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1. Introduction

In a graded Lie algebra, the defining commutator identities involve signatures
depending on the parity of the degrees. Being concerned only with the struc-
tural significance of these signatures, we consider only Zz-gradings, and we call
them 2-gradings.
With regard to the notion of semisimplicity, already a casual exploration of

2-graded Lie algebras brings up a surprise. Over any field of characteristic 0,
there are 2-graded Lie algebras of arbitrarily high dimension which are simple,
in the sense of having no proper ideals, but not semisimple in the module the-
oretic sense. In fact, we shall see in Section 5 that the most conventional and
natural construction leads to precisely such algebras. Thus, already the first
question about the existence of semisimple 2-graded Lie algebras other than the
ordinary ones, in which the component of degree is (0), does not have an
immediate answer. However, we hasten to add that such 2-graded Lie algebras
do exist.

In Section 2, we give a precise description of our setting, and we discuss the
basic special features of the universal enveloping algebra of a 2-graded Lie
algebra. In Section 3, we deal with the elementary facts concerning semisimple
graded modules for 2-graded rings, which we need in Section 4 for proving that
the direct sum of semisimple 2-graded Lie algebras is semisimple. Owing to the
lack of an intrinsic characterization of semisimple 2-graded Lie algebras, this
result, at present, is not as trivial as it ought to be. The other results of Section 4
aim at a reduction of the structure theory to the theory of ordinary semisimple
Lie algebras and their representations. In fact, it seems to be most appropriate
and promising to regard semisimple 2-graded Lie algebras as a superstructure
to be built over classical Lie algebra theory. From this point of view, our only
isolated specimen, exhibited in Section 6, appears to be of basic significance,
resting upon and extending the representation theory of s/(2).

I wish to thank Professor Murray Gell-Mann who drew my attention to
2-graded Lie algebras by inquiring about the literature on them and telling me
that they are being contemplated for use in quantum theory. Leonard E. Ross,
in his dissertation (Berkeley, 1964), has provided valuable hints for the material
of Section 2 and its use later on. Finally, I thank David Goldschmidt for helping
me read his mind in connection with Section 3, and Dragomir Djokovid for his
help in clarifying a number of issues as they arose while this work was in
progress.
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2. Generalities

Let F be a field of characteristic 0. A 2-graded F-Lie algebra is a direct
F-space sum L L0 + L1, equipped with a bilinear composition [*, *] satis-
fying the following conditions, where the indices are viewed as integers modulo
2. Let x belong to L and y to L, while z denotes any element of L. Then

Ix, y] x]
and

[y, z]] [I-x, y], z] + Ix, z]].
If A A o + A1 is a 2-graded associative algebra, we obtain a 2-graded Lie

algebra [-A], with A as the underlying F-space, by defining the Lie algebra com-
position so that, for a in As and b in A, we have

[a, b] ab (-1)ba.

In particular, suppose that W is given as the direct F-space sum of two F-
spaces U and V. Let E(W) be the F-algebra of all linear endomorphisms of W.
Let Eo(W) denote the F-subalgebra of E(W) consisting of the endomorphisms
that stabilize each of U and V. Let El(W) denote the F-subspace of E(W)
consisting of the endomorphisms that send U into V, and V into U. Then, as an
F-space, E(W) is the direct sum of Eo(W) and E(W), and this defines E(W)
as a 2-graded associative algebra. A morphism of 2-graded Lie algebras from
L to [E(W)] is called a representation of L on W, and W is called a semigraded
L-module. The semigrading of W is understood to be the given decomposition
of W as the direct sum of the subspaces U and V, where (U, V) is regarded as
an unordered pair. One obtains a 2-graded F-space and L-module by selecting
one of the two possible orderings, putting Wo U and W1 V, or Wo V
and W U. We shall often make such a selection in order to facilitate a
computation or clarify a description.
The well-known facts concerning the universal enveloping algebra of an

ordinary Lie algebra extend to 2-graded Lie algebras. In fact, with the help of
[2], it is easy to adapt the treatment of the ordinary case, as given in [l], to the
2-graded case. The result is as follows. Let L be a 2-graded F-Lie algebra.
There is a 2-graded associative F-algebra //(L) and a morphism p: L [’(L)]
of 2-graded Lie algebras having the following universal mapping property. If
A is a 2-graded associative algebra and p: L -, [A] is a morphism of 2-graded
Lie algebras then there is one and only one morphism p*: g(L) A of 2-
graded associative algebras such that p*o p p. Moreover, p is injective,
so that we may identify L with its image in #(L). The F-subalgebra of //(L)
that is generated by F + Lo may be identified with the ordinary universal
enveloping algebra dg(Lo).

If (ai) is an ordered F-basis of L, then and the ordered monomials

a,,...ai,, with i <..-< i, constitute a free right and left q/(Lo)-basis of
//(L). If Vo is the F-subspace of //(L) spanned by and the above monomials
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in which q is even, and if V is the space spanned by the above monomials in
which q is odd, then the homogeneous components of ’(L) may be written

q/(L) V (R)F ’(Lo) (z 0 or 1).

Later on, it will be convenient to refer to the subspace V- of Vo that is
spanned by the monomials in which q is even and - 0. We have the direct
F-space decompositions

and
(L) (Lo) + v (R) (Lo) + v (R) (Lo)

LI(L) Lol(Lo) + V (R) l(Lo) + V, (R) Yl(Lo).

