ON PRIMITIVE PERMUTATION GROUPS WHOSE
STABILIZER OF A POINT INDUCES L,(q)
ON A SUBORBIT

BY
ULRICH DEMPWOLFF

1. Introduction

In the following we consider primitive permutation groups G acting on a
finite set Q. If « € Q then G, has a suborbit A(x) such that the group G4®
induced on A(x) is isomorphic to L,(g) and |A(x)] = ¢ + 1, where ¢ > 4 and
q = p", p a prime. We state:

THEOREM. Suppose G satisfies the above conditions then either

@) G, = Lyg) or

() p>2andG, ~ Ly(q) x Y where Y is isomorphic to the normalizer of a
S,-subgroup in L,(q).

The proof of the theorem will follow to a great extent the pattern of the work
of C. C. Sims [9]. In this way we get bounds for |G,| and structural informations
of G,. Then we use results about irreducible F,[L,(g)]-modules. In the case
p = 2 also “2-local arguments” will enter. The notation is standard (see [4]
and [14]).

2. Preliminary lemmas

In this section we collect some—mostly known—results, which will be used
repeatedly.

ProOPOSITION 2.1 (Walter, also see [1]). Let G be a finite group having abelian
S,-subgroups. Then G possesses a normal subgroup H of odd index, such that

HIOH) ~ Xy x X; x -+ x X,

where X, is an abelian 2-group and X; (1 < i < n) are finite simple groups
isomorphic to L,(q), q suitable, or of type ““Janko-Ree” (for the definition of
type “Janko-Ree” see [1]).

PRrOPOSITION 2.2 (Gilman, Gorenstein [2]). Let G be a finite simple group
and S € Syl,(G). Suppose cl (S) = 2. Then G is isomorphic to one of the follow-
ing groups:

Lz(‘]), q= 79 9 (mOd 16), A7a SZ(2n)a U3(2n)a L3(2”)’ or PSP(4’ 2n)
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PROPOSITION 2.3 (Goldschmidt [3]). Let G be a finite group and 1 # A =
S € Syl,(G), A abelian. Suppose that for all a € A* always o € S implies a® € A.
Then if K = (A%)/0[({A%)) we have:

(i) K is a central product of an abelian 2-group and quasisimple groups X such
that either X/Z(X) has abelian S,-subgroups or X|Z(X) is isomorphic to Sz(2")
or U,(2").

(i) A = 0,(K)Q(T) for some A = T € Syl,(K).

LemMMA 2.4 (Thompson [13; 5.381). Let G be a finite group and S € Syl,(G).
Suppose S* = S, |S: S*| = 2 andt € S — S* is an involution, which is not con-
Jugate to any element in S*. Then G has a normal subgroup G* of index 2.

LemMA 2.5 (Gilman, Gorenstein [2; (2.66)]). Let V be a 2n-dimensional
F,-vectorspace and SL(2,2") ~ X < GL(V) such that V is an irreducible
X-space. Assume further [S, V] = Cy(S), dim Cy(S) = n for S e Syl,(X).
Then V is a standard module of X. (Here standard module M of SL(2, g) means
a 2-dimensional F-vectorspace such that SL(2, q) acts on M as SL(M)).

LEMMA 2.6. Let V be a 2n-dimensional F,-vectorspace and X ~ SL(2, p") be
represented irreducibly on V and p* > 4. Suppose S € Syl(X) and [S, V] =
Cy(S), dim Cy(S) = n. Then X is faithful on V.

Proof. Since SL(2, 2") ~ L,(2"), we may assume that p is odd.

In X there is an element x of order 4 such that {x, §) = X and x € Nx(K),
where K is a p-complement of S in Nx(S).

