MOST SYMMETRIC SETS ARE OF SYNTHESIS

BY
Sadahiro Saeki

Let $\mathbf{T}=\mathbf{R} /(2 \pi \mathbf{Z})$ be the circle group, and $A(\mathbf{T})$ the Fourier algebra of \mathbf{T}, i.e.,

$$
A(\mathbf{T})=\left\{f \in C(\mathbf{T}):\|f\|_{A(\mathbf{T})}=\sum_{n=-\infty}^{\infty}|\hat{f}(n)|<\infty\right\} .
$$

Any set of the form $\left\{\sum_{n=1}^{\infty} \varepsilon_{n} x_{n}: \varepsilon_{n}=0\right.$ or 1 for all $\left.n\right\}$, where $\left(x_{n}\right)_{1}^{\infty}$ is a summable sequence of real numbers, is called symmetric. It is not known whether every symmetric set is of (spectral) synthesis for $A(\mathbf{T})$ (cf. [2]). In this note we prove that "most" symmetric sets are of synthesis. Our methods can be applied to yield a simple proof of Theorem 1 of [5].

We first introduce some notation. Let $q=\left(q_{n}\right)_{1}^{\infty}$ be a fixed sequence of natural numbers, $F(m)=\{0, \pm 1, \ldots, \pm m\}$ for all $m \geq 1$, and $E(q)=$ $\prod_{n=1}^{\infty} F\left(q_{n}\right)$. To each sequence $x=\left(x_{n}\right)_{1}^{\infty}$ of real numbers satisfying $\sum_{n=1}^{\infty} q_{n}\left|x_{n}\right|<\infty$, we associate the set

$$
E_{x}=E(q, x)=\left\{\sum_{n=1}^{\infty} \varepsilon_{n} x_{n} \in \mathbf{T}: \varepsilon=\left(\varepsilon_{n}\right)_{1}^{\infty} \in E(q)\right\}
$$

and the continuous map $p_{x}=p(q, x): E(q) \rightarrow E_{x}$ defined by

$$
p_{x}(\varepsilon)=\sum_{n=1}^{\infty} \varepsilon_{n} x_{n} \quad(\varepsilon \in E(q)) .
$$

Let $\left(I_{n}\right)_{1}^{\infty}$ be a sequence of compact intervals, each containing 0 , and C a positive real number. We define

$$
J=\left\{x=\left(x_{n}\right) \in \prod_{n=1}^{\infty} I_{n}: \sum_{n=1}^{\infty} q_{n}\left|x_{n}\right| \leq C\right\}
$$

and notice that J is a compact metric space under the product topology. Given a compact set K in \mathbf{T}, let $A(K)=\left.A(\mathbf{T})\right|_{K}$ denote the Fourier restriction algebra to K with the quotient norm. For the other notation used here without explanation, we refer to [4] and [5].

Theorem 1. Suppose C / π is irrational. Then quasi-all $x \in J$ have the following properties:
(a) The map $p_{x}: E(q) \rightarrow E_{x}$ is one-to-one, and induces an isometric isomorphism from $A\left(E_{x}\right)$ onto the infinite tensor product $A(q)$ of the algebras $A\left(\left\{j x_{n}: j \in F\left(q_{n}\right)\right\}\right), n=1,2,3, \ldots$
(b) E_{x} is a Dirichlet set of synthesis.

The basic ideas of our proof are found in [3] and [5]. The above theorem is an immediate consequence of the following.

Lemma. If C / π is irrational, then quasi-all $x \in J$ have the following property: For each natural number N, each $\eta>0$, and complex numbers z_{1}, \ldots, z_{N} of modulus 1 , there exists a natural number r such that
(i) $\left|z_{n}-\exp \left(i r x_{n}\right)\right|<\eta \quad(1 \leq n \leq N)$,
(ii) $\left|1-\exp \left(\operatorname{ir} \sum_{n=N+1}^{\infty} \varepsilon_{n} x_{n}\right)\right|<\eta \quad(\varepsilon \in E(q))$.