All of this follows easily from the "straightening" process in (L): if x
belongs to Lo, and a and b belong to L1, then

xa Ix, a] + ax, ab [q,b] ba and aa 1/2[a,a].

Actually, this gives more detailed information about the Lo-module structure,
as follows.

Let Vq denote the F-subspace of /(L) that is spanned by the ordered mono-
mials of degree q in the basis elements of L1 (V F, V (0) forj < 0). Put

w. ) v"- e(Lo).
i>o

It is easy to see that ’(Lo)Wq Wq. As an F-space, V may be identified with
the homogeneous component Aq(L) of the exterior F-algebra built on the F-
space L. The Lo-module structure of L defines an Lo-module structure of
Aq(L1) in the canonical fashion. Now let A be any Lo-module, viewed also as a
q/(Lo)-module in the natural way. Let (R)o indicate tensoring relative to q/(Lo),
and consider the Lo-modules Wq (R)o A. By examining the straightening process
in q/(L), one sees that the factor Lo-module (Wq (R)o A)/(Wq-2 (o A) is iso-
morphic with the tensor product Lo-module Aq(L1)(R) A, where (R) indicates
tensoring with respect to the base field F. If L and A are finite-dimensional,
and Lo is semisimple, it follows that there is an isomorphism of Lo-modules

Wq (o A 2 A 2 L ) () A
i.>= o

The notion of tensor product of semigraded L-modules requires some dis-
cussion. Suppose that A Ao + A1 is a 2-graded L-module, and B B’ +
B* is a semigraded L-module. We regard A (R) B as a semigraded F-space, with
componentsAo (R) B’ + A1 (R) B* andAo (R) B* + A1 (R) B’. The L-module
structure is defined so that, for a in A, b in B, and s in L,, we have

s" (a (R) b) (s’a) (R) b + (-1)"a (R) (s.b).

If we select the other possible 2-grading of A, then we obtain another L-module
structure on A (R) B, which differs from the above in that z is replaced with
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0 + 1. However, the semigraded L-module thus obtained is isomorphic with
the above. In fact, an isomorphism from one to the other is r/, where the
restriction of r/ to A (R) B’ is the identity map, while the restriction of r/ to
A (R) B* is the scalar multiplication by -1.

3. Semisimplicity

The elementary theory of semisimple modules for a ring can be extended to
semigraded and 2-graded modules for a 2-graded ring. The required technique
is known, but it is not "well-known," and we shall sketch it here.

Let A A o + A1 be a 2-graded ring, and let M M’ / M* be a semi-
graded A-module. Let E(M) Eo(M) + El(M) be the 2-graded ring of all
additive endomorphisms of M (defined in the same way as was E(W) at the
beginning of Section 2). Let p: A E(M) denote the A-module structure of
M, so that p is a morphism of 2-graded rings. If U Uo + U1 is any 2-graded
ring, and u e U and v Ua, we say that u and v centralize each other if uv
(-1)avu. If u and v are arbitrary elements of U, we say that they centralize
each other if their 2-graded components centralize each other--which amounts
to four conditions like the above. Referring to this notion of centralizing, we
define the M-commutant of A as the centralizer of p(A) in E(M), in the element-
wise sense. Clearly, this is a 2-graded subring of E(M).
A semigraded A-module is called simple if its only homogeneous A-sub-

modules are (0) and the whole module. It is called semisimple if it is the sum of
simple homogeneous submodules. One sees ,xactly as in the ungraded case
that a semigraded A-module M is semisimple if and only if every homogeneous
A-submodule of M has a homogeneous A-module complement in M. It is
easily seen from this, as in the ungraded case, that ifM is semisimple then every
homogeneous A-submodule of M is stabilized by the M-bicommutant (i.e., the
commutant of the commutant) of A.
We shall need the following generalization of Jacobson’s basic density

theorem.

DENSITY THEOREM. Let A be a 2-graded ring, and let M be a semisimple semi-

graded A-module. Let S be afinite subset ofM, and let be an element of the M-
bicommutant of A. There is an element a in A such that a.s (s) for every
element s of S.

Proof Let U and V denote the components of the semigrading of M. Each
element of S is the sum of an element of U and an element of V. Replacing S
with the set of these summands, we may suppose that S is the union of a subset
(u1,..., up) of U and a subset (v 1,..., Vq) of V. Let Wdenote the direct sum
ofp + q copies of the A-module M. We define a semigrading of W so that one
component is the direct sum of, first, p copies of U and, second, q copies of V,
while the other component is obtained by switching the places of U and V.
Evidently, this makes W into a semigraded A-module. Let r/denote the endo-
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morphism of M defined by q(u) u for u in U and q(v) -v for v in V. For
__< p, let Pi denote the injection of M onto the ith direct summand of W, and

let rc denote the projection of W onto its ith direct summand. For > p, let

Pi denote the map M W obtained by first applying r/and then the injection,
and let rc denote the map W - M obtained by first applying the projection and
then r/.

In order to express the consequences of these definitions conveniently, we
introduce some more notation.

Let (i)stand for 0 if < p, and for if > p.
Let lU" A --, E(M) be the A-module structure of M, and let p" A --, E(W) be

the A-module structure of W.
Let a be an element of A. Then we have

Di l(a) (-1)t(i)rp(a)o 0 and p(a) i (--1)(i)rlri p(a).

