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Let T R/(2nZ) be the circle group, and A(T) the Fourier algebra of T, i.e.,

A(T) fe C(T)" [Iflla(T) If(n)l <

n set o the om {=z .." . 0 o o all n}, where (.) is a sum-
mable sequence of real numbers, is called symmetric. It is not known whether
every symmetric set is of (spectral) synthesis for A(T) (ef. [2]). In this note we
prove that "most" symmetric sets are of synthesis. Our methods can be applied
to yield a simple proof of Theorem of [5].
We first introduce some notation. Let q (q,) be a fixed sequence of

natural numbers, F(m)= {0, 1,..., m} for all m 1, and E(q)== F(q,). To each sequence x (x,) of real numbers satisfying= q,lx,[ < , we associate the set

E =E(q, x)= {.,=e.x.T’e= (e,)E(q)}
and the continuous mapp p(q, x): E(q) E defined by

Px(e) . e,x, (e E(q)).
n=l

Let (I,) be a sequence of compact intervals, each containing 0, and C a positive
real number. We define

J x (x,)e I," q,lx,[ C

and notice that J is a compact metric space under the product topology. Given
a compact set K in T, let A(K) A(T)] denote the Fourier restriction algebra
to K with the quotient norm. For the other notation used here without explana-
tion, we refer to [4] and [5].

THEOgEM 1. Suppose C/n is irrational. Then quasi-a# x J have thefollowin9
properties:

(a) The map p: E(q) E is one-to-one, and induces an isometric iso-

morphism from A(E) onto the infinite tensor product A(q) of the algebras
A({jx,:j r(q,)}), n 1, 2, 3,....

(b) E is a Dirichlet set of synthesis.
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The basic ideas of our proof are found in [3] and [5]. The above theorem is
an immediate consequence of the following.

LEMMA. If C/ is irrational, then quasi-all x J have the following property:
For each natural number N, each tl > O, and complex numbers z,..., z of
modulus 1, there exists a natural number r such that

(i) Iz.-- exp(irx.)l < r/ (1 < n < N),
(ii) ]1 exp (ir Y’..=u+I e.x.)[ < q (e E(q)).

Proof Let r/ > 0 and zl,..., zN be given. Let

K K(q; z1,... zN)

denote the closure of the set of all x J for which there exists no natural number
r satisfying (i) and (ii). We claim that K has empty interior if C/zc is irrational.
We first deal with the case q.]I.I oo, where II.] denotes the length of I..

Suppose by way of contradiction that K has nonempty interior. Then there
exist finitely many open intervals V. c I. (1 < n < M, M > N) such that

(1) O#Jc V ’’’ VM_ X H In K.
n=M

Since Y’. q,lI,[ , we can assume that there exist y, V. (1 < n < M) such
that

0 < C- (qlyal +’"+ qm-lYvt-xl) < qmllml/2.

Moreover, there is no loss of generality in assuming that C, re, Yl, Yu-1 are
rationally independent. Choose YM e IM SO that

(2) qMIYMI C (qllY + + qm- 11YM- 11).

Hence re, Yl, YM are rationally independent. By the Kronecker theorem, we
can find a natural number r such that

(3) Iz. exp(iry.)l < r/ (1 _< n _< N),

(4) l1 exp (iry.)l < rl/(2Mq.) (N < n < M).

Define W to be the set of all x J satisfying these conditions:

(2)’ C- (qlxal +’"+ qmlxl) < rt/(2r);

(3)’ Iz,- exp(irx,)[ < r/ (1 _< n <_ N);

(4)’ I1 exp (irx,)l < q/(2Mq,) (N < n < M).

Then W is open in J and contains the element y (Yl,..., Y, O, 0,...).
Hence X is not empty by (1), where
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Choose any x X; then (i) holds by (3)’. Moreover, e e E(q) implies

1 exp ir
n=N+l

-< l1 exp (ire,x,)l
n=N+l

m

Z le,l’ll exp (irx,)l + r
n=N+l n=M+l

t3nXn]

< (M- N)rl/(2M) + r C- q,lx,
n=l

<q

by (4)’ and (2)’. We have thus proved that every element of X satisfies (i) and
(ii). Since X is open, this implies X c K 0, which contradicts (1)’.
Now we consider the case o q,lI, < oo. In this case, the irrationality of

C/rc is unnecessary. Suppose that (1), with M- replaced by M, holds for
some open intervals V, c I,(1 _< n < M). We choosey, e V,(1 _< n < M)
so that r, Yx,..., Y are rationally independent and qllYll + + qM[YMI <
C. Take any natural number r satisfying (3) and (4), and also a natural number
L > M so that

(5) q,lI, < //(4r).
n=L

Now define W to be the set of all x e J satisfying (3)’, (4)’, and

(6) l1 exp (irx,)l < rl/(4Lq,) (M < n <_ L).