Set V, = Cy(S) and V; = V% Suppose that X is not faithful. Then x*
induces the identity on ¥ and so V, n V; is centralized by X = {x, S). Hence
V =V, ® V;. According to this decomposition we can find a basis of ¥ such
that x corresponds to the matrix

0 I
(7 9)

(+ )

where I is the n-dimensional identity matrix and A4 is a suitable (n x n)-matrix.
There is further s € S with |xs| = 3 (for instance if

(0 —1 g s (10O
*=W o) ST\ 1

then |xs| = 3 in SL(2, p")). Since x and s are described by matrices as above
the matrix corresponding to (xs)* has the form

A +24 A+ 1
A%+ 1 A )
Hence A = Iand A% + I = I + I = 2I = 0 follows, contradicting Char F, # 2.

and the elements in S to matrices



50 ULRICH DEMPWOLFF

LemMMA 2.7. Let S be a S,-subgroup of type Li(q), q even. Let K be a sub-
group of odd order in Aut (S) such that the semidirect product K- S contains U
the normalizer of a S,-subgroup in a split extension of the standard module V of
order q* by SL(2, q). Suppose that t is an involution in Aut (S) normalizing K
and interchanging the two elementary abelian subgroups of order q* in S. Set
T = S{t) and take an involution x € T — S. We have two cases.

() 2Z(T) = Z(S)and W = [x, S] is homocyclic of exponent 4 and order q*.
Z(S) = Q,(W) and Cy(x) = Z(S){x).

() Z(T) # Z(S). Then [Csx)| = I[S, x]| = 4y/q. Z(T) = Cysx) has
order \/q.

In both cases all involutions in T — S are conjugate under S.

Proof. Consider S/Z as pairs (b, ¢) with b, c € F,and Z = Z(S) we identify
with elements a € F,. The effect of squaring is described by (b, ¢)*> = bc and
the commutator map by [(b, ¢), (e, f)] = bf + ce. Now (b, ¢)' = (¢*', b*?) and

(c*, b)) + (™, f*) = ((b, ©) + (f, o))
=(0b+fc+e)
= ((c + o™, (b + f)™).

So a, a,, and «, are F,-homomorphisms, where @' = a*. t? = 1givesa = 1
and oy, = 1. Further,

(be)* = (bey
= [(b,0), (0, &)]
[(0, b*2), (¢*, 0)]

= b2en.

Suppose first, that ¢ centralizes Z. Then a3 = 1.

Suppose now, that ¢ does not centralize Z. K induces a cyclic group of order
g — 1 on Z permuting transitively the elements in Z *. If we replace ¢ if neces-
sary by a suitable conjugate in K(z) we see by the structure of GL(n, 2), ¢ = 2",
that o5 acts as an involutory field automorphism on Z = F,. Thus 1** = 1 and
sO 1%2(e* + g*) = e* + g*. Since a; ' = a, it follows that @* = 1%~ !g*
forallae Fjand 1 < i < 2.

In the case Z = Z(T) we have that Cg(¢) induces a cyclic group of order
q — 1 on Z acting transitively on Z. Since |[S, t]Z/Z| = g it follows immedi-
ately that [#, S] is homocyclic of exponent 4 and order g2 being inverted by .
So every element in ¢[S, ¢] is an involution and all involutions in T — S are
conjugate in S.

If Z # Z(T) and a € [t, S] then exactly \/q elements in faZ are involutions.
Hence there are q\/q = |S; Cs(2)| involutions in 7 — S and all of them are
conjugate in S.
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LeMMA 2.8. Let p be a prime number and fix P € Syl,(G). Consider the set X
of subgroups X of P that satisfy the following conditions:

(1) X is a tame Sylow intersection with P (for notation see [4]).

Q) Cp(X) = X.

() X e Syl (0, (Ne(X))).

(4) X = Por Ng(X)/X is p-isolated.
Form the set T of all pairs (X, N) with X € X and

N = No(X) if X = Cp((Z(X))
and
N = Ng(X) 0 Co(@(Z(X))) if X = Co(Q(Z(X))).

If x,ye Pand x ~ y in G, then there exist (X;, N) e T (1 < i < m) and ele-
ments x; € X;, n; € N; such that x = x;, X' = X;4, for 1 <i <m — 1, and
xXpm o= y.

For the proof see [11].

3. s-arcs

This section corresponds closely to Section 5 of [9]. Thus we have a graph
whose set of points is Q and « is connected with f if and only if § € A(w).

LemMa 3.1. (i) G2® ~ G&'®,

(i) If r is a prime number dividing q + 1 then r does not divide |G, 4| for
B e A(w), except r = 2 and g = 1 (mod 4).

(iii) If B € A(x) then IGQ,(?I = IGi(g)I.

