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1. Introduction

Consider a parabolic Cauchy problem

(1.1) u Au =f (xeR",0 < _< T),

(1.2) u(x, O) Uo(X) (x e R")

where A is the Laplace operator. The solution u does not have compact support
in general, even when f =- 0 and Uo has compact support. For a parabolic
variational inequality consisting of

(1.3) u > 0, (u,- Au)(v- u) >_ f(v u)a.e., for any v >_ 0,

and of (1.2), the situation is entirely different: when f is uniformly negative,
u(x, t) has compact support whenever uo(x) has compact support. The object
of this paper is to study properties of the support.

In Section 2 we study the variational inequality (1.3), (1.2) when uo is any
finite measure. Existence and uniqueness are proved.

In Sections 3-6 it is assumed that f is bounded and is uniformly negative.
In Section 3 we show that if uo(x) has compact support then u(x, t) has

compact support. An analogous result for elliptic variational inequalities was
proved earlier by Br6zis [2] (and then generalized by Redheffer [6]).

In Sections 4 and 5 we study the behavior of the support S(t) of the function
x u(x, t). In Section 4 we consider the case where uo is any function in
L(R") with compact support S S(0); thus uo is not required to vanish on OS.
It is proved that, for all small times t,

S(t) S + B(c[tllog tl] ’/2)

where + denotes the vector sum, B(p)= {x: Ixl < p), and c is a positive
constant. This result is shown to be sharp.

In Section 5 we assume that Uo(X) vanishes together with its first derivatives
on c3S. We then prove that

s(t) = s + B(C /t)
for some positive constant C.
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In Section 6 we consider the case where Uo(X) does not have compact support,
but Uo(X) 0 as Ixl --, oo. We prove that S(t) is a compact set for any > 0.
Thus in sharp contrast with the case of (1.1), the support "shrinks" instan-
taneously.

2. Existence and uniqueness

Consider the parabolic variational inequality

(2.1) (u,- Au)(v u) >f(v u) a.e. (xR",0 < < T)

for any measurable function v, v > 0,

(2.2) u > 0 (xR",0 < < T),

(2.3) u(x, o) Uo(X) (x ").

Let/ be any positive number and introduce the norm

IglL,.,n.) e-PUlllg(x)lP dx

for any p > 1. If I#l,o) < oo then we say that g Lp’ U(R"). We let

Wk’ P’ U(R") {u Lp’ U(R"); O’u L’ "(R") for I1
If u, u,, u, u belong to L2’ u(R") for any (0, T], then we can rewrite (2.1)

in the form

fR e- 2Ul’u,(v u) dx + fR e- 2"lXl Du D(v u) dx

(2.4)
+ fR" Dxu’(De-2Ull)(v-u)dx fR, e-2’xlf(v--u)dx

for 0 < T, and for any v such that v, v belong to L2’ U(R"), v 2 0 a.e.
We shall assume:

(2.5) uoisameasure, uo 2 0,[ Uo < ,
dR

(2.6) f e L(R"x(O, r)), f e L(R"x(O, r)).

Denote by K(x, t, y) the fundamental solution of the heat equation. For any
function f(y), the integral of f with respect to the measure Uo is denoted by
n, f(Y)Uo(Y) dy. The condition (2.3) will be taken, later on, in the sense that

(2.7) u(x, t) K(x, t, y)Uo(y) dy Ct
dR

where C is a constant independent of x. (2.7) implies in particular that
u(x, t) Uo(X) as 0 for the weak*-topology on the space of measures.
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THEOREM 2.1. Let (2.5), (2.6) hold. Then there exits a unique solution of
(2.1)-(2.3) such that, for any 6 > O,

b/ G LooE(( T); m2’ p’ U(R")]
(2.8)

ut Loo[(6, T); LP’U(R")] for any 2 _< p < c,/ > 0;

the condition (2.3) is satisfied in the sense of (2.7).

Notice that, by the Sobolev inequalities, u is a continuous function for
O<t<T.

