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A (not necessarily bounded) linear transformation on a Banach space is
intransitive if it has a proper closed invariant subspace; otherwise it is transitive.
The general invariant subspace problem asks whether a separable infinite-
dimensional Banach space can possess bounded transitive linear transforma-
tions.

Shields [-5, Theorem 1] constructed a transitive (not necessarily bounded)
linear transformation on a separable infinite-dimensional Hilbert space. Later
Halmos [4, p. 898-] asked whether a bounded transitive linear transformation
can have an intransitive square (or inverse). This paper extends Shields’ tech-
niques to answer similar questions for (not necessarily bounded) linear trans-
formations on a separable infinite-dimensional Banach space.
The first theorem (Theorem A) shows that a linear transformation L can be

found such that every nonconstant polynomial in L and L-1 is transitive.
The second theorem (Theorem B) shows that it is possible to find a transitive

linear transformation whose square does not have dense range. Such a trans-
formation can never be bounded.
The third theorem (Theorem C) shows that it is possible to find a transitive

linear transformation with both an intransitive square and an intransitive
inverse.

In Theorems A and C certain classes of polynomials are excluded. This is
necessary in Theorem A because scalar operators are never transitive and in
Theorem C because if mL + b is intransitive and m 0, then L is intransitive.

THEOREM A. If Y is a separable infinite-dimensional Banach space, then there
is a bijective (not necessarily bounded) linear transformation L on Y such thatfor
every pair p, q ofpolynomials, not both constant, p(L) + q(L- 1) is transitive.

THEOREM B. If Y is a separable infinite-dimensional Banach space, M is a
closed infinite-dimensional subspace of Y, andp is a nonconstant polynomial, then
there is a (not necessarily bounded) linear transformation L on Y such that:

(i) p(L)(Y) M;
(ii) if q is any polynomial with < deg q < deg p, then q(L) is transitive;
(iii) p(L)[r is transitive.

THEOREM C. If Y i a separable infinite-dimensional Banach space, then there
is a bijective (not necessarily bounded) linear transformation L on Y such that L
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is transitive, but such that p(L) + q(L-1) is intransitive for every pair p, q of
polynomials with p(x) + q(1/x) not of the form mx + b (m v 0).

Since the proofs of these theorems are mostly algebraic, we shall state and
prove them in a completely algebraic setting (Theorems A’, B’, C’). To connect
the "algebraic" theorems to their "Banach space" counterparts we need a fact
(Lemma 5) about closed subspaces of a separable infinite-dimensional Banach
space.
Throughout, X will be a fixed vector space over a field F, and will be an

infinite collection of infinite-dimensional proper subspaces of X. (In the Banach
space application the role of will be played by the collection of all proper
closed infinite-dimensional subspaces.) Write ’ {M: A}, where A is
the smallest ordinal with card A card ’ (where "card" denotes cardinality).
We shall always assume that card A > No, and that, for each in A, dim M, >
card A (where "dim" denotes linear dimension).
A linear transformation on X is /l-intransitive if it has a nonzero invariant

subspace that is either finite-dimensional or in /; otherwise it is [-transitive.

The symbols Z and Z + will denote the sets of integers and nonnegative
integers, respectively. If S c X, then V S denotes the linear span of S, and S’
denotes the set-theoretic complement of S.

THEOREM A’. There is a bijective linear transformation L on X such that
p(L) + q(L-1) is /l-transitive for every pair p, q of polynomials such that
p(x) / q(1/x) is not constant.

Proof We begin by defining a functionf: A x (Z w {}) X so that:

(1) f(A x (Z w {})) is linearly independent;
(2) for all (/3, n) in A Z, f(fl, n) Ma if and only if n - 0.

