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1. Introduction

The Nevanlinna class N is the algebra of functionsfanalytic in the open unit
disc U whose characteristic function

W(r,f) log/ [f(rei’)i dt

is bounded for 0 < r < where log/x max {logx, 0}. In [6], J. H.
Shapiro and A. L. Shields define a metric d on N by

(1.1) d(f, g) lim 1/2re log (1 + If(reit) g(reit)l ) dt.
r-l

Although the metric d is both complete and translation invariant, they also
show that N is not connected and scalar multiplication is not continuous in the
scalar variable. Now ifre N, then

(1.2) liln f(reit) f(e)
r-l

where the limit holds for almost every e in the unit circle T and log If(ei)l is
integrable on T ]-1, p. 17]. N + is the class of functions f N such that

lim log+ ]f(rei’)l dt log+ If(ei’)l dt
r--*

(see [ 1, Section 2.5]). N + may alternately be defined as the set off N such that

d(f, 0) lim 1/2re log (1 + f(re")l) dt
r-l

(1.3)
1/2n log(1 + If(e)[) dt

(see [-6, Proposition 1.2]). In [6], J. H. Shapiro and A. L. Shields pose the
problem of characterizing the component of the origin in N (and more generally
in N(U")). They show in Corollary 2 of Theorem 3.1 that every finite dimen-
sional subspace of N/N / has the discrete topology. This fact suggests that quite
possibly the space N/N + is totally disconnected and equivalently N + is the
component of the origin in N. We shall prove that this is false and, in particular,
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we shall characterize the component of the origin in N. It will further be shown
that for a metric p (equivalent to the metric d) the open p-balls in the component
of the origin are connected. Thus the component of the origin is locally con-
nected.

I wish to thank M. Stoll for introducing me to this problem and for his
numerous helpful suggestions in the preparation of this manuscript. I would
also like to thank the referee for his helpful comments.

2. Preliminaries

From our point of view the most important feature of N is the canonical
factorization property. A function f e N can be factored uniquely as follows
[1, p. 25-]:

Su’(z) F(z)(2.1) f(z) B(z)
Su(z)

where B (z) is the Blaschke product with respect to the zeroes of f, F (z) is an
outer function, and Su,(z) and Su,(z ) are singular inner functions with respect
to the nonnegative singular measures p and p which are mutually singular
and

(2.2) SJ(z) =explfZ + e"
z- eu

dpj(t ) j 1,2.

A function.fe Nis in N / if and only ifSu2(z ) 1, i.e., P2 0 [1, p. 26]. Thus
every function g e N can be written in the form g f/Su where f e N +. In
particular iff BSvF and v is mutually singular with respect to/ we shall say
thatf/Su is in reduced form. Iff/S, is in reduced form, then we define

(2.3) ll =d(f, 0)+ p(T).

In particular, iffe N+, Ilfll d(f, 0) so that I1"11 is an extension of d(., 0) to
N. We now define

P(f, g) IIf- gll for f, g e N. (2.4)

(1) lff e N + and S, is a singular function, then SfllPROPOSITION 2.1.

(2)
(3)
(4)

Iff e N+ and S, is a singular innerfunction, then IIf/Sll Ilfll + p(T).
p is a translation invariant metric on N.
p >_ d >_ 1/2p, i.e., the metrics p and d are equivalent.

Proof. (1) follows directly from the definition and the fact that ISu(e’)l
a.e. on T.

Suppose thatf/Su g/Sv where g/S is in reduced form. We havef BSrF
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the canonical factorization off. Let 6 be the infimum of # and y. Then
is mutually singular with respect to V 6 and

f BS_aSaF BSr_aF
S S,_S S_

But then the expression on the right is in canonical form, so v # di and
g BS_ aF. Thus

f Ilgll + v(T) < IISogll + (v + 6)(T) Ilfll + (r).