Proof. Let $\eta>0$ and z_{1}, \ldots, z_{N} be given. Let

$$
K=K\left(\eta ; z_{1}, \ldots, z_{N}\right)
$$

denote the closure of the set of all $x \in J$ for which there exists no natural number r satisfying (i) and (ii). We claim that K has empty interior if C / π is irrational.

We first deal with the case $\sum_{1}^{\infty} q_{n}\left|I_{n}\right|=\infty$, where $\left|I_{n}\right|$ denotes the length of I_{n}. Suppose by way of contradiction that K has nonempty interior. Then there exist finitely many open intervals $V_{n} \subset I_{n}(1 \leq n<M, M>N)$ such that

$$
\begin{equation*}
\emptyset \neq J \cap\left(V_{1} \times \cdots \times V_{M-1} \times \prod_{n=M}^{\infty} I_{n}\right) \subset K \tag{1}
\end{equation*}
$$

Since $\sum_{1}^{\infty} q_{n}\left|I_{n}\right|=\infty$, we can assume that there exist $y_{n} \in V_{n}(1 \leq n<M)$ such that

$$
0<C-\left(q_{1}\left|y_{1}\right|+\cdots+q_{M-1}\left|y_{M-1}\right|\right)<q_{M}\left|I_{M}\right| / 2
$$

Moreover, there is no loss of generality in assuming that $C, \pi, y_{1}, \ldots, y_{M-1}$ are rationally independent. Choose $y_{M} \in I_{M}$ so that

$$
\begin{equation*}
q_{M}\left|y_{M}\right|=C-\left(q_{1}\left|y_{1}\right|+\cdots+q_{M-1}\left|y_{M-1}\right|\right) . \tag{2}
\end{equation*}
$$

Hence $\pi, y_{1}, \ldots, y_{M}$ are rationally independent. By the Kronecker theorem, we can find a natural number r such that

$$
\begin{gather*}
\mid z_{n}-\exp \left(\text { iry }_{n}\right) \mid<\eta \quad(1 \leq n \leq N) \tag{3}\\
\mid 1-\exp \left(\text { iry }_{n}\right) \mid<\eta /\left(2 M q_{n}\right) \quad(N<n \leq M) \tag{4}
\end{gather*}
$$

Define W to be the set of all $x \in J$ satisfying these conditions:

$$
\begin{gather*}
C-\left(q_{1}\left|x_{1}\right|+\cdots+q_{M}\left|x_{M}\right|\right)<\eta /(2 r) \tag{2}\\
\left|z_{n}-\exp \left(i r x_{n}\right)\right|<\eta \quad(1 \leq n \leq N) \\
\mid 1-\exp \left(\text { irx } x_{n}\right) \mid<\eta /\left(2 M q_{n}\right) \quad(N<n \leq M)
\end{gather*}
$$

Then W is open in J and contains the element $y=\left(y_{1}, \ldots, y_{M}, 0,0, \ldots\right)$. Hence X is not empty by (1), where

$$
\begin{equation*}
X \equiv W \cap\left(V_{1} \times \cdots \times V_{M-1} \times \prod_{n=M}^{\infty} I_{n}\right) \subset K \tag{1}
\end{equation*}
$$

Choose any $x \in X$; then (i) holds by (3)'. Moreover, $\varepsilon \in E(q)$ implies

$$
\begin{aligned}
\left|1-\exp \left(i r \sum_{n=N+1}^{\infty} \varepsilon_{n} x_{n}\right)\right| & \leq \sum_{n=N+1}^{\infty}\left|1-\exp \left(i r \varepsilon_{n} x_{n}\right)\right| \\
& \leq \sum_{n=N+1}^{M}\left|\varepsilon_{n}\right| \cdot\left|1-\exp \left(i r x_{n}\right)\right|+r \sum_{n=M_{+1}}^{\infty}\left|\varepsilon_{n} x_{n}\right| \\
& <(M-N) \eta \mid(2 M)+r\left(C-\sum_{n=1}^{M} q_{n}\left|x_{n}\right|\right) \\
& <\eta
\end{aligned}
$$

by (4)' and (2)'. We have thus proved that every element of X satisfies (i) and (ii). Since X is open, this implies $X \cap K=\emptyset$, which contradicts (1)'.