Proof.
lem"

Let QR {x; Ix[ < R}, 8 > 0, and consider the "truncated prob-

(2.9) ut- Au + fl(u) =f ifxQR, 0 < < T,

(2.10) u(x, O) Uo(X) if x QR,

(2.11) u(x,t) 0 ifxcQg, > 0.

Here the fl(u) are C functions of u, defined for 8 > 0, u R1, and satisfying:

fl(u) 0 ifu > 0,

fl(u)-+ -c ifu < 0, e$0,

fl’(u) > 0 ifu < 0.

Denote the solution of (2.9)-(2.1 l) by UR, We claim that

(2.12) rain (inff, 0) _< fl(UR,) < O.

To prove this as well as the existence of UR, it suffices to consider the case
where Uo(X) is a (nonnegative) continuous function; for then we can use approx-
imation to handle the general case where Uo is a measure.
The function fl(Ug,) takes its minimum in QRX[O, T] at some point (if, i).

If UR,,(, i) < 0 then UR, also takes its minimum at (, i), since fl’(u) > 0 if
u < 0. Hence, if (if, i) does not lie on the parabolic boundary, then (2.9) yields

fl,(Ug,) >_ f at (if, i), provided UR,,(, ) < O.

If (if, i) lies on the parabolic boundary, then

fl(UR,) 0 at (, i).

We have thus proved that if UR,(, i) < 0 then

fl(Ug,(, )) --> min (0, inff).

If UR,,(, ) >_ 0 then this inequality is also (trivially) true. This completes the
proof of (2.12).
From (2.9), (2.12) we see that u UR, satisfies

ut Au f fl(u) Loo(Qn).
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Denote by Kn(x, t, y) the Green function of the heat operator in the cylinder
Qnx(O, T). By the maximum principle,

(2.13) 0 <_ Kg(x, t, y) <_ K(x, t, y).

Using the construction of K as K + h with a suitable h (see [4]), recalling
the standard estimates on DxK, and estimating Dxhn by the interior Schauder
estimates (for instance), we conclude that

(2.14) ID,K(x, t, y)[ <_ exp if [xl < R- 1
t(n+ 1)/2 t

where C is a constant independent of R.
We can represent u UR, as follows:

u(x, t) Kg(x, t, y)uo(y) dy

(2.15) KR(X, S, y)(f fl(U))(y, S) dy ds

=Ua +u2.

Using (2.14) one can show that, for each fixed t,

lu2(x, t)lw,.(2,,_,) ctl/2
(n + )/2

where C is a constant independent of R and t. Hence

C le-lxlu2(x, t)lwl,p(2R_,) Ct 1/2

(2.16)

le-Ullu,(x, t)lw,.o.R_,) <-
t(n+ 1)/2

for any p > 0, where C is a constant independent of R, t.

Next, from the Lp estimates of [3], [7], for any 6 > 0,

; ;o ( 9 P

ip / iD2u2lP) dx dt < C(6(2.17) e -p’lxl bl 2 / IDa,u2

where C(6) a constant independent of R. Indeed, we write down (2.17) for
u2i, where {,} is a suitable partition of unity for Qn, and sum over i; then,
using (2.16), we obtain (2.17) with a constant independent of R (cf. [1], [5]).
The inequality (2.17) can be verified directly for u. Since u U + u2, we

deduce that

(2.18) e-pulxllurl p dx dt < C.

Let (t) be a C nonnegative function, (t)= 0 if < 6/2, (t)= if
> 6. Differentiating (2.9) with respect to t, we get

ldtt Abl / te(1,1)ld
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Multiplying both sides by exp(-pplxl)lu,lp-2u, and integrating over
Qgx(O, T), we find that we have

But

so that

or;Q

(e-PUlxl) lu,l-zu dx dt

[Utlp A(e -pulxl) dx dt.

However

Ae-P.lxl (p2/2- (n 1)PN) e-pulxl

pEEe-pUlxl.

Hence we conclude that

1 [e-’x[ut(X, T)[p dx [ft[g-uP]Xl[Ut]p- dx dt
P

+ (lu,I le- dx t
P

+ p,2[u,[Pe-Uplxl dx dt.