Also, if e is an element of E(W), we have

7j , Pi " Ea+i)+j)(M)
Now let C denote the M-commutant of A, and let D denote the W-commutant

of A. From the above, we find that, if d D, then rcj d Pi
Let C’ and D’ denote the M-bicommutant and the W-bicommutant of A,

respectively. For in C’, define the endomorphism o of W by

(x,..., x+,) ((x),..., (x,+)).
If belongs to C we have, as above for p(a) and/(a),

Pi (-1)<i) pi and or (_l)(i)%rioO.

Now let d be an element of D, and put di rr d pj. We know from the
above that di is an element of C+()+<j). Also, we have

d Pi dij 7r, j.

From these facts, we verify directly that, if a belongs to C, we have d
(- 1)’a d, showing that a belongs to D’.

Finally, the element (u,..., up, v,..., vq) belongs to one of the homoge-
neous components of W, so that the A-submodule generated by it is a homoge-
neous A-submodule of W. By the remark just preceding the statement of the
theorem, this submodule is stabilized by D’. In particular, there is an element
a in A such that

(u,..., up, v,..., v,) p(a)(u,..., up, v,..., v,),
and this is clearly the assertion of the theorem for the set of ui’s and vj’s. This
completes the proof.

Just as in the ordinary theory, the density theorem enables one to establish
the following result concerning semisimplicity of tensor products.
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PRODUCT THEOREM. Let F be a perfect fieM of characteristic 2, and let A
and B be 2-graded F-algebras. Let U and V befinite-dimensional semisimple semi-
graded modules for A and B, respectively. Then U (F V is semisimple as a
semigraded A (R) t B-module.

Proof We select one of the two possible 2-gradings of U, say U Uo + U1,
in order to define the semigraded A (R)v B-module structure of U (R)v V (the
remarks we made at the end of Section 2 apply also to the present situation,
mutatis mutandis). Clearly, it suffices to deal with the case where U and V are
simple. Moreover, just like in the ungraded theory, one sees (via an easy Galois
descent argument, which is applicable because F is perfect) that it suffices to
prove the theorem in the case where Fis algebraically closed. Thus, we shall now
assume that F is algebraically closed, and that U and V are simple.

Let C denote the U-commutant of A. Since U is simple and F algebraically
closed, Schur’s Lemma shows that Co consists of the scalar multiplications on
U, i.e., Co F. Let us choose an F-basis (xa,..., xp) of Uo and an F-basis
(Ya,..., Yq) of

First, let us consider the case where C1 (0). In this case, we shall see that
U (R) V is simple. Let

w ,x (R) si + ,yj (R) tj
j

be any nonzero homogeneous element of U (R) V, so that all the s’s lie in one
of the components of V, and all the tj’s lie in the other component of V. Now
the U-bicommutant C’ of A is the 2-graded F-algebra of all F-linear endo-
morphisms of U. Therefore, the density theorem shows that each xi (R) si and
each yj (R) tj belongs to the A-submodule of U (R) V that is generated by w.
Since one of these is different from 0, it is now clear from the simplicity of U
and V that the A (R) B-submodule generated by w coincides with U (R) V. Thus,
U (R) V is simple as a semigraded A (R) B-module.
Now suppose that C1 - (0). If c is a nonzero element of Ca, then c(U) is a

nonzero homogeneous A-submodule of U, so that it coincides with U. There-
fore, c is an F-linear automorphism of U. Using this, and the facts that
CCa c Co F and F is algebraically closed, we see that there is an element c
in Ca such that C Fc and C

2 1. Now C consists of all linear endo-
morphisms e of U such that e stabilizes Uo and U1 and ec ce, while C
consists of all linear endomorphismsf such thatf(Uo) c Ua, f(U1) Uo, and
fc -cf Clearly, (c(xl) c(xp)) is an F-basis of U1. We consider a non-
zero homogeneous element w, written as above, but with c(x) in the place of yj.
The density theorem now shows that the Ao-submodule of U (R) V that is
generated by w contains each x (R) st + c(x) (R) t. For some index i, this is
different from 0. Choosing such an index, we simplify the notation and assume,
without loss of generality, that

w x(R)s + c(x)(R)
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where x is a nonzero element of Uo, and s and are homogeneous elements of V,
belonging to different components of V, and not both being 0.
Now let D denote the V-commutant of B. If D1 (0), we can proceed

exactly as above, with the roles of U and V interchanged, to show that U (R) V
is simple. It remains only to examine the case where D1 - (0), in which case
we have, as above for C, that D F + Fd, with d2 1. Choose a from F such
that a2 -1. Put

e iv(R) iv + ac(R) d and f= iv(R) iv- ac(R) d.

Then e andf are homogeneous even A (R) B-module endomorphisms, e2 2e,
fz 2f, and ef 0 fe. Hence U (R) V is the direct sum of the homogeneous
A (R) B-submodules e. (U (R) V) and f. (U (R) V).
Now let p be a nonzero homogeneous element of e.(U (R) V). As above,

(A (R)B).p contains w x(R)s + c(x)(R) t. If the elements and d(s) are
linearly independent, it follows from the density theorem for V that there is
an element b in Bo such that b. 0 and b.d(s) d(s), whence b.s s.
Hence the Bo-module generated by w contains x (R) s, and therefore, as above,
(A (R) B).p coincides with U (R) V. The same conclusion holds if one of s or
tis0.