Let be any ordinal in A, and suppose that f(fl, n) has been defined for all
< and n in Z w {c } so that (1), (2) hold when A is replaced by

Since

dim V f( x (Z w {oz})) < max (card , No) < card A < dim M, < dim X,

we can choose vectors f(0, n) for each n in Z w { oo ) so that (1), (2) hold when
A is replaced by {/3 A: fl _< }. Using transfinite induction we can extend f
to all of A x (Z w { oz }) so that (1), (2) hold.
We now extendf(A Z) to a Hamel basis for X by adding a set of the form

{9(b, n): (b, n) B x Z}. To be able to do this we only need an infinite linearly
independent set which is independent from f(A x Z). However, f(A x {oo})
is such a set.
We now define a linear transformation L on X by defining L(f(, n))

f(0, n + 1) and L(9(b, n)) #(b, n + 1) for each 0 in A, b in B, n in Z, and
then extending L to all of X by linearity.
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Suppose that p, q are polynomials such that p(x) + q(l/x) is not constant.
Ifdegp n >_ 1, then

[p(L) + q(L- )-]f(, n) q M
whilef(, -n) M for each in A. On the other hand if deg q m >_ 1, then

[p(L) + q(L-)]f(, m) M=
while f(, m) M, for each in A. Hence p(L) + q(L-) leaves no M, in-
variant. Since the application ofp(L) + q(L- ) to a nonzero linear combination
of basis vectors yields a linear combination involving at least one new basis
vector, then p(L)+ q(L-x) has no finite-dimensional invariant subspaces.
Thus p(L) + q(L-1) is //-transitive.
We next state a lemma whose proof is an elementary exercise in induction.

LEUUA 1. If V is a vector space with a Hamel basis {ek: k Z + }, and ifp
is any polynomial with positive degree n, then there is a unique Hamel basis
{f:k Z +} such that:

(i) f ekif O <_ k < n 1;
(ii) if L is the linear transformation on V defined by L(f) f+for each k

in Z +, then p(L)fk ek +,for each k in Z +.
THEORE B’. Ifp is a polynomial ofpositive degree and ifM is a subspaee ofX

with dim M dim X, then there is a linear transformation L on X such that:
(i) p(L)(X) = M;
(ii) q(L) is g-transitive for every polynomial q with < deg q < deg p;
(iii) iffor some in A, M M, M and dim (M c M,) > card A, then

p(L) does not leave M c M, invariant.

Proof Letn degp andE= {0, 1,...,n- 1}. We can use the trans-
finite induction technique of the proof of Theorem A’ to construct a function

f:A x E x (Z + w {}) Xsothat:
(1) f(A x E x (Z + w {})) is linearly independent;
(2) f(fl, i, i) Mg if fl A, <_ <_ n 1;
(3) f(fl, i,j) M if fl A,j E, <_ <_ n 1, -j;
(4) f(fl, i,j)MifflA, <_ <_ n- <j < ;
(5) f(fl, l,O)McM,f(fl, 1, n)Mc MgifflA, Mc M M,

dim (M c M) _> card A;
(6) f(fl, i, c) M if fl A, E.
We now extendf(A x E x Z /) to a Hamel basis for X by adding a set of the

form {g(b, i): (b, i) B x Z +} such that g(b, i) e M whenever b B, _> n.
To be able to do this we need that

dim (V [M cf(A x E x Z+)’]) dim X.

Since dim M dim X, we only need that

dim(V [Mf(A x E x Z +)’]) >_ cardA.
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We therefore need a linearly independent subset of V [M t f(A x E x Z +)’]
whose cardinality is card A. However, f(A x E x {c}) is such a set.

Using Lemma we can construct functions

f:A x E x Z + -X and 9a:B x Z + X
so that:

(7) fl(AxExZ +) c gl(BxZ +) 0 andf(AxExZ +) u gl(BxZ +) is
a Hamel basis for X;

(8) fl(fl, i,J) =f(fl, i,j) ifflA,iE, 0 <j < n- 1;
(9) if L is the linear transformation on X defined by

L(fl(fl, i, j)) f(fl, i, j + 1) and L(o(b, j)) g(b, j + 1)

for each b in B,/3 in A, in E, j in Z +, then

p(L)f(fl, i, j) f(fl, i, j + n) and p(L)ga(b, j) o(b, j + n)

for each fl in A, in E, b in B, j in Z +.
Now (i) follows from (4), (9), and (iii) follows from (5), (8), (9) upon con-

sidering p(L)f(fl, 1, 0). If q is a polynomial of degree k, < k < n 1, then
(ii) follows from (2), (3), (8), (9) upon considering q(L)f(, k, 0).

LEMMA 2. If V is a vector space that is the direct sum ofsubspaces Sa and $2,
and if M is an infinite-dimensional subspace of V with dim Sx < dim M, then
dim (M $2) dim M.

