(A \times E \times Z^{+}\right)^{\prime}\right]$ whose cardinality is card A. However, $f(A \times E \times\{\infty\})$ is such a set.

Using Lemma 1 we can construct functions

$$
f_{1}: A \times E \times Z^{+} \rightarrow X \text { and } g_{1}: B \times Z^{+} \rightarrow X
$$

so that:
(7) $f_{1}\left(A \times E \times Z^{+}\right) \cap g_{1}\left(B \times Z^{+}\right)=\emptyset$ and $f_{1}\left(A \times E \times Z^{+}\right) \cup g_{1}\left(B \times Z^{+}\right)$is a Hamel basis for X;
(8) $f_{1}(\beta, i, j)=f(\beta, i, j)$ if $\beta \in A, i \in E, 0 \leq j \leq n-1$;
(9) if L is the linear transformation on X defined by

$$
L\left(f_{1}(\beta, i, j)\right)=f_{1}(\beta, i, j+1) \quad \text { and } \quad L\left(g_{1}(b, j)\right)=g_{1}(b, j+1)
$$

for each b in B, β in A, i in E, j in Z^{+}, then

$$
p(L) f_{1}(\beta, i, j)=f(\beta, i, j+n) \quad \text { and } \quad p(L) g_{1}(b, j)=g(b, j+n)
$$

for each β in A, i in E, b in B, j in Z^{+}.
Now (i) follows from (4), (9), and (iii) follows from (5), (8), (9) upon considering $p(L) f(\beta, 1,0)$. If q is a polynomial of degree $k, 1 \leq k \leq n-1$, then (ii) follows from (2), (3), (8), (9) upon considering $q(L) f(\alpha, k, 0)$.

Lemma 2. If V is a vector space that is the direct sum of subspaces S_{1} and S_{2}, and if M is an infinite-dimensional subspace of V with $\operatorname{dim} S_{1}<\operatorname{dim} M$, then $\operatorname{dim}\left(M \cap S_{2}\right)=\operatorname{dim} M$.

Proof. We can choose a subspace N of V such that M is a direct sum of N and $M \cap S_{2}$. Since $N \cap S_{2}=0$, then $\operatorname{dim} N \leq \operatorname{dim} S_{1}<\operatorname{dim} M$. Thus $\operatorname{dim}\left(M \cap S_{2}\right)=\operatorname{dim} M$.

Lemma 3. If X is a direct sum of subspaces S_{1} and S_{2} with $\operatorname{dim} S_{2} \geq$ card A, then there is a subspace K of X and a collection $\left\{S_{\alpha}: \alpha \in A\right\}$ of pairwise disjoint subsets of K such that:
(i) X is a direct sum of S_{1} and K;
(ii) $\bigcup S_{\alpha}$ is linearly independent;
(iii) $S_{\alpha} \cap M_{\alpha}=\emptyset$ for each α in A;
(iv) card $S_{\alpha} \geq$ card A for each α in A.

Proof. For each ordinal α in A we define

$$
G_{\alpha}=\{(\beta, \delta) \in A \times A: \delta \leq \beta<\alpha\}
$$

Let $G=\bigcup G_{\alpha}$. We will define a function $f: G \rightarrow X$ so that:
(1) $f(G)$ is linearly independent;
(2) $S_{1} \cap \vee f(G)=0$;
(3) $f(\beta, \delta) \notin M_{\delta}$ if $(\beta, \delta) \in G$.

Once f has been constructed we can let K be any subspace containing $f(G)$ and satisfying (i), and, for each α in A, let

$$
S_{\alpha}=\{f(\delta, \alpha): \alpha \leq \delta, \delta \in A\}
$$

Suppose that α is in A and that $f(\beta, \delta)$ has been defined for all (β, δ) with $\delta \leq \beta<\alpha$ so that (1)-(3) hold when G is replaced by G_{α}. Since

$$
\operatorname{dim}\left(\vee f\left(G_{\alpha}\right)\right)<\operatorname{card} A \leq \operatorname{dim} X \quad \text { and } \quad \operatorname{card}(\alpha+1)<\operatorname{dim} X
$$

then we can choose (using another transfinite induction) vectors $f(\alpha, \delta)$ for $\delta \leq \alpha$ so that (1)-(3) hold when G is replaced by $G_{\alpha+1}$. Proceeding by transfinite induction we can extend f to all of G so that (1)-(3) hold.

The following lemma is similar to Lemma 1, and its proof is omitted.
Lemma 4. If V is a vector space with a Hamel basis $\left\{e_{k}: k \in Z\right\}$, and if p, q are polynomials such that $p(x)+q(1 / x)$ is not of the form $m x+b(m \neq 0)$, then there is a Hamel basis $\left\{f_{k}: k \in Z\right\}$ for V such that if L is the linear transformation defined on V by $L\left(f_{k}\right)=f_{k+1}$, for each k in Z, then:
(i) $f_{0}=e_{0}, f_{1}=e_{1}$, and $\left\{e_{k}: k<0\right\} \subset\left\{f_{k}: k \in Z\right\}$;
(ii) $\left[p(L)+q\left(L^{-1}\right)\right] e_{0}=e_{2}$;
(iii) $\left[p(L)+q\left(L^{-1}\right)\right] e_{k}=e_{k+1}$ if $k \geq 2$.