In the remaining case, we have

w x (R) s + c(x) (R) d(s)

where r is a nonzero element of F. By the density theorem, there is an element
a in Aa such that a.u (u) for every u in Uo, and a’u -c(u) for every
u in U. Similarly, there is an element b in B such that b.v d(v) for every v
in the homogeneous component of V containing s, and b. v -d(v) for every
v in the other homogeneous component of V. Now we have

(a (R) b)’w c(x) (R) d(s) zx (R) s

and
w- (a (R) b).w (1 + z2)x (R) s.

Ifz2 - -1 this gives (A (R)B).p U(R) V. Otherwise r 4-rr, so that w
is either e’(x(R)s) orf’(x(R)s). Since w belongs to e.(U(R) V), we must
therefore have w e.(x (R) s) and hence (A (R) B).p e.(U (R) V). This
proves that e.(U (R) V) is simple (.or (0)). Similarly, f. (U (R) V) is simple (or
(0)). In any case, U (R) V is semisimple, so that the product theorem is proved.

4. Semisimple 2-graded Lie algebras

We begin with an application of the product theorem of the last section.

TI3ZOREM 4.1. Let F be afield of characteristic O, and let S and T be 2-graded
F-Lie algebras. Let M be a finite-dimensional semigraded module for the direct
sum of S and T. IfM is semisimple as an S-module and as a T-module, then M
is semisimple as an (S + T)-module.
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Proof Let I denote the annihilator ofM in the universal enveloping algebra
@’(S) of S. Then I is a homogeneous ideal of (S), and the 2-graded factor
algebra ql(S)/I may be viewed, in the natural way, as a 2-graded finite-dimen-
sional //(S)-module. As such, it is isomorphic with a @’(S)-submodule of a
finite direct sum of copies of M (suitably 2-graded). Therefore, ql(S)/l is semi-
simple as a 2-graded q/(S)-module.

Let MT denote M with its structure as a semigraded (T)-module, and con-
sider the semigraded //(S) (R)F #(T)-module (#(S)/I) (R)v MT. By the product
theorem of Section 3, it is semisimple. From the ’(S)-module structure of M,
we have a surjective F-linear map : (#(S)/I)(R)F Mr--* M. As in the un-
graded case, q/(S + T) is naturally identifiable with ’(S)(R)F ’(T). If,
accordingly, M is regarded as a semigraded q/(S) (R) #(T)-module, then rc is
clearly a morphism of semigraded //(S) (R) q/(T)-modules. Consequently, M
is semisimple as a semigraded module for ’(S) (R)F q/(T), which means that it
is semisimple as a semigraded (S + T)-module. This completes the proof of
Theorem 4.1.
We shall say that a finite-dimensional 2-graded Lie algebra L is semisimple

if every semigraded finite-dimensional L-module is semisimple. It is clear from
Theorem 4.1 that a direct sum ofsemisimple 2-graded Lie algebras is semisimple.
Obviously, a homomorphic image of a semisimple 2-graded Lie algebra is semi-
simple.
The following lemma records an elementary fact concerning ordinary Lie

algebras. For use here and later on, we introduce a notational device. If M is
any module, and S is a set of endomorphisms of M, then Ms denotes the
S-annihilated part of M.

LEMMA 4.2. Let L be an ordinary finite-dimensional F-Lie algebra, where F
is afield ofcharacteristic O. lfL is not semisimple, there exists afinite-dimensional
L-module A such that (L. A)L (0).

Proof Write L R + S, where R is the radical of L, and S is semisimple.
Let T denote the S-module dual to the S-module R/[R, R]. Let A be the direct
F-space sum T + F, made into an L-module as follows. First, L. F (0).
Next, for z in T, r in R, and s in S, put

(r + s)’z s’z + z(r + [R, R]).

It suffices to verify that s. (r-z) r.(s.z) Is, r] -z, and this is seen imme-
diately. Since R - JR, R], we have T 4: (0), whence F L.A, so that Lemma
4.2 is established.

THEOREM 4.3. If L is a semisimple 2-graded Lie algebra, then [Lo, L] L,
and Lo is semisimple as an ordinary Lie algebra.

Proof Suppose that Lo is not semisimple. Let A be as in Lemma 4.2
(applied to Lo), and choose a nonzero element b in (Lo" A)L. Let (R)0 indicate
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tensoring with respect to Og(Lo). We consider the L-module M Og(L) (R)o A.
From Section 2, we know that M is finite-dimensional. It may be viewed as a
2-graded L-module, with Og(L)o (R)o .4 Mo and Og(L)I (R)o .4 M1. Let N
denote the homogeneous L-submodule Og(L) (R)o Fb of M. Suppose that it has
a homogeneous L-module complement K in M.
We may write b i xi’ai, with each xi in Lo and each ai in A. We must

have (R) ai ki + hi, where ki lies in Ko and hi in No. Applying the endo-
morphism corresponding to xi and summing for i, we obtain (R) b k + h,
where k i xi" ki belongs to Ko and h i xi" hi belongs to Lo No. This
shows that k belongs to Ko c No, so that we must have k 0 and (R) b h.
Using the notation of Section 2, we have No Vo (R)F Fb. From the descrip-
tion of Lg(L) given in Section 2 and from Lo" b (0), we see immediately that
Lo’No V (R)F Fb. Hence we have from the above that (R) b belongs to

V (R)F Fb, i.e., we have the contradiction that belongs to V-. We have
shown that N cannot have a homogeneous L-module complement in M. There-
fore, if L is semisimple, Lo must be semisimple.
Now let us view L as a semigraded L-module, via the adjoint representation.

