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BY
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1. Introduction

Consider a parabolic Cauchy problem
(1.1) uy—Au=f (xeR,0<t<T),
(1.2) u(x, 0) = uy(x) (xe R")

where A is the Laplace operator. The solution u does not have compact support
in general, even when f = 0 and u, has compact support. For a parabolic
variational inequality consisting of

13) u=0, (u, — Au)(v — u) = f(v — u) a.e, forany v > 0,

and of (1.2), the situation is entirely different: when f is uniformly negative,
u(x, t) has compact support whenever uy(x) has compact support. The object
of this paper is to study properties of the support.

In Section 2 we study the variational inequality (1.3), (1.2) when u, is any
finite measure. Existence and uniqueness are proved.

In Sections 3-6 it is assumed that f is bounded and is uniformly negative.

In Section 3 we show that if uy(x) has compact support then u(x, t) has
compact support. An analogous result for elliptic variational inequalities was
proved earlier by Brézis [2] (and then generalized by Redheffer [6]).

In Sections 4 and 5 we study the behavior of the support S(¢) of the function
x — u(x, t). In Section 4 we consider the case where u, is any function in
L”(R") with compact support S = S(0); thus u, is not required to vanish on 4.
It is proved that, for all small times ¢,

S(t) = S + B(c[t|log t|1'"%)

where + denotes the vector sum, B(p) = {x: |x] < p}, and ¢ is a positive
constant. This result is shown to be sharp.

In Section 5 we assume that uy(x) vanishes together with its first derivatives
on dS. We then prove that

S(t) = S + B(Cy/t)
for some positive constant C.
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In Section 6 we consider the case where uy(x) does not have compact support,
but uy(x) — 0 as |x|] — co. We prove that S(¢) is a compact set for any ¢ > 0.
Thus in sharp contrast with the case of (1.1), the support “shrinks” instan-
taneously.

2. Existence and uniqueness

Consider the parabolic variational inequality

2.1 W, — A v — u) > fo —u)ae. xeR,0<t<T)
for any measurable function v, v > 0,

2.2) u>0 (xeR,0<1t<T),

(2.3) u(x, 0) = uy(x) (x € R").

Let u be any positive number and introduce the norm

1/p
[glLenermy = H e ¥ g(x)|P dx}
R”

for any p > 1. If |glppmrny < o0 then we say that g € IP"#(R"). We let
wkp-m(R" = {u e IP"*(R"); Du e I»*R") for |a| < k}.

If u, u,, u,, u,, belong to [***(R") for any t € (0, T], then we can rewrite (2.1)
in the form

Rn

J e 2Mxly (v — u) dx + j e ¥ Dou-Dv — u) dx
(2.4) ®

+ I D+ (D ¥ — u) dx > J‘ e 2M¥If (v — u) dx
R”

Rn

for 0 < ¢t < T, and for any v such that v, v, belong to I?**(R"), v > 0 a.e.
We shall assume:

(2.5) Uy is a measure, u, > 0, J‘ Uy < 00,
er
(2.6) fe L*(R"x(0, T)), f; € L*(R"x(0, T)).

Denote by K(x, t, y) the fundamental solution of the heat equation. For any
function f(y), the integral of f with respect to the measure u, is denoted by
frn f(ue(y) dy. The condition (2.3) will be taken, later on, in the sense that

< Ct

(2.7)

u(x, 1) — f K(x, 1, ug(y) dy
Rn

where C is a constant independent of x. (2.7) implies in particular that
u(x, t) — uy(x) as ¢ | 0 for the weak*-topology on the space of measures.
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THEOREM 2.1. Let (2.5), (2.6) hold. Then there exists a unique solution of
(2.1)-(2.3) such that, for any 6 > 0,
ueL”[(6, T); W» P H*(R")]
u, € L°[(6, T); I"*(R")] forany2 < p < oo, u > 0;
the condition (2.3) is satisfied in the sense of (2.7).

(2.8)

Notice that, by the Sobolev inequalities, u is a continuous function for
0<r< T

Proof. Let Qr = {x;|x] < R}, ¢ > 0, and consider the “truncated prob-
lem”

(2.9) U, — Au + B(u) =f ifxeQr,0<t<T,
(2.10) u(x, 0) = uy(x) if x € Qp,
Q.11 u(x,t) =0 ifxedQg, t > 0.