Proof. We can choose a subspace N of V such that M is a direct sum of N
and McS2. Since NcS2 0, then dimN_< dimSx < dimM. Thus
dim (M c $2) dim M.

LEMMA 3. IfX is a direct sum ofsubspaces St and $2 with dim $2 > card A,
then there is a subspace K ofX and a collection {S: A} ofpairwise disjoint
subsets ofK such that:

(i) X is a direct sum ofS and K;
(ii) ) S is linearly independent;
(iii) S c M 0for each in A;
(iv) card S > card .4 for each in .4.

Proof For each ordinal in A we define

Go {(fl, f)A x A:6 < fl <

Let G [3 G,. We will define a function f: G X so that:

(1) f(G) is linearly independent;
(2) S,c Vf(G)=0;
(3) f(fl, 6) M if (fl, 6) G.
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Once f has been constructed we can let K be any subspace containing f(G)
and satisfying (i), and, for each in .4, let

S= {f(6, a)" < 6, 6 e A}.

Suppose that is in A and that f(fl, 6) has been defined for all (fl, 6) with
a < fl < so that (1)-(3) hold when G is replaced by G=. Since

dim(Vf(G=)) < cardA < dimX and card( + 1) < dimX,

then we can choose (using another transfinite induction) vectors f(, 6) for
6 < so that (1)-(3) hold when G is replaced by G=+,. Proceeding by trans-
finite induction we can extendf to all of G so that (1)-(3) hold.
The following lemma is similar to Lemma 1, and its proof is omitted.

LEMMA 4. If V is a vector space with a Hamel basis {e" k e Z}, and ifp, q
are polynomials such that p(x) + q(1/x) is not of the form mx + b (m # 0),
then there is a Hamel basis {fk" k e Z} for V such that if L is the linear trans-

formation defined on I," by L(f) f+ , for each k in Z, then"
(i) fo eo, f e,, and {ek" k < 0} c {fk" k e Z};
(ii) [p(L) + q(L-*)]eo e2;
(iii) [-p(L) + q(L-*)]ek ek+ if k > 2.

THEOREM C’. Suppose X is the direct sum of K and the infinite-dimensional
subspaces N, T, and that dim K, dim (Y, N) > card .4. If {p" t T} and
{q’t T} are collections of polynomials such that, for each in T, p(x) +
q,(1/x) is not of theform mx + b (m 0), then there is an l-transitive bijective
linear transformation L on X such that, for each in T, p(L) + q(L- ) leaves N
invariant.

Proof. By Lemma 3 we may suppose that dim (V (K c M,)) > card A for
each in .4. To simplify our notation we will suppose s T and define T,
T w {s} and N, K. We are going to define a function f: A x T, x Z --+ X
so that"

(1) f(.4 x T x Z) {0}’ is linearly independent;
(2) for each/3 in .4, f(, t, 0) :/= 0 for at least one but at most finitely many

values of in T
(3) iff(fl, t, 0) -Y= 0, then f(fl, t, n) 0 for every n in Z;
(4) iff(, t, 0) 0, then f(fl, t, n) 0 for every n in Z;
(5) f(fl, t, n) N, if fl A, Tl, n >_ O, n =/= 1;
(6) f(fl, t, n) e N K if fl e A, Tl, n orn < 0;
(7) t r, f(fl, t, O) Mt for each fl in A;
(8) t r, f(fl, t, l) Ma for each fl in A;
Suppose that a e A and f has been defined on x T1 x Z so that (1)-(8)

hold when A is replaced by . Let V= Vf( x Tx x Z). Since Vhas a
Hamel basis contained in Nt, then V is the direct sum Y’.t r, V Nt.
For each in Tx we choose a subspace V of N so that N is a direct sum of

V c Nt and Vt. Then X is the direct sum V + Y. V,.
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We now consider the possibility that 0 < dim Vt < No for some in T1. In
this case we choose the smallest ordinal fit for which f(flt, t, 0) # 0. We then
redefinef(flt, t, n) for each n in Z so thatf((fl) x {t) x Z) contains a Hamel
basis for Nr Once this definition has been made for each appropriate in
we redefine V and the Vt’s accordingly. We may therefore assume that, for each
in T1, 1,’ 0 or Vt is infinite-dimensional.
This redefinition does not affect our induction process since the redefinition

occurs at most once for each in
Since dim V < card ,4 < dim M, it follows from Lemma 2 that there is a

nonzero vector x in M c Y’,t r Vt. For each in T1 we define f(0, t, 0) to be
the component of x in Vt (relative to the direct sum of the Vt’s).