Clearly, LL is a homogeneous L-submodule of L. Since L is semisimple, there is
a homogeneous L-module complement, P say, for LL in L. We have [L, L]
L. P P. Next, the homogeneous L-submodule L. P of P has a homoge-
neous L-module complement Q in P. Now L.Q c Q c L-P (0), so that
Q LL. Therefore, Q (0) and L. P P. Thus, L is the direct L-module
sum of [L, L] and LL, which implies that LL is semisimple as a 2-graded Lie
algebra (being a homomorphic image of L). As in the case of an ordinary
abelian Lie algebra, we see that this can be the case only if LL (0). Hence we
have [L, L] L, whence L Lo + [Lo, L1]. From the fact that Lo is semi-
simple, it now follows that [Lo, L1 L, which completes the proof of
Theorem 4.3.

THEOREM 4.4. If L is a semisimple 2-graded Lie algebra, then L is a direct
sum of 2-graded Lie algebras S and T, where T To is an ordinary semisimple
Lie algebra, and S is a semisimple 2-graded Lie algebra such that [Sx, S] So.

Proof Put S L + ]-L, LI-]. Evidently, S is a homogeneous ideal of L.
The semisimplicity of L implies that there is a complementary homogeneous
ideal T, and clearly we must have T To c Lo. As homomorphic images of
L, both S and T are semisimple 2-graded Lie algebras, and

IS,, S,] [L,, L,] So.
This completes the proof of Theorem 4.4.

The structure of a 2-graded Lie algebra L becomes more transparent when
viewed as follows. The composition from L L may be regarded as a

morphism of Lo-modules from the homogeneous component S2(L) of the
symmetric algebra built on L to the (adjoint) Lo-module Lo. Denoting this by
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q, so that, for x and y in L1, we have q(xy) Ix, y], the remaining identity of
the 2-graded Lie algebra structure says that, for all x, y, z in L1, we have
[q(xy), z] + [q(yz), x] + [q(zx), y] O.

Let T denote the subspace of SZ(L1) that is spanned by the elements of the
form q(xy).(uv) + q(uv).(xy), where x, y, u, v range over L1. Evidently, T is
contained in the kernel of t/. A straightforward computation shows that T is an

Lo-submodule of $2(L1).

PROPOSITION 4.5. If L is semisimple then the Lo-submodule T of S2(L)
defined above coincides with the kernel of the Lo-module homomorphism
q: S2(Lx) Lo, and SZ(L)L (0).

Proof Let Mo denote the Lo-module S2(L)/T, and let M1 denote the
Lo-module L1. Put M Mo + MI. We define an action of L on M such
that M becomes a 2-graded L-module. Let x be an element of L. The action
of x on M L is defined by putting x’y xy + T e Mo. Since T lies in
the kernel of r/, there is a linear map from S2(Lx)/T to L that sends each
element uv + T onto Ix, q(uv)] I-x, [u, vii. Thus we may define an action
of x on Mo such that x.w Ix, r/(w)]. Now one can verify directly that this
makes M into a 2-graded L-module. The definition of T enters in this verifica-
tion as follows.

Let x and y be elements of L. We verify that, for w in Mo, we have

x. (y" w) + y. (x. w) [x, y] w.

It suffices to consider an element w of the form uv / T. We have

x" (y" (uv + T)) + y" (x" (uv + T)) x" [y, [u, vii + y" [x, [u, vii
x[y, [., + y[x, + r

-[u, + r

Ix, y].(.v) + r

Ix, y].(uv + T).

Leaving the remaining parts of the verification to the reader, we observe that
the map M L whose restriction to Mo is the map induced by r/, and whose
restriction to M is the identity map M Lx, is a morphism of 2-graded
L-modules. Let K Ko + K be its kernel. Evidently, K Mo, so that
K Ko and K (0). Since L is semisimple, K has a homogeneous L-module
complement P Po + P in M. Clearly, we must have P M1, and Mo
is the direct sum of Ko and Po. Now L P1 Po, i.e., L1 M Po. On the
other hand, it is clear from the definition that LI.M Mo. Therefore, we
have Mo Po, whence Ko (0), so that K (0). This means that the kernel
of r/coincides with T. Since Lo is semisimple, we have Lo= (0). Since r/is a
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morphism of Lo-modules, it follows that $2(L1)L lies in the kernel T of r/.
Since T c Lo" 32(L1), this implies that $2(L1)L (0), so that Proposition 4.5
is proved.