(3) will follow easily once we show that I1oll is subadditive. Suppose f/Su,
#/Sv N are in reduced form. Then

fSv + gS,
S/+v

IlfS + oSll +/(T) + v(T)

IIfSil + IIoSII + /(T) + v(T)

g

To prove (4) we show that 11"11 d(’, 0) > 11" I!, Now suppose thatf/Su N
is in reduced form. Then

(2.5)

d f
r-llim 1/27z log 1 +

lim 1/2r log (IS.(reOI + If(reOI) dt
rl 0

fO-n log IS(reU)l dt

lim log (IX.(re)l + If(re)l)dt

-log IS(O)l

_< lim 1/2r log (1 + If(re)l)dt + I(T)
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In [6, Theorem 3.1], it is shown that lima_o d(af/S,, 0) #(T) where f/S, is
in reduced form. It follows that d(f/Su, 0) > #(T). Observe also that since
IS(z)l _< for all z U,

lim, 1/2 f log (IS(re")l + If(re’)l) dt

>_ limr_.l 1/2r log ([S,,(re")[(1 + [f(reU)[) dt

[Ifll + 1/2rr flog IS,,(re")[

Thus by (2.5) d(f/S,, 0) > Ilfll. But then

d f 0 > max {llfll, #(T)} >

COROLLARY 2.2. (1) If <f/S,.> is a sequence of functions in N written
in reduced form, then lim,_.oo f,/S,. 0 if and only if lim, f, 0 and
lim,oo #,(T) 0.

(2) p is a complete metric.

In [6, Theorem 2.1] it is shown that if o T, f/S, g/S N are in reduced
form, and #({o}) > v({o}), then there exists a set V c N which is both closed
and open such that f/S, V and /S Vc. If # is a measure on T, then # is
said to be continuous (or nonatomic) if #({o}) 0 for every o T. We now
let

(2.6) K {’fN+, p is a continuous nonnegative singular measure}.
PROPOSITION 2.3. K is a closed subgroup of N which contains the component

of the origin.

Proof By the above remarks K is the intersection of subsets of N which are
both closed and open. Thus K is closed and K contains the component of the
origin. It is easily verified that K is a group.

In this paper we shall prove that K is the component of the origin in N and,
in particular, that every open ball (with metric p) is connected. In [7], M. Stoll
shows that K F/ c N thus obtaining a different formulation of K. For a
definition of the class of analytic functions F+ see [8].

3. K is the component of the origin

If C <f>,
_

< n, is a finite sequence in N with f fl, # f, and
for some e > 0, p(f,f+l) < e, < < n 1, then C is called an e-chain
fromf to g. Throughout this section we will adopt the somewhat abusive con-
vention of identifying a finite sequence with its range. If E c N and e > 0,
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then we say that E is e-chainable if for every f, g E there exists an e-chain C
fromf to g such that C E.
Our method of attack will be to show that every ball in K of p-radius r is

e-chainable for every e > 0. We will then use this fact to prove that every such
ball is connected. This will show that K is both connected and locally con-
nected. Since we already know that K contains the component of the origin,
it will follow that K is the component of the origin.

PROPOSITION 3.1. For every e > O, every open ball in K is e-chainable.

Proof. Let e > 0 and let B be the ball centered at the origin with p-radius r.
Further letf/S, B withf/S, in reduced form. Since # is a continuous measure
on the unit circle T, there exists open intervals I and closed intervals Ji in T,
< < n, such that

(i) J Itfor < < n,
(ii) t.J’=l Jt T, and
(iii) tx(I3 < e/2.

Now let/x denote the measure # restricted to the interval It. Then the sup-
port of# /x is contained in T c I. Thus by a well known theorem [3, p. 68-1,
S._., is continuous everywhere in the plane except at points in T c I. Since
S,_,, is nonzero in the closed disc off T I, S,_,, is bounded away from zero
on the sector L determined by Jr, i.e., Lt {ret" 0 Jr}. Thus IS-,l >-
di > 0 on Lt. Since U = t.J’=l Lt, ’=, IS-,l _> where di min {6 t"

< < n}. But then by the corona theorem [1, p. 202] there exist functions

st H such that 7= sSu_., 1. Letting gt fs we have gi N / and

’- gtSu-., f Now let L be the at most n dimensional subspace of N /

generated by {gtS,_u," < < n} and let Bo denote the ball of radius r /x(T)
in L. Note that f Bo. Since Bo is an open connected set in L, there exist
functions K,..., Km such that for each K there exists such that Ks
ejgSu_, with et complex such that

(a) IIKII < e/2,
(b) E=lKjBoforl <p < m, and
(c) Ejm__ K f.