Recalling (2.18), we conclude that, for any > 0,

(2.19) [e-’]Xlut(x, t)[ p dx C if 6 N N T

where C is a constant independent of R. From (2.9), (2.12) we then also have

(2.20) [e-Ulxl Au(x, t)[ p dx <_ C if 6 < < T,

with another constant C, independent of R.
We extend the definition of u ug, into R"x[0, T] in such a way that

(2.19), (2.20) remain valid with Qg replaced by R", and the ug, remain uni-
formly bounded.
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Using the standard Lp estimates for A. we can then choose a sequence
u un., (R oo. e --, 0) which is convergent uniformly in compact subsets to
a function u. such that

3 u
DUR,--* Du (1 < I1-< 2)

tt c3t

weakly in the weak star topology of L((6o, T); LP’’(R)) for any &o > 0,
2 < p . Thus, u satisfies (2.8).
The fact that u is a solution of the variational inequality (2.1), (2.2) follows

by a standard argument. Next, from (2.15) we obtain

(2.21) UR,(X, t) f KR(X, t, y)Uo(y) dy < lu2(x, t)[

where, by (2.13) and the boundedness off- fit, [u2(x, t)[ < Ct, C a constant
independent of R, e. Going to the limit in (2.21), we obtain the inequality (2.7).
This completes the proof of existence. The proof of uniqueness follows by a
standard argument: One writes (2.4) for u and v I and then for 1 and v u,
where u, a are two solutions. Then, by adding the inequalities, one gets, after
some simple manipulations,

dt--d fRo [e-ulx’( u)(x’ t)12 dx <-- C fR, ]e-ulx’(o u)[2 dx"

hence u 0 by (2.7).

3. Compact support for the solution

We shall now assume that

(3.1) f e L(R"x(O, T)), fte L(R"x(O, T)) for any T > 0.

By Theorem 2.1, the variational inequality (3.1)-(3.3) has a unique solution
u(x, t) in R"x(0, oo) (satisfying (2.8) for any 0 < 6 < T < o). The object of
the remaining part of this paper is to study the support of u. We shall henceforth
need the condition:

(3.2) f <_ -v in R"x(0, ) (v positive constant).

THEOREM 3.1. Let (2.5), (3.1), (3.2) hold. Then there is a positive number TO
such that u(x, t) 0 if >_ TO

Proof. From the proof of Theorem 2. we infer that UR, (X, l) < M where
M is a positive constant independent of R, e. Set To + M/v and consider
the function

w(x, t) M- v(t 1) (x R, < < To).

Observe that w > 0 if <_ < To, w(x, To) 0, and

w- Aw + fl(w)= -v ifxR", < < To.
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We can apply the maximum principle to w uR,, in the strip < < To,
and thus conclude that w UR, > 0 in this strip. In particular,

u..Xx, to) <_ o.
Taking R oo, e0, we conclude that u(x, To) =- O.
u(x, t) 0 if > To.

By uniqueness,

THEORZM 3.2. Let the conditions (2.5), (3.1), (3.2) hold and suppose that Uo
has compact support. Then there is a positive constant Ro such that u(x, t) 0

if Ixl > Ro.

Proof. Let p be a positive number such that supp Uo {x; Ix[ < p}. From
the proof of Theorem 2.1 we infer that

luR,(x,T)l < N ifxR",p < Ix] < R, 0 < < To.
Consider the function

w(x) {(R r)2

where r Ix[ and /, Ro are positive constants.
2# < v,/(Ro /9)2 N, we find that

w,- ,w + /(w) -zXw > -v

w>_N

if 0 < r < Ro,

if r > Ro
Choosing #, Ro such that

if Ixl > p,

if Ixl p.

We can now apply the maximum principle to w- uR,, and conclude that
w- UR,, > Oifp < Ixl < R, 0 < < To. In particular,

UR,(x,t) 0 ifRo < [xl <_ R, 0 <_ <_ To.
Taking R , e 0 the assertion of the theorem follows.
We conclude this section with a standard comparison lemma that will be

needed in the following sections.