5. Examples

The standard example of a 2-graded Lie algebra is the 2-graded Lie algebra
[E(W)], defined in Section 2, starting from a direct F-space sum W U + V
(we assume that F is a field of characteristic 0). Call this L, so that Lo Eo(W)
and L1 Ea(W). Let us choose an F-basis (xl,..., x,,+,) of W such that
(x,..., x,,) is a basis of U, and (x,+ ,..., x,,+,) is a basis of V, and let us
suppose that mn :A O. Using the standard notation epq for the linear endo-
morphism of W sending xq onto Xp and annihilating the other basis elements,
we see that Lo is spanned by the epo s where p and q are either both _<_ m or
both > m, and that L is spanned by the remaining ep’s. It is easy to verify
that [Lo, L1] L, and that ILl, L] consists precisely of all those elements
of Lo whose restrictions to U and V have equal traces. This gives [L, L]o
[L,, L,], and [L,

In general, let us call a 2-graded Lie algebra odd (or oddly generated) if it is
generated by its homogeneous component of degree 1. In view of Theorem 4.4,
we are primarily interested in odd semisimple 2-graded Lie algebras. We have
just seen that the above [L, L] is an odd 2-graded Lie algebra. If u and v
denote the linear projections W --, U and W V, respectively, that correspond
to the decomposition W U + V, then [L, L]o contains nu + my as a central
element, so that it is not a semisimple ordinary Lie algebra. Thus, in contrast
to the ungraded analog, [L, L] is not a semisimple 2-graded Lie algebra, by
virtue of Theorem 4.3. It is somewhat startling that, at the same time, if n 4= m,
then [L, L] is actually simple, in the sense that its only ideals are (0) and
[L, 3.

In order to verify this fact, let us consider a nonzero ideal I of [L, L]. In
writing matrix units, let a roman index be understood to belong to (1,..., m),
and a greek index to (m + 1,..., m + n). Let a be a nonzero element of/,
and write a ao + al, with ao in [L, L]o and a in [L, L] L. Then we
have [nu + my, a] [nu + my, aa]. Moreover,

[nu + mv, ei] (m n)e, and [nu + mv, ei] (n m)e.
Hence it is clear that [nu + my, a] is 0 only if a 0, and we conclude that
I contains a nonzero homogeneous ideal J Jo + J1. The Lie algebra Lo is
the direct sum of the three simple ideals [E(U), E(U)], [E(V), E(V)], and
F(nu + my), and we must consider each one of the following four cases"

() (o) [E(U), E(V)] = Jo,
(2) (0) # [(v), (v)] Jo,
(3) F(nu + my) Jo,
(4) Jo (0).
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In the first three cases, it is easy to check that [L1, Jo-] L1, which implies that
J [L, L]. In case (4), we have J1 # (0). Let

0 # p Caiei -f- E cjtejt J"
a,i j,

Then we have [e, p] c,(ei + e,) and [ej, p] cj(e + ejj), which shows
that, contrary to assumption, Jo # (0). This completes the proof of our asser-
tion that [L, L] is simple.

In the case where n m, our 2-graded Lie algebra [L, L] contains the
identity map u + v, so that it is not simple. Let M denote the 2-graded factor
Lie algebra [L, L]/F(u + v). Then M is an odd 2-graded Lie algebra, and Mo
is the semisimple Lie algebra [E(U), E(U)] + [E(V), E(V)]. Without exam-
ining this further in the general case, we observe that, in the case m 2 n,
this algebra M is not semisimple as a 2-graded Lie algebra. In order to see this,
let ai denote the canonical image of ej in M. Then it can be verified directly
that the following element of $2(M1) is annihilated by Mo:

(a13 a42)(a31 a24) + (a4, + a23)(a14 A- a32).

By Proposition 4.5, it follows that M is not semisimple.

6. The sl(2) model

From our above discussion, one might incline to the (false) belief that the only
2-graded semisimple Lie algebras are the ordinary semisimple Lie algebras.
Fortunately, it is possible to show by direct calculation that the odd candidate
of the lowest possible dimension 5 is indeed semisimple. In the notation used
in Section 5, this candidate is a subalgebra of [-L, L], in the case where rn
and n 2. Put x e23 y e32 z e22 e33 and put So Fx + Fy +
Fz. Then So is the split 3-dimensional simple Lie algebra:

[z, x] 2x, [z, y] -2y, Ix, y] z.

Now put u e21 e13 v el2 q- e3 S Fu + Fv. The representation
of So on S is the natural 2-dimensional representation of sl(2):

[x, .2 0, Ey, .3 , Ez, .] =.,

Ix, ] =., [y, ] 0, [, ] -.
The remaining part of the 2-graded Lie algebra structure of S So + S is
given by

[u,u] -2x, Iv, v] 2y, [u,v] z.

We must show that every finite-dimensional semigraded S-module is semi-
simple, in the semigraded sense. Let M be such an S-module. As before, let (R) o
indicate tensoring with respect to q/(So). The S-module structure of M gives a
surjective morphism of semigraded S-modules from q/(S) (R)o M to M. Since

So is semisimple, we can decompose each of the two homogeneous components
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of M into a direct sum of simple So-modules. Therefore, it will suffice to prove
that, for every finite-dimensional simple So-module A, the semigraded S-module
(S) (R)o A is semisimple.

Recall that, for every k l, 2,..., there is one and only one isomorphism
class of simple So-modules of dimension k. Denote a representative of this class
by Ak. We choose a standard basis (fo,...,f-1) of Ak such that the repre-
sentation of So on A is as follows"

x.fj =jfj_l, Y’fj (k -j)fj+l, z.fj (k 2j)fj.