Now we consider the case $\sum_{1}^{\infty} q_{n}\left|I_{n}\right|<\infty$. In this case, the irrationality of C / π is unnecessary. Suppose that (1), with $M-1$ replaced by M, holds for some open intervals $V_{n} \subset I_{n}(1 \leq n \leq M)$. We choose $y_{n} \in V_{n}(1 \leq n \leq M)$ so that $\pi, y_{1}, \ldots, y_{M}$ are rationally independent and $q_{1}\left|y_{1}\right|+\cdots+q_{M}\left|y_{M}\right|<$ C. Take any natural number r satisfying (3) and (4), and also a natural number $L>M$ so that

$$
\begin{equation*}
\sum_{n=L}^{\infty} q_{n}\left|I_{n}\right|<\eta /(4 r) . \tag{5}
\end{equation*}
$$

Now define W to be the set of all $x \in J$ satisfying (3)', (4)', and

$$
\begin{equation*}
\left|1-\exp \left(i r x_{n}\right)\right|<\eta /\left(4 L q_{n}\right) \quad(M<n \leq L) \tag{6}
\end{equation*}
$$

Then we have $\left(y_{1}, \ldots, y_{M}, 0,0, \ldots\right) \in W$, and argue similarly as before to obtain a contradiction.

In either case, the closed set $K=K\left(\eta ; z_{1}, \ldots, z_{N}\right)$ has empty interior. Therefore the lemma follows by a routine argument of countability.

Proof of Theorem 1. Choose and fix an arbitrary element x of J which has the property stated in the preceding lemma. In order to prove Theorem 1, it suffices to show that x satisfies (a) and (b).

Part (a) is an immediate consequence of Theorem 3 in [4], and we shall only confirm (b). It is obvious that E_{x} is a Dirichlet set. Given a natural number N, put

$$
E_{N}=E(x, N)=\left\{\sum_{n=N+1}^{\infty} \varepsilon_{n} x_{n} \in \mathbf{T}: \varepsilon \in E(q)\right\}
$$

Since p_{x} is a one-to-one map, the closed sets $\sum_{1}^{N} \varepsilon_{n} x_{n}+E_{N}, \varepsilon_{n} \in F\left(q_{n}\right)$ for $1 \leq n \leq N$, are disjoint. For each pseudomeasure $Q \in P M\left(E_{x}\right)$, we can therefore write

$$
\begin{equation*}
Q=\sum_{\varepsilon} Q_{\varepsilon} * \delta\left(\sum_{n=1}^{N} \varepsilon_{n} x_{n}\right) \tag{1}
\end{equation*}
$$

where $\varepsilon=\left(\varepsilon_{n}\right)_{1}^{N}$ ranges over the set $\prod_{1}^{N} F\left(q_{n}\right), Q_{\varepsilon}=Q_{N, \varepsilon}$ is an element of $P M\left(E_{N}\right)$ for each ε, and $\delta(t)$ denotes the unit point mass at $t \in \mathbf{T}$. Define a measure $\mu_{N}=\mu_{N}(Q) \in M\left(E_{x}\right)$ by setting

$$
\begin{equation*}
\mu_{N}=\sum_{\varepsilon} \hat{Q}_{\varepsilon}(0) \delta\left(\sum_{n=1}^{N} \varepsilon_{n} x_{n}\right) \tag{2}
\end{equation*}
$$

If we can show that $\mu_{N} \rightarrow Q$ as $N \rightarrow \infty$ in the weak* topology of $P M(\mathbf{T})$, the proof will be complete.