The proof of this assertion is precisely the same as the argument used to show
that any two points contained in an open connected set in n-dimensional space
can be connected by polygonal arcs. We now let., and v be defined by vj =/z
and fj ejg where Kj ejgSu_u,. Thus we have Kj fsSu_vj and Ilgjll
IIfll. Hence

(2) I12= f,IS ,ll II]=x KxlS.II <_ II]=x KxII + /x(T) < r- /x(T) +
it(T) r.



558 JAMES W. ROBERTS

Thus the sequence (=f/S) with _< p _< m is an e-chain from the origin
tof/Su. Since any two points in B have e-chains to the origin, any two points in
B have e-chains connecting them.

LEMMA 3.2. If B is an open ball of p-radius r in K, e > 0 andf, g B, then
there exists an e-chain C (f,..., f,) such thatf fx, g f,, and there exist
balls B each centered atffor 2 < < n such that f_ , f+ B, each B
has radius less than e, and UT- cl (Bi) B.

Proof. Without loss of generality we may assume that B is centered at the
origin. Let 6 r max (llfll, I111) > 0. Now let eo min {e, 6/2} and let
Be be the ball centered at the origin of radius r 6/2. Then, f, g Be, and
there exists an Co-chain, C {f,... ,.f,}, with f f and g f,. It is clear
that if B is the ball of radius eo about f for 2 < < n 1, then B,..., B
satisfy the conditions of the lemma.

THEOREM 3.3. K is the component of the origin in N and every p-ball in K is
connected.

Proof. By Proposition 3.1 we need only show that the open p-balls are con-
nected. Let B be an open p-ball in K and let f, g e B. Further let (e) be a
monotone decreasing sequence of positive numbers such that lim_ e, 0.
By Lemma 3.2 there exists an e-chain C {f,..., f} fromf to g in B and
there exist balls B each centered at f, 2 < < m and each with p-radius
less than e such thatf_,f/+ e B, and cl (B) B. Now let E U’= B.
Observe that C = E, cl (E) can be finitely covered by balls of p-radius e,
and cl (E) = B. Now each pair f,f+ is contained in one of the balls Bj for
j or j + 1. Thus by the same procedure we can obtain an e2-chain
from f to f+ in B with corresponding balls of radius less than e2 and with
closures inside B. If we let C2 denote the chain obtained by unioning (juxta-
posing) the rn e2-chains and if we let E2 be the union of the balls, then C2
is an ez-chain, Ca = C2, C2 E2, cl (E2) can be finitely covered by ez-balls,
and E2 = E:. Continuing inductively we obtain e,-chains C, and sets En such
that C. C.+ , E.+ E., C. E., and each el (E.) can be finitely covered
by e.-balls. If we let E cl (UI= c.), then E cl (E.) for each n. Thus E is
totally bounded and E = B. Since (K, p) is a complete metric space, E is com-
pact. Also f, # e E. By its construction E is e-chainable for every > 0. Since
a compact metric space is connected if and only if it is e-obtainable for every
e > 0, E is connected I-4, Theorem 5.1, p. 81]. But then for f e B, B can be
written as a union of connected sets containingf Hence B is connected. This
completes the proof.

4. Remarks

We note that K is arcwise connected since it is a connected, locally connected,
complete metric space 1,2, Theorem 3-17, p. 118-1.
The question of characterizing the component of the origin in N(U) is still
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open in the case n > 1. The component of the origin in N(U") is definitely not
N +(U"). This follows since if we define b: U" --. U by b(zl, z,) zl,

then the map C4,: N N(U") defined by Co(f) f ck isometrically embeds
N in N(U"). In particular C4,(K) is connected in N(U") but is not contained in
N+(U").
The spaces N/K and KIN + could be of interest for further study. N/K is

totally disconnected but is not discrete. KIN + is connected and locally con-
nected, but by [6] every finite dimensional subspace of KIN + has the discrete
topology. Hence neither of these is trivial and their study might shed more
light on the space N.
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