LMMA 3.3. Denote by u and t two functions satisfying (2.1) and (2.2) with

u, fte L(6, T; We, 2’U(R")), u,, t, e L(6, T; Lz’u(R"))

for some l and any 6 > O. Assume u(., t) Uo(’) and O(’, t)--+ 0o(’) in

U’U(R") as O. If uo <_ Oo a.e. on R" and f <_f a.e. on R"x(O, T), then
u <_ a.e. in R"x(O, T).

Proof. Let w (u- ); substituting v Min {u, t)} and then
Max {u, fi} in (2.1) we obtain after addition"

w,w+ Aw’w+ < (f f)w+ < O a.e.
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Multiplying through by e-2ulxl and integrating by parts, we get, after some
simple calculations,

2dt
e-ZUlXllw+(x, t)l z dx <_ i. 1/2lw+(x’ t)lz A(e-ZUlxl) dx

<-- 2/2 R- IW+(X, t)[2e -2ulxl dx.

On the other hand w+ (., t) 0 in L2’ "(R") as 0. We conclude that w
and thus u < fi a.e. as R"x(O, T).

+=0

4. Estimates on the support

In what follows we use the notation B(p) {x; Ixl < p}. If A and B are
sets in R", we denote by A + B their vector sum.
We shall denote by S(t) the support of the function x --, u(x, t), and write

S S(0), i.e., S is the support of the measure Uo (S is a closed set).

THEOREM 4.1. Let f satisfy (3.1), (3.2) and let Uo(X) > 0 be a function in

L(R"). Assume that the support S of Uo consists of a finite union of disjoint
bounded closed domains, with C boundary. Then, there is a positive constant c
such that

(4.1) S(t) c S + B(cx/tllog tl)

if is sufficiently small.

The proof of Theorem 4.1 relies on the following lemmas.

LEMMA 4.2. There exists a function w(x, t), x R, (0, 1) such that

(4.2) w L(Rx(6, 1),

(4.3) wt, %,, wx, L(Rx(6, 1) for each 0 < 6 < 1,

(4.4) w > 0 as Rx(O, 1),

(4.5) as O, w(x, t) O for x > 0 and w(x, t) for x < O,

(4.6) Iw, w,,l <_ ktl/Z[log t[ 3/2 for x e R, e (0, 1) and k some constant,

(4.7) w(x, t) 0 for x > x/6tllog tl and e (0, 1)

Proof of Lemma 4.2. Let s(t) x/6tllog t[ and define for x e R, e (0, 1):

D x214t s(t),X
2 + Bt + Ct log -t-- e when Ixl <

(4.8) t)
when Ixl > s(t).

We determine the constants A, B, C, and D in such a way that

(4.9) v(s(t), t) O, v,(s(t), t) 0 for ’(0, 1).
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Therefore it is required that

-6At log + Bt + Ct log + Dt 0 and 2s(t)(A D/4) O,
i.e.

(4.10) A D/4, B -D,C 3D/2.

It is easy to verify that when D > 0, then v > 0. Define now for x R and
(0, 1),

s(t)

(4.11) w(x, t) (, t) d,

so that w(x, t) 0 when x > s(t) and hence w(x, 0) 0 for x > 0. Next let
x < 0; if is small enough to insure s(t) -x, then

+ s(t)

w(x, t) v(, t) d.
] s(t)

Therefore

Is(t)( "N/tv _2/dt)w(x, t)= 2 A2 + Bt + Dt log +--E e d
do

2D f e-/ d.-}Ash(t) + 2(t + Dt og t)s(t) +
o

The last term equals
t[

2D e-"/ dr/,

and thus as 0 we see that, for x < 0,

w(x, t) --. 2D e-"1 dr1.

We fix now D in such a way that

2D e-"/ dq 1

and next A, B, and C are determined by 0.10).
In order to compute Lw w w we distinguish three regions.

Region I. x > s(t), where w OandsoLw O.

Region II. x < -s(t) where
+ s(t)

w(x, t) v(, t) (,
d-s(t)

w, v(s(t), t)s’(t) + v(--s(t), t)s’(t) + f+’(t)
d-s(t)

Wxx O.

vt(, t) d,
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By (4.9) we get

wt(x, t)= 2 fs")

do
where

(B + Clogt + C) d + 2D Is")

do

1 _X2[4t(X, t) e

(t(, t) d

Since (t (xx we have

fs,) ft) s(t)(t((, t) d (,x(, t) d (,(s(t), t) ((0, t)
oo oo 2

Finally

Lw wt(x t) 2s(t)(B + C log + C)- Ds(t)= 3Ds(t) log t.