Let $j \in \mathbf{Z}$ be given. Setting $z_{n}=\exp \left(i j x_{n}\right)$ for $1 \leq n \leq N$, we apply the lemma to find a sequence $\left(r_{k}\right)_{1}^{\infty}$ of natural numbers such that

$$
\begin{gather*}
\lim _{k \rightarrow \infty} \exp \left(i r_{k} x_{n}\right)=z_{n} \quad(1 \leq n \leq N) \tag{3}\\
\lim _{k \rightarrow \infty}\left\|\exp \left(i r_{k} t\right)-1\right\|_{\mathbf{C}\left(E_{N}\right)}=0 \tag{4}
\end{gather*}
$$

As is well known, there is an absolute constant M such that

$$
\left\|e^{i r t}-e^{i j t}\right\|_{A(K)} \leq M\left\|e^{i r t}-e^{i j t}\right\|_{\mathbf{C}(K)}
$$

for all compact subsets K of \mathbf{T} (see, for example, [4; Lemma 1]). It follows from (1), (2), (3), and (4) that

$$
\begin{aligned}
& \left|\hat{\mu}_{N}(-j)-\hat{Q}\left(-r_{k}\right)\right| \\
& \quad=\left|\sum_{\varepsilon}\left\{\hat{Q}_{\varepsilon}(0) \exp \left(i j \sum_{n=1}^{N} \varepsilon_{n} x_{n}\right)-\hat{Q}_{\varepsilon}\left(-r_{k}\right) \exp \left(i r_{k} \sum_{n=1}^{N} \varepsilon_{n} x_{n}\right)\right\}\right| \\
& \leq \sum_{\varepsilon}\left\{\left|\hat{Q}_{\varepsilon}(0)-\hat{Q}_{\varepsilon}\left(-r_{k}\right)\right|+\left|\hat{Q}_{\varepsilon}\left(-r_{k}\right)\right| \sum_{n=1}^{N} q_{n}\left|z_{n}-\exp \left(i r_{k} x_{n}\right)\right|\right\} \\
& \leq \sum_{\varepsilon}\left\|Q_{\varepsilon}\right\|_{P M}\left\{M\left\|1-\exp \left(i r_{k} t\right)\right\|_{\mathbf{C}\left(E_{N}\right)}+\sum_{n=1}^{N} q_{n}\left|z_{n}-\exp \left(i r_{k} x_{n}\right)\right|\right\} \\
& \rightarrow 0 \text { as } k \rightarrow \infty
\end{aligned}
$$

Hence we have

$$
\begin{equation*}
\left\|\mu_{N}\right\|_{P M} \leq\|Q\|_{P M} \quad(N=1,2,3, \ldots) \tag{5}
\end{equation*}
$$

Moreover, we see

$$
\begin{aligned}
\left|\hat{\mu}_{N}(-j)-\hat{Q}(-j)\right| & \leq\left|\hat{\mu}_{N}(-j)-\widehat{Q}\left(-r_{k}\right)\right|+\left|\widehat{Q}\left(-r_{k}\right)-\hat{Q}(-j)\right| \\
& \leq o(1)+M\|Q\|_{P M}\left\|\exp \left(i r_{k} t\right)-\exp (i j t)\right\|_{C\left(E_{x}\right)} \\
& \leq o(1)+M\|Q\|_{P M}\left\|1-e^{i j t}\right\|_{\mathbf{c}\left(E_{N}\right)} \text { as } k \rightarrow \infty .
\end{aligned}
$$

Since every E_{N} contains 0 and its diameter is less than or equal to $2 \sum_{N}^{\infty} q_{n}\left|x_{n}\right|$, the last inequalities imply

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \hat{\mu}_{N}(-j)=\hat{Q}(-j) \quad(j \in \mathbf{Z}) \tag{6}
\end{equation*}
$$

Finally we infer from (5) and (6) that the sequence $\left(\mu_{N}\right)_{1}^{\infty}$ converges to $Q \in$ $P M\left(E_{x}\right)$ in the weak* topology of $P M(\mathbf{T})$, as was required.

Theorem 2. Let G be a metrizable LCA I-group, and $\left(U_{n}\right)_{1}^{\infty}$ a sequence of compact subsets of G. Suppose that $\sum_{1}^{\infty} \varepsilon_{n} x_{n}$ converges for each $\varepsilon \in E(q)$ and each $x=\left(x_{n}\right)_{1}^{\infty} \in U=\prod_{1}^{\infty} U_{n}$, that every U_{n} contains $0 \in G$, and that the interior of U_{n} is dense in U_{n}. Under these conditions, define the map p_{x} and the set E_{x} similarly as before $(x \in U)$. Then quasi-all elements of U have the two properties asserted in Theorem 1.