Since dim N > card A, dim (V (N M,)) > card ,4, and le is infinite-
dimensional whenever f(, t, 0) 4: 0, then it follows that vectors f(, t, n) can
be chosen for each in T1 and n in Z c {0}’ so that (1)-(8) hold when ,4 is
replaced by {fl: fl < }.
We can therefore proceed by transfinite induction to extend f to all of

A x T1 x Z so that (1)-(8) hold.
If we let W V f(A x T1 x Z), then (as in the case with V) we can write
W as the direct sum of the W c Nt’s (t T), and we can choose subspaces
of Nt, for each in T1, so that Nt is the direct sum of Wt and W c Nr
As in the case of the Vt’s we can redefine f, if necessary, to insure that, for

each in T1, either Wt 0 or Wt is infinite-dimensional.
We define a linear transformation L on X by defining L separately on W and

on each Wt.
Using Lemma 4 we can define L bijectively on I4" so that pt(L) + qt(L-

sends f(, t, 0) onto f(, t, 2) and sends f(, t, n) onto f(, t, n + 1) for all
in A, tin Tl, n > 2.
On each nonzero Wt we define L so that L maps Wt bijectively onto Wt and

leaves invariant no proper finite-dimensional subspaces of Wt.
From (7), (8) it follows that L is ’-transitive. Furthermore, for each in T,

it follows from (5), (6) that pt(L) + qt(L-1) leaves both W Nt and Wt in-
variant. Since Nt (W c Nt) + Wt for each in T, it follows that pt(L) +
qt(L-1) leaves N invariant for each in T. This completes the proof.
Our remaining task is to show how Theorems A, B, C are derived from their

algebraic counterparts. This is done in the following lemma. The proof of this
lemma uses a theorem of Bessaga and Pelczynski [1, Theorem 1] which states
that any separable infinite-dimensional Banach space contains a closed infinite-
dimensional subspace that has a Schauder basis. In the case of a Hilbert space
any orthonormal basis will do.

LEMMA 5. Let Y be a separable infinite-dimensional Banach space. Then:
(i) Y has exactly 2 infinite-dimensional closed subspaces, and each of these

subspaces has Hamel dimension 2;
(ii) there is a collection {Nt: [0, 1]} of infinite-dimensional closed sub-

spaces of Y such that , Nt is a linear direct sum.
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Proof. The fact that a separable infinite-dimensional Banach space has
Hamel dimension at least 2 is well known and can be found in [2]. The rest
of (i) can be deduced from (ii) using the fact that any separable metric space
contains at most 2 closed subsets.
To prove (ii) let M be an infinite-dimensional closed subspace of Y which has

a Schauder basis. We write the vectors in this basis as e(m, n) for (m, n)
Z x Z. For each n in Z define Mn to be the closed subspace of Y spanned by
{e(m, n): m e Z}. Then each Mn is a closed infinite-dimensional subspace of Y
and thus has Hamel dimension 2. Hence there is a function f: [0, 1] x Z
M such that, for each n in Z,f([0, 1] x {n}) is a Hamel basis for M. For each
t in I-0, 1] we define Nt to be the closed subspace of Y spanned by f({t} x Z).
It is now easy to verify (ii).

We can see from the above theorems that on any separable infinite-dimen-
sional Banach space there is a rich supply of (not necessarily bounded) transitive
linear transformations.

However, there seems to be very little chance of using these techniques to
construct a bounded transitive operator. There does not seem to be any nice
way of describing continuity in terms of a Hamel basis.

It should be noted that the assumption that card A > No is not necessary.
All of the proofs given here can easily be changed into standard induction proofs
in the case when card A No.

It should also be noted that the conclusions of Theorems A, B, C hold when
Y is replaced by the separable locally convex Frechet space (s) of all complex
sequences with the coordinate seminorms. However, Johnson and Shields [3]
proved that every continuous linear transformation on (s) which is not a scalar
multiple of the identity has a hyperinvariant subspace.
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