Then we have (yl,..., YM, O, 0,...) W, and argue similarly as before to
obtain a contradiction.

In either case, the closed set K K(rl; z,..., zN) has empty interior.
Therefore the lemma follows by a routine argument of countability.

.Proof of Theorem 1. Choose and fix an arbitrary element x of J which has
the property stated in the preceding lemma. In order to prove Theorem 1, it
suffices to show that x satisfies (a) and (b).

Part (a) is an immediate consequence of Theorem 3 in [4], and we shall only
confirm (b). It is obvious that Ex is a Dirichlet set. Given a natural number N,
put

Ev E(x, N) ., e.,,x,, e T" e. e E(q
n=N+l

Since px is a one-to-one map, the closed sets e.,,x,, + Ev, e,, F(q,,) for
< n < N, are disjoint. For each pseudomeasure Q PM(E), we can there-

fore write
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where e (e.) ranges over the set I-I F(q.), Q QN, is an element of
PM(EN) for each e, and 6(t) denotes the unit point mass at T. Define a

measure/ =/tu(Q) M(Ex) by setting

If we can show that/u - Q as N c in the weak* topology of PM(T), the
proof will be complete.
LetjZ be given. Setting z. exp(ijx.) for < n < N, we apply the

lemma to find a sequence (rk) of natural numbers such that

(3) lim exp(irkx.)= z. (1 < n < N),
k-

(4) lim Ilexp (irkt) I[[c(E) 0.

As is well known, there is an absolute constant M such that

lieirt- eiJtlla<: < Milei’t eijtllc(K)
for all compact subsets K ofT (see, for example, [4; Lemma ]). It follows from
(1), (2), (3), and (4) that

{O(0)exp (ij

-< II(Llle Mill exp

0ask.
Hence we have

(5) IIIIM --< IIQIIM (N 1,2,3,...).

Moreover, we see

< o(1) + MIIall,tllexp (irkt) exp (ijt)llctrx)

< o(1) / MIIQIIp{I1 e’llc,) as k .
Since every EN contains 0 and its diameter is less than or equal to 2 ff qlxl,
the last inequalities imply

(6) lim /u(-j) 0(-J) (J Z).
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Finally we infer from (5) and (6) that the sequence (/N) converges to Q
PM(E,) in the weak* topology of PM(T), as was required.

THEOREM 2. Let G be a metrizable LCA I-group, and (U.) a sequence of
compact subsets of G. Suppose that e.x. converges for each e E(q) and
each x (x.) U I-[ U., that every U. contains 0 G, and that the
interior of U. is dense in U.. Under these conditions, define the map p, and the set

E, similarly as before (x U). Then quasi-all elements of U have the two proper-
ties asserted in Theorem 1.

Proof We claim without proof that quasi-all x U have this property:
given a natural number N, r/ > 0, and complex numbers zx,..., z. of modulus
1, there exists a continuous character V of G such that

(i) Iz.-7(x.)l < r/ (1 < n < N),

(ii) 1 ?, e,,x. < ( e E(q)).
n=N+l

The proof of this fact is similar to that of the lemma for the case y,.o q,lI, < .
A moment’s glance at the proof of Theorem shows that all of such x e U have
the required properties.

COROLLARY. For quasi-all x J (or x U), the symmetric set

is of synthesis.

Proof This is obvious by the proof of part (b) of Theorem 1.

Remarks. (I) The irrationality of C/n is unnecessary in the lemma if we only
require that r is a real positive number. Consequently the same is true in
Theorem if T is replaced by R. On the other hand, if C/n is rational and if

qlI, , then quasi-all x J satisfy q,lx, C and none of such x
have the property asserted in the lemma.

(II) Let (,) and (fl,) be two sequences of real positive numbers, and
f(t) a strictly positive real function of > 0. If, for some n, then quasi-all
elements x of the space

x I" lxl o
have the following property: Given > 0 and Izl I1 there exist
two natural numbers r, M such that

(i) lz, exp (irx,)l < f(N)for N n N N,
(ii) I1 exp(irx,)l < f(n) forN< n N M, and
(iii) + x,l < f(rN).
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This can be proved along the same lines as the lemma. In the case 2-la
fin- for all n >_ 1, this result yields a strong version of both the main
theorem of [1-[ and Theorem 3 of [3].
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