Proof. (i) is true because of [6; 3.2].

(i) follows by (i) and the proof of [8; Theorem 3].

(ili) G, is a subgroup of index ¢ + 1 in G, and Gs. We have G, ) S
G,, 5. Suppose Gy Ay & G, 5. Then

1G3®: G| < g + 1

and this index divides ¢ + 1. Hence by the structure of L,(q) ~ G53®, we have
L,(q) ~ G&®. Take now a prime r such that r divides ¢ + 1 but not divides
|G,, 4l. Such a prime always exists, because for ¢ = 1 (mod 4) we have g # —1

(mod 4) and g + 1 > 5 together with (ii) then provides us with the existence
of such an r. So r divides |G2}’| and also |G,, 4, a contradiction.

DeriNITION.  For f € A(o) define T'(«, B) as the orbit of length ¢ of G4 and
set

'B,y) = {a| BeAl), yeT(x, B} forye Ap).
Set O = {(O(, B,y)|Be A(e), y € T(a, B}

LemMA 3.2. If y € A(B), then T"(B, ) is an orbit of G5’V and |T(B, y)| = 4.
Proof. With 3.1 repeat the proof of [9; 5.6].
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DeriniTION. Call a sequence X of points og,..., o, in Q an s-arc if
(@ %41, %342) €0 for 0 < i < s — 2. An s-arc oy, ..., %y, &%, f is called
a successor of X and an s-arc vy, o, 04, ..., &, is called a predecessor of X.
Suppose X and Y are s-arcs and there is a sequence X = X, X,,..., X, =Y
such that X; is a predecessor or a successor of X;,(for1 < i < k — 1. Then
we say that X is equivalent to Y (X ~ Y).

LemMA 3.3. (i) The number of s-arcs is |Q|(qg + 1)g*~ .
(i) X ~ Y for all s-arcs X and Y.

Proof. Tt is obvious that the proofs of [9; 5.7-5.10] can be adapted to our
situation.

4. The order of an S,-subgroup of G,

Lemma 4.1.  If G is transitive on the s-arcs but not transitive on the (s + 1)-arcs,
then |G,|, = ¢°~*.

Proof. Let H be the stabilizer of the s-arc X; «, ..., &. Since G is transi-
tive on O we have s > 2. Clearly, |G,,: H| = (¢ + 1)¢°~" by 3.3. Since
|G.._,.a)x = |H|,, where n = n(G,,_, ,) — {p}, it follows that H*®) induces
an orbit at least of length ¢ — 1 (or twe orbits of length (¢ — 1)/2) on
(o, ). If p divides HA®), then H would act transitively on (e, ),
since nontrivial elements of order p in H2*2) would act fixed-point-free. Hence
G would be transitive on the (s + 1)-arcs, a contradiction. So p does not divide
|HAC)| IfQ e Syl,(H), then Q stabilizes all predecessors and all successors of X.
3.3 (ii) implies Q = 1.

LemMA 4.2, 0,(G,,5) = 1 for B € A(®).
Proof. First
Op'(Gaz, ﬁ)Ga, A(u)/Gaz,A(a) = Op'(Gi(;)) = 1.

Hence 0,(G,,p) S G, a@ and similarly 0,(G, ;) S Gp o), as o€ A'(B).
Therefore

0,(Gy,p) = 0(Gy, amy) = OpGp avpy) and  0,(G, ) < (G,, Gg) = G.
SO Op/(Gu’p) = 1.

LEMMA 4.3. Take f € A(@). G, a@wy O G, sy is a p-group and |G, 4, divides
((g — 1)/d)*> where d = 1 if q is even and d = 2 if q is odd. G, 4 is solvable. If
K is a p’-Hall subgroup of G, then

Zg-1ya S K S Zg-1ya X Zg-1ya

(Z, denotes the cyclic group of order r).
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Proof. G, pa)Ga, Ay Ga, a 18 @ normal subgroup of G2®. So if G, Ay &
G,, > then we have a prime r dividing ¢ + 1 and |G, 4+ and not dividing
|G,, Al by 3.1 (ii). This contradicts |G, s@l = |Gy, Al (see 3.1 (). So
Gy, a@@) = Ga, Ay and by [6; 4.5] and 4.2 we have that N = G, sy O G, ap)
is a p-group. Since Gy op/N is isomorphic to a subgroup of G5} we have
that |G, 4|, divides (¢ — 1)/d)>.