Here the f,(u) are C* functions of u, defined for ¢ > 0, u € R, and satisfying:
Bw) =0 ifu>0,
Bu) » —0 ifu<0,¢e]0,
piw) >0 ifu<O.
Denote the solution of (2.9)~(2.11) by ug .. We claim that
(2.12) min {inf f, 0} < B(ug,.) < O.

To prove this as well as the existence of ug , it suffices to consider the case
where uy(x) is a (nonnegative) continuous function; for then we can use approx-
imation to handle the general case where u, is a measure.

The function B,(ug,,) takes its minimum in Qxx[0, T] at some point (X, 7).
If ug_ (X, ) < O then ug , also takes its minimum at (X, ), since fy(u) > 0 if
u < 0. Hence, if (X, T) does not lie on the parabolic boundary, then (2.9) yields

Bug,,) = fat (X, 1), provided ug (X, 1) < 0.
If (X, ©) lies on the parabolic boundary, then
Bug ) = 0at (X, 7).
We have thus proved that if up (X, ) < O then
B(ug, (X, 1)) = min (0, inf f).

If ug (X, 7) > O then this inequality is also (trivially) true. This completes the
proof of (2.12).
From (2.9), (2.12) we see that u = uy , satisfies

u, — Au = f — B(u) € L*(Qp)-
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Denote by Kg(x, t, y) the Green function of the heat operator in the cylinder
Qrx(0, T). By the maximum principle,

(2.13) 0 < Kilx, 1, ) < K(x, 1, ).

Using the construction of Ky as K + hy with a suitable kg (see [4]), recalling
the standard estimates on D K, and estimating D, /iz by the intericr Schauder
estimates (for instance), we conclude that

C x — y*] .
(2.14) |D,Kg(x,t, y)| < PTEEVIE exp l:_l—Zt—yl:I if |x] < R — 1,

where C is a constant independent of R.
We can represent u = ug . as follows:

u(x, 1) J Ka(x, t, ug(y) dy
Qr

(2.15) + f ‘ J Kx(%, 5, 9)(f — Bw)(y, ) dy ds
4] R

= u; + u,.

Using (2.14) one can show that, for each fixed ¢,

C 12
|u1(x, t)‘wl,oo(QR_l) < W’ |u2(x, t)‘W"‘”(QR—l) < Ct /

where C is a constant independent of R and 7. Hence

(2.16)

_ C - 2
le™"*uy (x, Olwiirir-1) < 102 le™*Muy(x, Dlwtrgn-r < CtY

for any p > 0, where C is a constant independent of R, t.
Next, from the I” estimates of [3], [7], for any 6 > 0,
0

! —pulx|
(2.17) L J ) e < o

where C(5) a constant independent of R. Indeed, we write down (2.17) for
u,&,, where {&;} is a suitable partition of unity for Qg, and sum over i; then,
using (2.16), we obtain (2.17) with a constant independent of R (cf. [1], [5]).

The inequality (2.17) can be verified directly for u,. Since u = u; + u,, we
deduce that

T
(2.18) j j e PHIxly P dx dt < C.
4 JOr

p
+ Du,l? + |D§u21p> dx dt < C(8)

Let &(¢) be a C*® nonnegative function, &(t) = 0 if r < /2, &) =1 if
t > 6. Differentiating (2.9) with respect to ¢, we get

e — Aup + B, = f,.
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Multiplying both sides by exp (—pulx|)¢|u,|” ?u, and integrating over
Orx(0, T), we find that we have
1

T
! f e~ x, THIP dx + f Sy, 2 (exp (= palel)) - Elud?2u, dx dt
P Jor 0o Jor T T Ox;

T T
= j J |fz|e_”p'xlf|u,|p_l dx dt + j J 1|ut|P|5'|e-upIXI dx dt
o Qr 0 R p

But

_ 10
Uy ] 2“: = - — lul’,

i

so that

T
J J Yy u:x,a—z- (e7Prixly- Elu,|P~ 2y, dx di
0 JOr i i . 1
= J I <—) Elu P — A(e™P#*1y dx dt.
o Jor \P

Ae—PrIxl — (I,Z#Z _ (n — Dpu e~ Pulxl
|x]

However

IA
B

pPute”PHIX,
Hence we conclude that

T
lf e (x, TY? dx < J j il m1¥1lu, Pt dx di
P Jox 0 R

T
+ f j L uiryite o dx di
o Jor P

T
+ J‘ j pué|u,Pe” PIx1 dx dt.
0 JOr
Recalling (2.18), we conclude that, for any 6 > 0,
(2.19) f le™"¥ly(x, t)Pdx < C ifd<t<T
Or
where C is a constant independent of R. From (2.9), (2.12) we then also have
(2.20) J‘ le™#I*l Au(x, t)|Pdx < C ifd <t<T,
Or

with another constant C, independent of R.