Region III. -s(t) < x < +s(t) where w(x, t) t) v(, t) d. Thus
S(t)

wt(x, t) vt({, t) d,

s(t)

w(x, t) --v(x, t), Wxx(X, t) --vx(x t) vx(, t) d.

Consequently

Lw (vt V,,x)(, t) d

fs((B + C + Clogt + -2A) d
.Ix

(s(t) x)C log t.

In the three regions we conclude that ILw] <_ 3Ds(t)]log l.

LEMMA4.3. Let C be the cube (-O, +0)"(0 > 0).
z(x, t), x R", (0, 1) such that

z L(R"x(O, 1)),
zt, z.,, z,,,,,j L(R"x(6, 1))for each 0 < 6 < 1,

z > 0 on R"x(O, 1),
as -+ O, z(x, t) --+ 0 for x C, and z(x, t) --+ limit > for x q C,

Iz Az[ < k’t 1/2[1og t[ 3/2 for x R", (0, 1) and k is some constant,

z(x, t) Ofor Maxl_<i_<n Ixl < 0 x/6tllog tl (t small).

Proof. It is clear from Lemma 4.2 that the function

Z(X, t) [W(X qt_ O, t) q- w(O xi, t)-!
i=l

satisfies all the required properties.

There exists a function
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Proof of Theorem 4.1. Let a ess sups Uo. We denote by V(Xo) the unit
outward normal at every point Xo c3S and by C(xo, 20) an open cube centered
on V(Xo) whose side has length 20 and such that Xo is one of the vertices.

Since c3S is C there exists a fixed 0 > 0, independent of Xo, sufficiently small
such that C(xo, 20) S 0 for every Xo c3S. By shifting the origin we can
always assume that C(xo, 20) is centered at the origin and has the form
(-0, +0)". It follows from the comparison Lemma 3.3 that u _< az on

R"x(O, to) where to is small enough to insure that

ktl/Z]log t] 3/2 _< V for 0 < < to.
Therefore we conclude that u(x, t) 0 for small enough and for x of the
form x Xo + 2V(Xo), /6ntllog < 2 < 0.
The conclusion of the theorem follows.

Remark. The proof of Theorem 4.1 applies also in cases where c3S is not in
C 1" for instance in case S is a convex set.

Let S be a closed set in R". Suppose for any x t3S there exists a cone Vx
with vertex x and with opening r and height h independent of x such that
Vx S; then we say that S satisfies the uniform cone property.

In the next theorem we derive a lower bound on S(t).

THEOREM 4.2. Let f satisfy (3.1), and let f > -vo > O, vo constant. Let Uo
be a bounded measurable function whose support S satisfies the uniform cone
property. If there is a positive constant fl such that Uo(X) > fl for x S, then
there is a positive constant c such that

(4.12) S(t) S + B(cv/tllog tl)

Proof. Consider the function

for all sufficiently small.

(4.13) w(x,t) / sexpl Ix- [21 d- Vot.
(2zt)"/2 4t

It satisfieswt- Aw -Vo, W(X, 0) < Uo(X). Sinceut- Au >f_> -vo, the
maximum principle can be applied to u w. It gives

(4.14) u(x, t) > w(x, ).
Denote by d(y) the distance of a point y to S. If we can prove that

(4.15) w(y, t) > 0 whenever y S, d(y) <_ cx/tllog tl,

then, by (4.14), also u(y, t) > 0 and, consequently, the assertion (4.12) would
follow.

In order to prove (4.15), let Xo be a point on c3S such that d(y) Y Xo[.
Integrating in (4.13) only over the cone with vertex Xo, opening a, and height r/

(0 < r/ < h) which lies in S, we find that

w(y, t) > /30 texp -ldt Y) It_ Vot
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for any 0 < r/ < h, where rio, # are positive constants. If is sufficiently small
then we can take r/ .v/t. Hence, w(y, t) > 0 if

1 exp I-ldi(Y)l >-

where/31 is a positive constant. Taking the logarithm we see that w(y, t) > 0 if

/ dZ(Y) < [log t[ + const.