Suppose k, he K. Set t = [k, h]. Then ¢t € N and hence ¢t = 1. Clearly,
U = K n G, @ is faithful on A’(f) and so U = Z,_,),. Let x € K be an
element inducing a cyclic group of order (g — 1)/d on A(x). Then y =
x4~ D/Me U, Ify # 1then x would induce on A’'(8) a group of order >(q — 1)/d,
a contradiction.

LemMA 4.4. For each s-arc X; o, . . . , o there is a successor Y; oy, ..., 0oy
such that the group K fixing X is also fixing Y. There is an element g € G with
Y'=X,0d=0o;_; (1 <i<s+ 1)andge Ng(K).

Proof. Let K be the stabilizer of X. Then by 3.3, K is a p’-Hall
group of G, ,, and G, _, .., respectively. So K induces one orbit of length
q — 1if g is even or two orbits of length (¢ — 1)/2 if g is odd on I'(e;_ ¢, &) and
K fixes exactly one element oy, € I'(o,_¢, ). Since K = G,, . ,., we also
have K = G,, . Choose g € G with X = Y9, then all assertions follow.

ces®s+1t

LemMma 4.5. Choose oy, . .., 0,1, K and g € Ng(K) as in 4.4. Denote by H
the stabilizer of ay,..., o and take Q € Syl,(H). Denote further by H; the
stabilizer of oy, ..., 0_; for 1 < i < s. Then

(i) Q is elementary abelian of order q.

(i) |Hijy: Hl =qforl <i<s— 1

(i) H; =<K, Qy,..., 0 for 1 < i < s, where for each integer r we set
0, =g 04"

(iv) P,=0,H)=(Q,...,Q0pforl <i<s—landP;,_;< P,

) G = <(H,g).
V) Zy-1ya € K S Zyy_1yja X Zy—1yawhered = 1ifqisevenandd = 2
if q is odd.

Proof. Since G is transitive on the s-arcs it follows that H; is transitive on
the s-arcs beginning with «y, . . ., a,_;. As the number of s-arcs beginning with
Go, - - .5 Us_; is ', we have |H;| = ¢q'|K}|.

By the structure of L,(g) we have that Q is elementary abelian of order q.
Now H; 2 (K, Q4,..., Q;> and Q, acts regularly on I'(a,_;_,, a,—;). Hence
QinH,_y=1,|H]| =0 |H;_;]and H; = (K, Qy,...,Q;) forl <i<s.
H,_, is maximal in H; and Q; & H,_,, so Hy = (K, Qy, ..., Q,). Since H,
is maximal in G and Q,,; ¢ H, we have G = {H,, O,.,» = {H, g).

Clearly N¢(Q)OK,/K, is represented on Ky = Ky, _, 4, Which is cyclic by
4.3. Hence K, centralizes Q and Q <1 H. (vi) follows by 4.3. Since g € N4(K)
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then K normalizes every Q;. Suppose, we have already shown that P; = O,(H))
for 1 <i <k <s — 1. Certainly Ny, , ,(Py) is K-invariant and # 1. So Q. ,
normalizes P, and P, <« P,,, follows.

DerFINITION. We set L; = gH,;g~* and R; = gP;g " for all integers i.

LEMMA4.6. Ri = <Q0,.¢., Qi_1>f0r 1 < i <s - 1, Ri+1 N Pi+1 = Pi
for0<i<s—2andP;,<x R,,,. AlsoL,,, n H;,, = H,

Proof. Clearly, P; < R;y; n P;y,. If P, € R,.; n P;,,, then there is a
l1#y€Qiu1n Ry NPy and O,y = (3*> < R;,,. It follows that
Ryyn P, =P, and H,,, is g-invariant. So H;,; <1« G = {H, g) by
4.5, a contradiction. Since 1 # Ny (P;) is K-invariant, we have that Q,
normalizes P; and P; <« R;, ;.

LemMmA 4.7. Suppose k < jand |k — j| < s — 2. Then
[ Qi1 € <Qks1s--+5 Qji).
If s > 3, then P, is abelian.