Theorem C^{\prime}. Suppose X is the direct sum of K and the infinite-dimensional subspaces $N_{t}, t \in T$, and that $\operatorname{dim} K, \operatorname{dim}\left(\sum N_{t}\right) \geq \operatorname{card} A$. If $\left\{p_{t}: t \in T\right\}$ and $\left\{q_{t}: t \in T\right\}$ are collections of polynomials such that, for each t in $T, p_{t}(x)+$ $q_{t}(1 / x)$ is not of the form $m x+b(m \neq 0)$, then there is an \mathscr{M}-transitive bijective linear transformation L on X such that, for each t in $T, p_{t}(L)+q_{t}\left(L^{-1}\right)$ leaves N_{t} invariant.

Proof. By Lemma 3 we may suppose that $\operatorname{dim}\left(V\left(K \cap M_{\alpha}^{\prime}\right)\right) \geq \operatorname{card} A$ for each α in A. To simplify our notation we will suppose $s \notin T$ and define $T_{1}=$ $T \cup\{s\}$ and $N_{s}=K$. We are going to define a function $f: A \times T_{1} \times Z \rightarrow X$ so that:
(1) $f\left(A \times T_{1} \times Z\right) \cap\{0\}^{\prime}$ is linearly independent;
(2) for each β in $A, f(\beta, t, 0) \neq 0$ for at least one but at most finitely many values of t in T_{1};
(3) if $f(\beta, t, 0) \neq 0$, then $f(\beta, t, n) \neq 0$ for every n in Z;
(4) if $f(\beta, t, 0)=0$, then $f(\beta, t, n)=0$ for every n in Z;
(5) $f(\beta, t, n) \in N_{t}$ if $\beta \in A, t \in T_{1}, n \geq 0, n \neq 1$;
(6) $f(\beta, t, n) \in N_{s}=K$ if $\beta \in A, t \in T_{1}, n=1$ or $n<0$;
(7) $\sum_{t \in T_{1}} f(\beta, t, 0) \in M_{\beta}$ for each β in A;
(8) $\sum_{t \in T_{1}} f(\beta, t, 1) \notin M_{\beta}$ for each β in A;

Suppose that $\alpha \in A$ and f has been defined on $\alpha \times T_{1} \times Z$ so that (1)-(8) hold when A is replaced by α. Let $V=\vee f\left(\alpha \times T_{1} \times Z\right)$. Since V has a Hamel basis contained in $\bigcup N_{t}$, then V is the direct sum $\sum_{t \in T_{1}} V \cap N_{t}$.

For each t in T_{1} we choose a subspace V_{t} of N_{t} so that N_{t} is a direct sum of $V \cap N_{t}$ and V_{t}. Then X is the direct sum $V+\sum V_{t}$.

We now consider the possibility that $0<\operatorname{dim} V_{t}<\aleph_{0}$ for some t in T_{1}. In this case we choose the smallest ordinal β_{t} for which $f\left(\beta_{t}, t, 0\right) \neq 0$. We then redefine $f\left(\beta_{t}, t, n\right)$ for each n in Z so that $f\left(\left\{\beta_{t}\right\} \times\{t\} \times Z\right)$ contains a Hamel basis for N_{t}. Once this definition has been made for each appropriate t in T_{1}, we redefine V and the V_{t} 's accordingly. We may therefore assume that, for each t in $T_{1}, V_{t}=0$ or V_{t} is infinite-dimensional.

This redefinition does not affect our induction process since the redefinition occurs at most once for each t in T_{1}.

Since $\operatorname{dim} V<\operatorname{card} A \leq \operatorname{dim} M_{\alpha}$, it follows from Lemma 2 that there is a nonzero vector x in $M_{\alpha} \cap \sum_{t \in T_{1}} V_{t}$. For each t in T_{1} we define $f(\alpha, t, 0)$ to be the component of x in V_{t} (relative to the direct sum of the V_{t}^{\prime} 's).

Since $\operatorname{dim} N_{s} \geq \operatorname{card} A$, $\operatorname{dim}\left(V\left(N_{s} \cap M_{\alpha}^{\prime}\right)\right) \geq \operatorname{card} A$, and V_{t} is infinitedimensional whenever $f(\alpha, t, 0) \neq 0$, then it follows that vectors $f(\alpha, t, n)$ can be chosen for each t in T_{1} and n in $Z \cap\{0\}^{\prime}$ so that (1)-(8) hold when A is replaced by $\{\beta: \beta \leq \alpha\}$.

We can therefore proceed by transfinite induction to extend f to all of $A \times T_{1} \times Z$ so that (1)-(8) hold.