We extend the definition of u = ug , into R"x[0, T'] in such a way that
(2.19), (2.20) remain valid with Qg replaced by R", and the uy , remain uni-
formly bounded.
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Using the standard I estimates for A, we can then choose a sequence
u = ug,, (R - o, & — 0) which is convergent uniformly in compact subsets to
a function u, such that

a%ux,s L0 D Dl < o] < 2)

weakly in the weak star topology of L*((d,, T); LP>*(R") for any §, > O,
2 < p < . Thus, u satisfies (2.8).

The fact that u is a solution of the variational inequality (2.1), (2.2) follows
by a standard argument. Next, from (2.15) we obtain

(2.21)

g o, t)—f Ka(x, 1, Duo(y) dy| < fus(x, 1]

where, by (2.13) and the boundedness of f — f,, |[u,(x, )| < Ct, C a constant
independent of R, &. Going to the limit in (2.21), we obtain the inequality (2.7).
This completes the proof of existence. The proof of uniqueness follows by a
standard argument: One writes (2.4) for u and v = fi and then for i and v = u,
where u, fi are two solutions. Then, by adding the inequalities, one gets, after
some simple manipulations,

ij le™®*l(a — u)(x, 1)|? dx < Cf le #xl(a — w)|? dx;
dt RYI R"

hence i — u = 0 by (2.7).

3. Compact support for the solution
We shall now assume that
3.1) fe L*(R*x(0, T)), f, e L°(R"x(0, T)) for any T > 0.

By Theorem 2.1, the variational inequality (3.1)-(3.3) has a unique solution
u(x, t) in R"x(0, oo) (satisfying (2.8) for any 0 < 6 < T < o0). The object of
the remaining part of this paper is to study the support of u. We shall henceforth
need the condition:

(3.2) f < —vin R"x(0, o0) (v positive constant).

THEOREM 3.1. Let (2.5), (3.1), (3.2) hold. Then there is a positive number T,
such that u(x, t) = 0if t = T,.

Proof. From the proof of Theorem 2.1 we infer that ug ,(x, 1) < M where
M is a positive constant independent of R, &. Set T, = 1 + M /v and consider
the function

wx,t) =M —v(it—-1) (xeR,1<t=<Ty.
Observe thatw > 0if 1 < ¢t < Ty, wx, Ty) = 0, and
w,— Aw + B(w) = —v ifxeR,1 <t<T,.
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We can apply the maximum principle to w — ug . in the strip 1 < t < Ty,
and thus conclude that w — ug . > 0 in this strip. In particular,

uR,s(x’ TO) < 0.

Taking R — o, ¢ —» 0, we conclude that u(x, T,) = 0. By uniqueness,
u(x,t) = 0ift > T,.

THEOREM 3.2. Let the conditions (2.5), (3.1), (3.2) hold and suppose that u,
has compact support. Then there is a positive constant R, such that u(x, t) = 0
if |x| > R,.

Proof. Let p be a positive number such that supp u, < {x; |x| < p}. From
the proof of Theorem 2.1 we infer that

lug, (6, T < N ifxeR, p <|x] <R 0<t<T,
Consider the function
WRy — r)? if0 < r < Ry,
w(x) =

ifr > R,

where r = |x| and u, R, are positive constants. Choosing u, R, such that
2 < v, (R, — p)* = N, we find that

w, — Aw + B(W) = —Aw = —v if x| > p,
w>N if |x| = p.

We can now apply the maximum principle to w — ug , and conclude that
w—ug,=>0ifp <|x| <R 0<t < T, Inparticular,

uR’s(.x, t) = 0 ifRo < lx‘ < R,O < t < To.

Taking R — o0, ¢ — 0 the assertion of the theorem follows.
We conclude this section with a standard comparison lemma that will be
needed in the following sections.