Proof. By4.6,[Qo, Q;] = P, R, = P;_, fori < s — 2. Conjugate the
above expression with a suitable power of g and the assertion follows.

LemMa 4.8. If2; = s + 2, then P; is nonabelian.

Proof. Choose i as above and assume P; is abelian. Then [Q;, Q,] = 1 for
lj—kl<i—1. S0[Q;,Q0,]=1forl <t <s+ 1,since
[t—il<Max(@i—1,s—i+1)=1i-1
Therefore

Qi< G = <Q1’""Qs+1, K>,

a contradiction.

LeMMA 49. If 1 <i < s — 1 then an element x € P; can be written as
X =y,y, " y; where y,€ Q, for | < r < i is uniquely determined. If P; is
nonabelian, then i > (25 + 1)/3.

Proof. The first assertion is obvious since |P;, (| = |P;| [Q;4+4].
Without loss we may assume that s > 3. Choose now 2 < i < s, such that
P;_, is abelian but P; is not abelian. Hence

() [Q,, 0] =1 whenever|j — k| <i— 2.

Since P; and every Q; is K-invariant, for every x; € Qf there is a x; € Qf with
1 # [x, x;]- By 4.7,

(++) 1 ¢[x13xi]=xm”.xn
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where 2 <m<n<i-1,x,#1 # x,and x, € Q, is uniquely determined
for m < t < n. We want to show

(1) i+m>s+1
2 2 —n>s.

Granted both facts it follows that s +1 —i<m<n<2i—s or
i>(2s + 1)/3.

Proof of (1). We copy the proof of [9; 2.6]. Setk =i + m — 1 and sup-
pose (1) is false. So k < s — 1. Since |k — m| =i — 1 and x,, # 1 there is
an x, € QF with [x,, x,] # 1. Set w = [x,, x,]. Then we {Q,,..., Qr_1)
by Lemma4.7sincek < s — 1. By (+),[w,Q;] = 1form < j < i. Sowcom-
mutes with x; and [x,, x;]. Finally x, commutes with Q; for m < j < i.
We conjugate (+ +) with x,. For the left-hand side we get

xe D xidxe = [xgowy x ] = wo [xg, xdwlw, xi] =[x, x] = X X,
For the right-hand side we get
X,; l(Xm T X,,)Xk = (xk— l-xmxk)-xm——l T X,, = xm[xm~ xk]xm—l e Xn'
Thus [x,,, x,] = 1, a contradiction.

Proof of (2). As in the proof of (1) we can adapt our situation to the proof
of [9; 2.6].

LEMMA 4.10. s < 7 and s # 6.

Proof. Take t minimal with 2¢ > s + 2. Then P, is not abelian by 4.8.
By 49, 3t > 2s + 1. Suppose s =0 (mod 2); then t = (s + 2)/2 and
35+ 6>45+2 or s<4 If s=1 (mod?2), then t = (s + 3)/2 and
3 +9>4s+ 2o0rs < 7.

5. The structure of G,

We use the notation of Section 4 and set « = a,.

LEMMA 5.1. (1) Ifs = 2, then G, ~ L,(g).
(i) Ifs = 3,then G, ~ L,(q) x Y, where Y is isomorphic to a S,-normalizer
in L,(q).

Proof. 1f s = 2, then Syl (G, a,) = {1} and 4.2 implies the assertion.

Suppose now s = 3. Then {(Q,, Q,) and {Q,, Q;) are S,-subgroups of G,,
whose intersection is Q,. Hence O,(G,) = Q,. Clearly, C; (Q,) covers G5
and so G, = Gy @ C6,(Q,). Let R be a p’-Hall subgroup of G, () con-
tained in K. Then R is represented faithful on Q, by 4.2 and hence R ~
K/Cy(Q,) ~ Z,_1yq Wwhere d = 1 if g is even and d = 2 if g is odd. Also
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[R, Cs(02)] € C6.(Q2) N Gy, awy = Q2. By a theorem of Gaschiitz C¢ (Q,)
splits over Q, and C¢ (Q,) = Q, x X, where X ~ L,(q). Moreover [X, R] =
0, n X =1. Hence G, ~ L,(q) x Y.