This gives (4.12) with c < 1/x//.

5. Estimates on the support (continued)

TrEOREM 5.1. Let (3.1), (3.2) hold and let S supp Up be a finite disjoint
union of bounded closed domains with C 2 boundary. Assume that

(5.1) uo C2(S), uo O, D,,uo O on S.

Then there exists a positive constant o, dependin9 only on the data, such that

(5.2) S(t) c S + B(%/t) for all > O.

Proof. Let y be any point outside S. Let 6 dist. (y. S). For simplicity
we takey 0.

Using (5.1) we find that, for any x S,

(5.3) Up(X) lUo(X) Uo(X’)l _< Colx- x’[ 2 < Co([Xl 6)2

where x’ is the first point where the ray from x to y intersects c3S.
Setting r Ixl, 2 (r 6) we shall construct a comparison function

(tF(2) if6-x/t < r <
w(x t)=

ifr <

for 0 < < tr, tr sufficiently small, where F is a nonnegative function defined
on [-z, + oo). We require that

(5.4) F(-00 0, F’(-00 0,

so that w is continuously differentiable across r 6 %/t. We also require
that w(x, O) > Up(X). In view of (5.3), the last inequality holds if

(5.5) lira F(2____) >_ Co.

Finally, we require that w, A > -v; in terms of F this means that

(5.6) F- 1/22F’
n x/t F’ F" > -v

where the argument in F, F’, F" is 2.
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We seek F(4) of the form

(//(4 -- 002 if- < 4 < 0,
F(4)

A4z + B2 + C if4 > 0.

Then w is continuously differentiable across 4 0 if

(5.7) /(Z
2 C, 2e B.

If we take

(5.8) A > Co
then (5.5) holds. The conditions in (5.4) are clearly satisfied.
We now turn to verifying the inequality (5.6). In the region where - <

4 < 0, (5.6) reduces to

2(n 1)x/t (4 + ) 2/t >_ v.(/ + )2 2( + )-

If is sufficiently small then 6/2 < r < 6; the last inequality is then a con-
sequence of

4( -1- (X
2 4(n 1)

or, a consequence of

(5.9) /(2 +4(n-1)x/a
In the region where 4 > 0, (5.6) holds if

n--
A42 + B4 + C-1/22(2A4 + B)

x/t(4 + ) 21 >_ -v,

< v (0 < _<

x/t (2A4 + B)- 2A > -v.

Since r > 6, this inequality holds, for all 0 < < a, if

B
(5.10) 2x/aA > 0,

2 6

(5.11) C
n x/a B- 2A > -v.

From (5.7) we find that

(5.12) a 2C/B, let B2/4C.
Taking C _> 2A v + we see that (5.1 l) holds if a is sufficiently small. If
we further choose B, C to be positive, then and/ are positive. If we also take
C/B to be sufficiently large, then becomes so large that the left-hand side of
(5.9) is negative. Thus (5.9) is satisfied. Notice that also (5.10) is satisfied if a
is sufficiently small.

Thus, with the above choice of B, C, and A, and with the definitions of , g
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by (5.12), we have established that the function w is a comparison function, i.e.,
it satisfies the conditions of Lemma 3.3. Consequently, u(x, t) <_ w(x, t) in
R"x(O, ). The conclusion of Theorem 5.1 follows.

Remark 1. Theorem 5.1 extends to the case where S consists of a finite
disjoint union of closed convex domains with C1 boundary.

Remark 2. Ifft < 0 and

(5.13) f+ Au0 < 0 inS

then one can show that ut < 0. Consequently, S(t) c S(t’)if > t’ > 0.

6. Instantaneous shrinking of the support

In this section we consider the case where uo need not have compact support,
but Uo(X) -* 0 if Ix] oo. We shall show that the support S(t) of x --, u(x, t)
is compact, for any > 0.