LeMMA 3.3. Denote by u and i two functions satisfying (2.1) and (2.2) with
u, it € L°(5, T; W?* 2 #(R"), u, , € L*(5, T; [***(R")

for some p and any 6 > 0. Assume u(-,t) - u0(~) and 4(-, t) - Go(*) in
I»*(R") as t - 0. If uy < i, a.e. on R" and f < f a.e. on R'x(0, T), then
u < il a.e. in R"x(0, T).

Proof. Let w = (u — #1); substituting v = Min {u, 4} and then ? =
Max {u, 4} in (2.1) we obtain after addition:

wwt — Aw-wt < (f — fiw" < O ae.
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Multiplying through by e”?**| and integrating by parts, we get, after some
simple calculations,

1d

— e 2wt (x, 1)]? dx < Lw*(x, 1)|* Ale™ 2#1*1y dx
2.dt Jg, Rn

< ZuZJ wt(x, t)|%e™ 2 dx.
Rn

On the other hand w* (-, t) —» 0in I***(R")ast — 0. We conclude that w* = 0
and thus u < # a.e. as R"x(0, T).

4. Estimates on the support

In what follows we use the notation B(p) = {x; |x|] < p}. If A and B are
sets in R", we denote by A + B their vector sum.

We shall denote by S(¢) the support of the function x — u(x, ¢), and write
S = S(0), i.e., S is the support of the measure v, (S is a closed set).

THeOREM 4.1.  Let f satisfy (3.1), (3.2) and let uy(x) = 0 be a function in
L*(R"). Assume that the support S of u, consists of a finite union of disjoint
bounded closed domains, with C* boundary. Then, there is a positive constant ¢
such that

4.1 S(t) = S + B(c\/tllog t])
if t is sufficiently small.

The proof of Theorem 4.1 relies on the following lemmas.

LEMMA 4.2. There exists a function w(x, t), x € R, t € (0, 1) such that

4.2) w e L°(Rx(5, 1),
4.3) Wy, Wy, Wi € L°(RX(8, 1) for each 0 < 6 < 1,
(4.4) w >0 as Rx(0, 1),

4.5) ast— 0,w(x,t) > 0forx > 0and w(x, t) - 1 for x <0,
4.6) |w, — wy| < kt'/*|log t|*/* for x € R, t € (0, 1) and k some constant,
4.7) w(x, 1) = 0 for x > \/6t|logt| and t € (0, 1)

Proof of Lemma 4.2. Let s(t) = \/6t|10g t| and define for x e R, t € (0, 1):

Ax* + Bt + Ctlogt + D e *"* when |x| < s(1),

(4.8) v(x, 1) = Ji
0 when |x| > s(t).
We determine the constants 4, B, C, and D in such a way that
4.9) v(s(t), t) = 0, v(s(t), 1) = 0 forte(0,1).
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Therefore it is required that

—6Atlogt + Bt + Ctlogt + Dt =0 and 2s(t)(4 — Dj4) = 0,
i.e.
(4.10) A = D/4, B= —D, C = 3D)2.

It is easy to verify that when D > 0O, then » > 0. Define now for x € R and
te (0, 1),

@.11) Wi, 1) = j ", 1) de,

X

so that w(x, t) = 0 when x > s(¢) and hence w(x, 0) = O for x > 0. Next let
x < 0; if ¢ is small enough to insure s(f) < —x, then

+s(t)
Wi, 1) = j o, 1) de.
—s(t)
Therefore

s(t)
w(x, t) = 2[ <A62 + Bt + Dtlogt + % e‘¢2/4') dé
0

3 2D s(t) —E2/4¢
= 245°(t) + 2(Bt + Dt log t)s(t) + = e ¢4 e,
0

Jt

Jollogt]
2D j e "% dn,
0

The last term equals

and thus as ¢t — 0 we see that, for x < 0,

+ 00
w(x, t) — 2DJ e "% dy.
0
We fix now D in such a way that

+
2D f e "y =1
0
and next 4, B, and C are determined by (4.10).

In order to compute Lw = w, — w,, we distinguish three regions.

Region 1. x > s(t), where w = 0 and so Lw = 0.