Now let us fix k, and put N (S)(R)oA. We use the 2-grading of N
coming from that of q/(S), i.e.,

No (S)o (R)oA and N1 (S)1 (R)oA.

First, let us examine the So-module structures of No and N.
From Section 2, we know that, as So-modules, No is isomorphic with

A2($1) () Ak + A(S1) (R) A, and N is isomorphic with AI(S1) (R) A (where
(R) indicates tensoring with respect to our base field F). Here, S, may be identi-
fied with Az, so that No is isomorphic with the direct sum of two copies of A,
while N1 is isomorphic with A 2 ( A Ak+ + A_I (by the Clebsch-
Gordan formula). Let G denote the So-component of N1 that is isomorphic
with A+ 1, and let H denote the So-component of N1 that is isomorphic with
A_ (here, Ao is to be interpreted as the 0-module, so that, in the case k 1,
we have H (0)).
Note that Fz is a Cartan subalgebra of So, and that Fx may be taken as the

positive root space, and Fy as the negative root space. With reference to this
choice, the component G must be generated as an So-module by an element of
the 1-dimensional highest weight subspace of N1, whose weight is k. Noting
that, in ’(S), we have zu [z, u] + uz u + uz, we find that z. (u (R) fo)
k(u (R) fo), showing that the element u (R) fo of N1 is of weight k. We put
9o k(u (R) fo), and we calculate a standard basis for G by operating with y
on 9o. Precisely, we calculate a standard basis (go,..., g), where gj+l
(k j)-ly.gj (cf. the above formulas for the standard basis of Ak, now re-
placing k with k + 1). We claim that this gives, for every j 0,..., k,

gj (k -j)u (R) fj + jv (R) fj-I

wheref and f-1 may be interpreted as 0.
Clearly, this holds for j 0. Suppose it has already been established for

somej< k. In ’(S), we have yu v + uyandyv vy. Using this and our
inductive hypothesis, we find

(k j)- y gj y (u ( fj) + (k j)- jy (v (R) fj_ l)

v (R) fj + u (R) y’f. + (k -j)-Xjv (R) y’fj_

(k -j- 1)u(R)fj+l + (J + 1)v(R)fj
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so that our claim is proved. This identifies G as the F-space spanned by
go,’", gk"

Next, we proceed similarly to determine H explicitly. We wish to construct
a standard basis ho,..., h_ for H (recall that H (0) if k 1). Using the
weight theory as before, we know in advance that, up to a scalar multiple,
ho is determined by the property of having weight k 2. Putting ho
v (R) fo u (R) f, one can verify directly that z’ho (k 2)ho. Proceeding
as we did above, we find, for allj 0, 1,..., (k 2),

hj v ) fj u (fj+l"

Next, we calculate the transforms of the gi’s and hi’s under the actions of u
and v. Using that, in q/(S), we have uu -x, vv y, and vu z uv, we
obtain the following results:

u" gi j(j k + uv) (R).fi_x, v" gi (k j)(k j uv) (

u’hi (j + + uv) (R) f, v’hj (j + 2 + uv) (R) fs.+l.
Now observe that

v" g1_ -(k + j)j-au" g and v. g O= U" go.

It follows that $1 G is the k-dimensional subspace of No that is spanned by the
elements u. gl, u’gk. Since $1 is an So-submodule of S with respect to the
adjoint representation, and since G is an So-submodule of N1, it is clear that
$1" G is actually an So-submodule of No, and therefore is isomorphic with Ak.
In fact, it is easy to verify directly that the elementsj-lu.gj, withj 1,..., k,
constitute a standard basis of the k-dimensional simple So-module $1" G.
We claim that $1 ($1 G) G. We have u. (u.g) -x.gj e G. Next,

v (u g) z g u (v gj), and v gj is a rational multiple of u gj+ j, so
that u.(v’g)e G, and v.(u.gl)e G. Now we have seen that S.(S.G) is
contained in G, and therefore is an So-submodule of G. Since G is simple as an
So-module, and since S "(S .G) - (0), it follows that $1 "($1 .G) G.
Now it is clear that $1 G + G is a simple homogeneous S-submodule of N.

Let us call this P, with components (Pk)o Sa G and (Pk)l G.
In the case where k l, we have H (0), and Sx. G is the 1-dimensional

So-submodule of No that is spanned by uv (R) fo. Here, we have So" No (0),
so that the subspace spanned by (1 + uv) (R) fo is an So-module complement of
$1" G in No. In q/(S), we have

u(1 +uv)=u-xv= -vx
and

v(1 + uv) v + vuv v + zv uvv v + zv- uy vz- uy.