If we let $W=\vee f\left(A \times T_{1} \times Z\right)$, then (as in the case with V) we can write W as the direct sum of the $W \cap N_{t}$'s $\left(t \in T_{1}\right)$, and we can choose subspaces W_{t} of N_{t}, for each t in T_{1}, so that N_{t} is the direct sum of W_{t} and $W \cap N_{t}$.

As in the case of the V_{t} 's we can redefine f, if necessary, to insure that, for each t in T_{1}, either $W_{t}=0$ or W_{t} is infinite-dimensional.

We define a linear transformation L on X by defining L separately on W and on each W_{t}.

Using Lemma 4 we can define L bijectively on W so that $p_{t}(L)+q_{t}\left(L^{-1}\right)$ sends $f(\alpha, t, 0)$ onto $f(\alpha, t, 2)$ and sends $f(\alpha, t, n)$ onto $f(\alpha, t, n+1)$ for all α in A, t in $T_{1}, n \geq 2$.

On each nonzero W_{t} we define L so that L maps W_{t} bijectively onto W_{t} and leaves invariant no proper finite-dimensional subspaces of W_{t}.

From (7), (8) it follows that L is \mathscr{M}-transitive. Furthermore, for each t in T, it follows from (5), (6) that $p_{t}(L)+q_{t}\left(L^{-1}\right)$ leaves both $W \cap N_{t}$ and W_{t} invariant. Since $N_{t}=\left(W \cap N_{t}\right)+W_{t}$ for each t in T, it follows that $p_{t}(L)+$ $q_{t}\left(L^{-1}\right)$ leaves N_{t} invariant for each t in T. This completes the proof.

Our remaining task is to show how Theorems A, B, C are derived from their algebraic counterparts. This is done in the following lemma. The proof of this lemma uses a theorem of Bessaga and Pelczynski [1, Theorem 1] which states that any separable infinite-dimensional Banach space contains a closed infinitedimensional subspace that has a Schauder basis. In the case of a Hilbert space any orthonormal basis will do.

Lemma 5. Let Y be a separable infinite-dimensional Banach space. Then:
(i) Y has exactly $2^{N_{0}}$ infinite-dimensional closed subspaces, and each of these subspaces has Hamel dimension $2^{{ }^{N_{0}}}$;
(ii) there is a collection $\left\{N_{t}: t \in[0,1]\right\}$ of infinite-dimensional closed subspaces of Y such that $\sum N_{t}$ is a linear direct sum.

Proof. The fact that a separable infinite-dimensional Banach space has Hamel dimension at least $2^{\aleph_{0}}$ is well known and can be found in [2]. The rest of (i) can be deduced from (ii) using the fact that any separable metric space contains at most $2^{N_{0}}$ closed subsets.

To prove (ii) let M be an infinite-dimensional closed subspace of Y which has a Schauder basis. We write the vectors in this basis as $e(m, n)$ for $(m, n) \in$ $Z \times Z$. For each n in Z define M_{n} to be the closed subspace of Y spanned by $\{e(m, n): m \in Z\}$. Then each M_{n} is a closed infinite-dimensional subspace of Y and thus has Hamel dimension $2^{\aleph_{0}}$. Hence there is a function $f:[0,1] \times Z \rightarrow$ M such that, for each n in $Z, f([0,1] \times\{n\})$ is a Hamel basis for M_{n}. For each t in $[0,1]$ we define N_{t} to be the closed subspace of Y spanned by $f(\{t\} \times Z)$. It is now easy to verify (ii).

We can see from the above theorems that on any separable infinite-dimensional Banach space there is a rich supply of (not necessarily bounded) transitive linear transformations.

However, there seems to be very little chance of using these techniques to construct a bounded transitive operator. There does not seem to be any nice way of describing continuity in terms of a Hamel basis.

It should be noted that the assumption that card $A>\aleph_{0}$ is not necessary. All of the proofs given here can easily be changed into standard induction proofs in the case when card $A=\aleph_{0}$.

It should also be noted that the conclusions of Theorems A, B, C hold when Y is replaced by the separable locally convex Frechet space (s) of all complex sequences with the coordinate seminorms. However, Johnson and Shields [3] proved that every continuous linear transformation on (s) which is not a scalar multiple of the identity has a hyperinvariant subspace.

References

1. C. Bessaga and A. Pelczynski, On bases and unconditional convergence of series in Banach spaces, Studia Math., vol. 17 (1958), pp. 151-164.
2. N. Dunford and J. Schwartz, Linear operators, Part I, Interscience, New York, 1958.
3. B. E. Johnson and A. L. Shields, Hyperinvariant subspaces for operators on the space of complex sequences, Michigan Math. J., vol. 19 (1972), pp. 189-191.
4. P. R. Halmos, Ten problems in Hilbert space, Bull. Amer. Math. Soc., vol. 76 (1970), pp. 887-993.
5. A. L. Shields, A note on invariant subspaces, Michigan Math. J., vol. 17 (1970), pp. 231-233.

Indiana University
Bloomington, Indiana
University of Hawail
Honolulu, Hawail