Region I1. x < —s(t) where

Wi, ) = f " e, 1) de,

—s(t)

W, = o(s(1), (1) + o(=s(1), Ds'(1) + j e 1 de,
—s(t)
Wy, = 0.
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By (4.9) we get

s(t)
w,(x,t)=2j (B+Clogt+C)dé+2Df
0 0

S

0)
C(&, 1) dE
where
Ux, 1) = \/it e x4
Since {, = {,, we have
s

s(t) s(1) 1)
f LAE, 1) dE = f e ) dE = 060, 0 — 00,0 = =20,

0 0

Finally
Lw = wy(x,t) = 2s(t)(B + Clogt + C) — Ds(t) = 3Ds(t) log t.

Region 1I1.  —s(t) < x < +s(t) where w(x, t) = O v(¢, t) d¢. Thus

wix, 1) = j e 1) dE,

x
s(t)

W, 1) = —0(x, 1), Wl 1) = —ox, 1) = J verlE, 1) dE.

X

Consequently
t
Lw = j (b — v)E 1) de

s(t)
=J (B+ C + Clogt + —24) d¢

X

= (s(t) — x)C log t.
In the three regions we conclude that |Lw| < 3Ds(t)|log ¢|.

LEmMA 4.3.  Let C be the cube (—0, +0)" (0 > 0). There exists a function
z(x, t), x € R", t € (0, 1) such that

z € L*(R"x(0, 1)),

Zg Zxp Zxx; € LO(RX(S, 1)) for each 0 < 6 < 1,

z > 0on R"x(0, 1),

ast — 0,z(x,1t) - 0 for x e C, and z(x, t) — limit > 1 for x ¢ C,

|z, — Az| < k't'?|log t|3/* for x € R", t € (0, 1) and k is some constant,

z(x, t) = 0 for Max, _;, Ix;| < 0 — /6t|log t| (¢ small).

Proof. ltis clear from Lemma 4.2 that the function

2(x. 1) = .;"1 [w(x; + 0, 1) + w0 — x;, 1)]

satisfies all the required properties.
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Proof of Theorem 4.1. Let a = ess supg #,. We denote by v(x,) the unit
outward normal at every point x, € 0S and by C(x,, 26) an open cube centered
on v(x,) whose side has length 20 and such that x, is one of the vertices.

Since 8S is C! there exists a fixed 0 > 0, independent of x,, sufficiently small
such that C(x,, 20) N S = 0 for every x, € dS. By shifting the origin we can
always assume that C(x,, 20) is centered at the origin and has the form
(=0, +6)". It follows from the comparison Lemma 3.3 that u < az on
R"x(0, t,) where 1, is small enough to insure that

kt'logt]3* < v for0 < t < t,.
g 0

Therefore we conclude that u(x, t) = 0 for ¢ small enough and for x of the
form x = x5 + Av(x,), \/6nt|log t| < A < 0.
The conclusion of the theorem follows.

Remark. The proof of Theorem 4.1 applies also in cases where 0S is not in
C1; for instance in case S is a convex set.

Let S be a closed set in R". Suppose for any x € dS there exists a cone V,
with vertex x and with opening ¢ and height /4 independent of x such that
V., = S; then we say that S satisfies the uniform cone property.

In the next theorem we derive a lower bound on S(¢).

THEOREM 4.2. Let f satisfy (3.1), and let f > —vy, > 0, v, constant. Let u,
be a bounded measurable function whose support S satisfies the uniform cone
property. If there is a positive constant B such that uy(x) > p for x € S, then
there is a positive constant ¢ such that

4.12) S(t) > S + B(c/tllog t|) for all t sufficiently small.

Proof. Consider the function

2

(4.13) wix, 1) = (275)"/2 L exp [_L"_;ti] dE — vyt.
It satisfies w, — Aw = —vg, w(x, 0) < uy(x). Since u, — Au > f = —v,, the
maximum principle can be applied to u — w. It gives
4.14) u(x, t) = w(x, t).

Denote by d(y) the distance of a point y to S. If we can prove that
(4.15) w(y, t) > 0 whenever y ¢ S, d(p) < c|/t|log t|,

then, by (4.14), also u(y, t) > 0 and, consequently, the assertion (4.12) would
follow.

In order to prove (4.15), let x,, be a point on 0S such that d(y) = |y — x,|.
Integrating in (4.13) only over the cone with vertex x,, opening o, and height #
(0 < n < h) which lies in S, we find that

n dZ 2
0.0 > o x| 0D
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for any 0 < 5 < h, where f8,, 1 are positive constants. If ¢ is sufficiently small
then we can take n = /t. Hence, w(y, t) > 0 if

By exp [”‘ﬁm] 2 Vot

t
where f§, is a positive constant. Taking the logarithm we see that w(y, ¢t) > 0 if

2
u_dtil/_) < |log t| + const.