This shows, since fo is annihilated by So, that $1 annihilates (1 + uv) (R) fo.
Thus, N is the direct 5’-module sum of the homogeneous simple S-submodule P1
and the trivial 1-dimensional homogeneous S-submodule spanned by
(1 + uv) (R) fo.
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Now let us consider the case k > 1. The So-submodule $1" H of No is
spanned by the elements u.hj and v.hj. We have u.h+l v’h, so that
$1 H is spanned by u. ho and the v. hj’s, i.e., by the elements (j + + uv) (R) f,
withj 0,..., k 1. It is easy to see from this and our above description of
$1 "G, that No is the direct So-module sum of $1 H and $1 .G, each of these
summands being isomorphic with A,. We have

u" (u" ho) -x" ho,

v (u ho) z" ho u" (v" ho) z" ho u" (u" hl) z" ho / x" hl,

u (v .h) u (u hj+ l) -x h+ and V.(v.h) =y.h.
Thus, SI"(SI"H)c H. Since H is simple as an So-module, and since
$1 "($1" H) -#- (0), it follows that $1 "($1" H) H.
Now it is clear that $1 H + H is a simple homogeneous .S-submodule Qk of

N, and that N is the direct S-module sum ofP, and Qk. This holds also for k 1,
if we define Q as the trivial 1-dimensional submodule spanned by (1 + uv) (R) fo.
This completes the proof that S is semisimple.

It is clear from the above that P, and Qk+ are isomorphic as So-modules.
We shall show that they are actually isomorphic as semigraded S-modules. In
the notation used above, (Pk)l has the standard So-module basis (9o,..-, tTk),
where 9 (k j)u (R) f + jv (R) f

_
1. The component (Pk)o has a basis

(V go, v gk- 1), where v gj (k j)(k j uv) (R) f. The elements
(k -j)-lv’g constitute a standard So-module basis of (Pk)o, as is seen by
noting that, in q/(S), we have yuv (1 + uv)y.

In order to give a description of Qk/ that is notationally compatible with the
above description of Pk, we introduce a standard basis (to,..., tk) of the So-
module Ak/ to replace the basis (fo,..., fk-1) used originally in our descrip-
tion of Qk. Then we see from the above that (Qk/ 1)o has a basis

(j + + uv) (R) t,
with j 0,..., k, while (Qk+I)I has a basis v (R) t u (R) t+l, with j
0,..., k 1. Again, each of these is a standard basis with respect to the So-
module structure.
Now we define a linear isomorphism r/: Pk Qk+ sending (Pk)o onto

(Qk+ 1)1 and (Pk)l onto (Qk+ 1)o by prescribing the images of basis elements as
follows.

?(gj) (j + + uv) (R) t2, rl(v’g) (k -j)(v (R) t u(R) t+l).
In order to prove that r/is an isomorphism of semigraded S-modules, it suffices
to verify that ri(u’p) u’rl(p) and rl(v’p) v’rl(p) for every basis element p
of P,, because it is already clear from the above that r/is an isomorphism of

So-modules. We leave the details of this verification to the reader.
We have now shown that the Q,’s are precisely all the simple finite-dimen-

sional semigraded S-modules, up to isomorphisms. Let us display this result
in an independent notation.
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There are no even-dimensional simple semigraded S-modules.
For every positive integer k, there is precisely one isomorphism class of simple

semi#raded S-modules of dimension 2k 1. Let R(k) denote a representative of
this class. As an So-module, R(k) is the direct sum of R(k)o Ak-1 and
R(k)l Ak, which are the homogeneous components ofR(k). There are standard
So-module bases

(Po,...,P-2) and (qo,...,qk-1)

ofR(k)o and R(k)l, respectively, such that the actions ofu and v are asfollows:

u’pj qj, v’pj qj+x,

u" q:i --JP-I, v" q (k j)p.

We observe that it is actually not necessary to check that this agrees with our
above description of Qk. It is more illuminating to verify directly that R(k) is
indeed a simple semigraded (or 2-graded) S-module.

Finally, there is a straightforward extension of the Clebsch-Gordan formula
for tensor products. In exhibiting this, it is best to select 2-gradings for all the
constituents. We have already given a 2-grading to each R(k) in the above
description. In order to indicate the correct matching of homogeneous com-
ponents in a direct sum, we make the following notational conventioia. If is
an even integer, iR(k) stands for the S-module R(k) with its 2-grading as given
above. If is an odd integer, R(k) stands for R(k) with the other 2-grading. Of
course, as semigraded S-modules, these two are the same.
Now the Clebsch-Gordan formula is as follows"

2n-

Ifm >= nthenR(m)(R) R(n) iR(m + n- i).
i=1

In order to prove this, we recall that, in our notation, the classical Clebsch-
Gordan formula reads, with p _> q,

A, (R) Aq A,v+q+l_2i.
i=1

We know that R(m) (R) R(n) is isomorphic with a direct sum of R(k)’s, suitably
2-graded. As an So-module, R(k) is isomorphic with Ak + A_ 1. The following
display shows that only the sum written in the above formula gives the correct
So-module.

R(m)l (R) R(n)l Am ( A Am+n- + Am+n_ 3 +’’"

R(m)o (R) R(n)o A () An-1 Am+n-3 + Am+n-5 +""

R(m)l (R) R(n)o A,, (R) A,_ Am+,-2 + Am+n-4 +""

R(m)o (R) R(n)l " A,,_I (R) A, Am+,-2 + Am+n-4 +
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The highest dimensional simple component of R(m) (R) R(n) must be
1R(rn + n 1) so that Am+n_ appears in the homogeneous component of
degree 0. This supplies one copy of Am+,-2 in the component of degree 1. The
display shows that there remains another copy of ,4,.+,-2 in the component of
degree 1. This can be supplied only by adding 2R(m + n 2), which also
adds a copy of ,4,.+n-3 to the component of degree 0, etc. The total number
of simple components is dictated by the dimension.
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