T[4EOREM 6.1. Let f satisfy (3.1), (3.2) and assume that

(6.1) Uo

Then S(t) is a compact set, for any > O.

Proof. The assertion of the theorem follows from the assertion that there
exists a function b(r) and a positive number R, such that

(6.2) (r) > 0, b(r)

(6.3) u(x, t) 0 if > 4(Ixl), Ix] > R.

In view of Theorem 3.2 it suffices to prove (6.3)just for < to, where to is a
sufficiently small positive number. We first establish that

(6.4) u(x, t) --, 0 if Ix[ oo, uniformly in t.

Let z be the bounded solution of

zt Az 0 (x g", > 0), z(x, O) Uo(X) (x 1").

Representing z in terms of the fundamental solution and using (6.1), we find
that for any T > 0,

(6.5) z(x,t)Oiflx]- oo, uniformly int, 0 < t_< T.

Since z > 0, we can verify that the function z satisfies (2.1) with f 0.
Noting thatf _> f, we can apply Lemma 3.3 to conclude that z > u. But then
(6.4) is a consequence of (6.5).

Let r/be any small positive number. By (6.4), there is an R > 0 sufficiently
large such that

(6.6) u(x, t) < q if Ixl > R, 0 < < T.
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We shall estimate u(x, t) more precisely in a region

(6.7) [x[ > R, 0 < < to
where to is a sufficiently small positive number.

Let r Ixl and

w(x,t)=[((r)-t)2 iflxl >R,O<t< qS(r),

if Ixl > R, > (r).

Then w satisfies w > u if Ixl- R, 0 < < to, or if Ixl > R, -0 provided

(6.8) (dp(R)- to)z >_ rl,

(6.9) 2(r) > Uo(X) (r Ixl > R).

Also w satisfies the variational inequality (2.1) on Ix] > R, 0 < < to with

f >_ -y provided

--2((r)- t)- 2((r)- t)"(r)- 2(’(r))2

(6.10) --2 n 1
((r) t)dp’(r) > -(r > R, 0 < < (r)).

Since the last inequality is linear in t, it suffices to verify it at (r) and
0, i.e.,

(6.11) (’(r))z <_ 1/2y (r > R),

(6.12) 6(r) + (r)"(r) + (qS’(r)) 2 + n
b(r)qS,(r) < 1/2?.

F

We shall now construct a function satisfying (6.8), (6.9), (6.11), and (6.12).
Since Uo(X) 0 as Ix] - , we can find an increasing sequence (a,) such that

al R and

/.o(X) < / .Z__, xoo, oo+,(Ixl) for Ixl > R

where Xta, ] is the characteristic function of the interval [a, b]. We can always
assume that a,+ a, 2 for n 1.

Let (t), R, be a smooth function with compact support such that 0,
(t) for 0 1, [(t)l 1, [’(t)l and ["(t)l for t R.

Define

() p p > 0.

Clearly is a smooth function and (r) 0 as r + ; we are going to see
that for q small enough, it is possible to choose p in such a way that satisfies
(6.8), (6.9), (6.11), and (6.12).



PARABOLIC VARIATIONAL INEQUALITIES 97

Since b(R) _> p, the conditions

(6.13)

imply (6.8).
We have, for Ixl > R,

p > 2x/q and to <

Uo(X) "------P

and therefore (6.13) also implies (6.9).
On the other hand ]b’(r)l _< 2p and Ib"(r)] _< 2p for r e R. Thus (6.11) and

(6.12) are consequences of the following

(6.14) 4pz <_ 1/2"

(6.15) 2p + 4p2
nt- 4p2 + 4p2 N 1/2].

Conclusion: we first choose a p > 0 satisfying (6.14), (6.15); next r/and to are
obtained from (6.13). Finally, we choose R, {a,} and construct .
From a variant of Lemma 3.3 we deduce that

u(x,t) < w(x,t) if Ix[ > R, 0 < < to
and the assertion (6.3) follows.

Remark. If Uo has compact support, then in the above proof we can take
b(r) to vanish if r is sufficiently large. Thus u(x, t) will vanish if Ix[ _> Ro for
some Ro sufficiently large. This gives another proof of Theorem 3.2.
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