This gives (4.12) with ¢ < 1//p.

5. Estimates on the support (continued)

THEOREM 5.1.  Let (3.1), (3.2) hold and let S = supp u, be a finite disjoint
union of bounded closed domains with C* boundary. Assume that

(5.D up e C*S), u, =0, Du, = 0ondS.
Then there exists a positive constant o, depending only on the data, such that
(5.2 S(t) = S + B(uw/t) forallt > 0.

Proof. Let y be any point outside S. Let 6 = dist. (y. S). For simplicity
we take y = 0.
Using (5.1) we find that, for any x € S,

(5.3) Up(x) = lug(x) — up(x)| < Colx — x'|* < Col|x| — 8)*

where x’ is the first point where the ray from x to y intersects 0S.
Setting r = |x], A = (r — 5)/\/ t, we shall construct a comparison function

tF(A) ifé — aft < r < o0,

0 ifr <6 — o/t
for 0 < t < g, o sufficiently small, where F is a nonnegative function defined
on [ —oa, +00). We require that
5.4 F(—a) =0, F'(-a) =0,

so that w is continuously differentiable across r = 6 — oc\/ t. We also require
that w(x, 0) > ug(x). In view of (5.3), the last inequality holds if

w(x, t) =

_FQ
(5.5) fim %) > C,.

A=+ 0 -
Finally, we require that w, — Aw > —v; in terms of F this means that

n —

(5.6) Fowp "= jip — > oy

r

where the argument in F, F’', F" is .
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We seek F(4) of the form
u(d + o)? if —a <1 <0,
F(2) =
Ai* + BL + C if A > 0.

Then w is continuously differentiable across 4 = 0 if

5.7 poe? = C, 2ua = B.
If we take
(5.8) A= C,

then (5.5) holds. The conditions in (5.4) are clearly satisfied.
We now turn to verifying the inequality (5.6). In the region where —oa <
A < 0, (5.6) reduces to

2(

#(,1+a)2~uz(z+a)—u—”:—‘)\/z(1+a)—2yz —v.
r

If ¢ is sufficiently small then 6/2 < r < §; the last inequality is then a con-
sequence of

ul:loc +o? - ﬂ"_é"_l)\/t(z + o) — 2} > —v,
or, a consequence of

(5.9) y<2+‘K_n(;_L)\/aa—a2>Sv 0 <t <o)

In the region where 4 > 0, (5.6) holds if

n —

l\/t(2A/1 + B) — 24> —v.
r

AJ? + BA + C — 1iQA) + B) —

Since r > §, this inequality holds, for all 0 < t < o, if

(5.10) B _,n-

|
A4>0,
2 5 Ve

n—1

(.11 C - Jo B — 24> —v.

From (5.7) we find that
(5.12) « = 2C/B, u = B?*/4C.

Taking C = 24 — v + 1 we see that (5.11) holds if ¢ is sufficiently small. If
we further choose B, C to be positive, then o and p are positive. If we also take
C/B to be sufficiently large, then « becomes so large that the left-hand side of
(5.9) is negative. Thus (5.9) is satisfied. Notice that also (5.10) is satisfied if o
is sufficiently small.

Thus, with the above choice of B, C, and A, and with the definitions of a, p
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by (5.12), we have established that the function w is a comparison function, i.e.,
it satisfies the conditions of Lemma 3.3. Consequently, u(x, t) < w(x, t) in
R"x(0, 0). The conclusion of Theorem 5.1 follows.

Remark 1. Theorem 5.1 extends to the case where S consists of a finite
disjoint union of closed convex domains with C* boundary.

Remark 2. 1If f, < 0 and

(5.13) f+Auyg <0 inS

then one can show that u, < 0. Consequently, S(¢) < S(¢')ift > t' > 0.

6. Instantaneous shrinking of the support

In this section we consider the case where 1, need not have compact support,
but uy(x) — 0 if |[x] - 0. We shall show that the support S(¢) of x — u(x, t)
is compact, for any ¢ > 0.