Proof. We claim without proof that quasi-all $x \in U$ have this property: given a natural number $N, \eta>0$, and complex numbers z_{1}, \ldots, z_{n} of modulus 1 , there exists a continuous character γ of G such that

$$
\begin{gather*}
\left|z_{n}-\gamma\left(x_{n}\right)\right|<\eta \quad(1 \leq n \leq N) \tag{i}\\
\left|1-\gamma\left(\sum_{n=N+1}^{\infty} \varepsilon_{n} x_{n}\right)\right|<\eta \quad(\varepsilon \in E(q)) . \tag{ii}
\end{gather*}
$$

The proof of this fact is similar to that of the lemma for the case $\sum_{1}^{\infty} q_{n}\left|I_{n}\right|<\infty$. A moment's glance at the proof of Theorem 1 shows that all of such $x \in U$ have the required properties.

Corollary. For quasi-all $x \in J$ (or $x \in U$), the symmetric set

$$
K_{x}=\left\{\sum_{1}^{\infty} \varepsilon_{n} x_{n}: \varepsilon_{n}=0 \text { or } 1 \text { for all } n\right\}
$$

is of synthesis.
Proof. This is obvious by the proof of part (b) of Theorem 1.
Remarks. (I) The irrationality of C / π is unnecessary in the lemma if we only require that r is a real positive number. Consequently the same is true in Theorem 1 if \mathbf{T} is replaced by \mathbf{R}. On the other hand, if C / π is rational and if $\sum_{1}^{\infty} q_{n}\left|I_{n}\right|=\infty$, then quasi-all $x \in J$ satisfy $\sum_{1}^{\infty} q_{n}\left|x_{n}\right|=C$ and none of such x have the property asserted in the lemma.
(II) Let $\left(\alpha_{n}\right)_{1}^{\infty}$ and $\left(\beta_{n}\right)_{0}^{\infty}$ be two sequences of real positive numbers, and $f(t)$ a strictly positive real function of $t>0$. If $\alpha_{n} \neq 1$ for some n, then quasi-all elements x of the space

$$
\left\{x \in \prod_{1}^{\infty} I_{n}: \sum_{1}^{\infty} \beta_{n}\left|x_{n}\right|^{\alpha_{n}} \leq \beta_{0}\right\}
$$

have the following property: Given $\eta>0$ and $\left|z_{1}\right|=\cdots=\left|z_{N}\right|=1$ there exist two natural numbers r, M such that
(i) $\left|z_{n}-\exp \left(\operatorname{ir} x_{n}\right)\right|<\eta f(N)$ for $1 \leq n \leq N$,
(ii) $\left|1-\exp \left(i r x_{n}\right)\right|<\eta f(n)$ for $N<n \leq M$, and
(iii) $\sum_{M+1}^{\infty} \beta_{n}\left|x_{n}\right|^{\alpha_{n}}<\eta f(r N)$.

This can be proved along the same lines as the lemma. In the case $2^{-1} \alpha_{n}=$ $\beta_{n}=1$ for all $n \geq 1$, this result yields a strong version of both the main theorem of [1] and Theorem 3 of [3].

References

1. G. Brown and W. Moran, In general, Bernoulli convolutions have independent powers, Studia Math., vol. XLVII (1973), pp. 141-152.
2. J.-P. Kahane, Séries de Fourier absolument convergentes, Springer-Verlag, Berlin, 1970.
3. C. Lin and S. Saeki, Bernoulli convolutions in LCA groups, to appear.
4. S. Saeki, Tensor products of Banach algebras and harmonic analysis, Tôhoku Math. J., vol. 24 (1972), pp. 281-299.
5. -_, Infinite tensor products in Fourier algebras, Tôhoku Math. J., vol. 27 (1975), pp. 355-379.

Tokyo Metropolitan University

Tokyo, Japan