THEOREM 6.1. Let f satisfy (3.1), (3.2) and assume that
6.1 uy € L°(R") n LMR"), ug(x) = 0 if |x| > oo.

Then S(t) is a compact set, for any t > 0.

Proof. The assertion of the theorem follows from the assertion that there
exists a function ¢(r) and a positive number R, such that

(6.2) o(r) >0, ¢@)]0ifr1 oo,
(6.3) u(x,t) = 0 ift > ¢(x)), [x] > R.

In view of Theorem 3.2 it suffices to prove (6.3) just for t < t,, where ¢, is a
sufficiently small positive number. We first establish that

(6.4) u(x, t) = 0if |[x| > oo, wuniformly in ¢.
Let z be the bounded solution of
z, — Az =0(xeR't>0), z(x, 0) = uy(x) (x € R").

Representing z in terms of the fundamental solution and using (6.1), we find
that for any 7" > O,

(6.5) z(x,t) = 0if |x| » oo, uniformlyinz,0 <t < T.

Since z > 0, we can verify that the function #i = z satisfies (2.1) with f = 0.
Noting that f > f, we can apply Lemma 3.3 to conclude that z > u. But then
(6.4) is a consequence of (6.5).

Let n be any small positive number. By (6.4), there is an R > 0 sufficiently
large such that

(6.6) ulx,t) <n if|x] > R,O<t < T
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We shall estimate u(x, ¢t) more precisely in a region
6.7) x| > R, 0<t<t,

where ¢, is a sufficiently small positive number.
Let r = |x| and

(p(r) — 0)? if|x| > R, 0 <t < ¢(r),

w(x, t) =
0 if x| > R, t > ¢(r).
Then w satisfies w > uif |[x| = R, 0 < t < t,, orif |[x| > R, t = 0 provided
6.8) (@(R) — 1)* = 1,
(6.9) P3(r) = up(x) (r = |x| > R).

Also w satisfies the variational inequality (2.1) on |x] > R, 0 < ¢ < t, with
f = —v provided

=2p(r) = 1) = 2AP(r) = NP"(r) = 2A¢'(r))*

n —

Lot — ne'(r) = —
(r>R,0<t < ¢(r)).

(6.10) -2

r
Since the last inequality is linear in ¢, it suffices to verify it at ¢ = ¢(r) and

t=0,ie.,

(6.11) @'r)* <3y (r> R),

n —

(6.12) d(r) + (" (r) + ('(r)* + L) < 4.

r

We shall now construct a function ¢ satisfying (6.8), (6.9), (6.11), and (6.12).
Since uy(x) — 0 as |x] — o0, we can find an increasing sequence (a,) such that
a; = R and

& 1
Vuo(x) < \/n n; 1 Xan ans (X)) for x| > R

where y;, ,; is the characteristic function of the interval [a, b]. We can always
assume thata,,, — a, > 1 forn > 1.
Let {(¢), t € R, be a smooth function with compact support such that { > 0,
()y=1for0 <t <1, [8®) <1, [0@) <1and |L"(t) < 1 for t e R
Define

| r— a,

o) = p 3 wx( >p>a
n=12 d,yq — a,

Clearly ¢ is a smooth function and ¢(r) — 0 as r — +o0; we are going to see

that for # small enough, it is possible to choose p in such a way that ¢ satisfies

(6.8), (6.9), (6.11), and (6.12).
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Since ¢(R) = p, the conditions

(6.13) p=2/n and t, < /n

imply (6.8).
We have, for |x| > R,

Jual®) < %’ #(1x)

and therefore (6.13) also implies (6.9).
On the other hand |¢’(r)] < 2p and |¢p"(r)| < 2p for r € R. Thus (6.11) and
(6.12) are consequences of the following

(6.14) 4p* < %y
(6.15) 20 + 4p? + 4p% + 4p? < Iy.

Conclusion: we first choose a p > 0 satisfying (6.14), (6.15); next n and ¢, are
obtained from (6.13). Finally, we choose R, {a,} and construct ¢.
From a variant of Lemma 3.3 we deduce that

u(x, t) < wx,t) if[x] > R,0<t <t,
and the assertion (6.3) follows.

Remark. 1If uy has compact support, then in the above proof we can take
¢(r) to vanish if r is sufficiently large. Thus u(x, t) will vanish if |x| > R, for
some R, sufficiently large. This gives another proof of Theorem 3.2.
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