LEMMA 5.2. If s = 4 then p = 2. If P = 0,(G,), then P is elementary
abelian of order q* and C4P) = P. G,/P is isomorphic to a subgroup of
GL(2, q) containing SL(2, q) and acting on P as on the standard module. G,
splits over P.

Proof. Since the two S,-subgroups {Q4, Q,, Q3 and {Q,, Q3, Q,) contain
{Q3, 03y and |G, x|, = q%, we have P = O,(G) = {(Q,, 03). By a theorem
of Gaschiitz G, splits over P. Further by 4.8, P; is nonabelian. Since P; is
K-invariant we have [Q,, 0;] = Q,. Since 0,(G,) =1, and C; (P) <
G,, Ay We have Cg(P) = P. Let X/P denote the smallest member of the derived
series of G,/P. By 4.5, G, aw/P < Z(G,/P) and so X/P is either isomorphic to
L,(q) or SL(2, qg). Assume g is odd and X/P ~ SL(2, q), then KP/P n X/P
contains a four-group by 4.5 in contradiction to the structure of SL(2, ¢).
Hence X/P ~ L,(q) and KP/P n X/P is cyclic of order (¢ — 1)/d (where d = 1
if g is even and d = 2 if ¢ is odd) acting on the subgroups of order p of Q, or
Q; transitively. So P is an irreducible X/P-module in contradiction to 2.6
if gis odd. So g is even and G,/P ~ SL(2,q) x Z, Z < Z,_,. Since X/P ~
SL(2, g) we have by 2.5 that P may be regarded as the standard SL(2, q) =
X/P-module.

Let L/P denote Z(G,/P), then L/P permutes all subgroups of order ¢ in P
which represent one-dimensional subspaces in respect to the action of X/P on
P. Since there are g + 1 of them and |L/P| divides ¢ — 1 it follows that L/P
leaves invariant all these one-dimensional subspaces. Now it is easy to see that
G, /P is isomorphic to a subgroup of GL(2, q) containing SL(2, ¢) and P may
be regarded as the standard module of G,/P.

LemMA 5.3. If s =5, then p = 2. P = 0,(G,) is elementary abelian of
orderq®. K~ Z,_y x Z,_,and G,/P ~ GL(2, q). Q3 < G,and C5(Q3)/P ~
SL(2, q). P/Qs may be regarded as the standard module for GL(2, q) ~ G,/P
and G, splits over P. P is an indecomposable G,/P-module (i.e., there is no
TcP,T< G,withT x Q3 = P).

Proof. As usual P = 0,(G,) = {Q;, Q3, Q4). Suppose P; is not abelian.
Then [Q,, 0,] = Q3 and Q; <« G,. But [Q,, O;5] = Q,, a contradiction.

So P3 iS abelian and Q3 < Ga, since Q3 S <Q19 QZ: Q3> N <Q3a Q4a Q5>
Also Cg(Q5) covers G5 as Cg(Q3) contains a S,-subgroup of G,. By 4.8, P,

is not abelian and as 0,(G,) = 1, it follows that C;(P) = P. Since K induces
on Q5 a cyclic group of order (¢ — 1)/d, we have

|Gy: Co(@3)l = (@ — 1)/d and K = Z_1y4 X Zg—1yas
where d = 1 if g is even and d = 2 if ¢ is odd (see 4.5).
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Hence C4(Q3)/P ~ L,(q). Clearly, [Q4, Q4] = {Q,, O3). We have neither
[01, Q4] = Q3 nor [Q4, Q4] = O, (which implies [Q,, Q5] = Q3), since
Cs,(P|Q3) = G, a@- Since Q; and Q, are K-invariant, we have for x; € Qf
(i = 1,4), [x;, x4] = x,x; always, with x; € O} (for j = 2, 3). We have

CP/QJ(QO = Q2Q3/Q3 = [Ql’ P]Qs/Qs

and as in the proof of 5.2, P/Qj; is an irreducible C; (Q3)/P ~ L,(g)-module.
As before g is even and P/Q; is the standard module for C¢ (Q3)/P ~ SL(2, q)
by 2.5 and 2.6.

Set L = Cx(P/Q3) N G, awy and assume L # 1. Clearly, L = Cy(Q,, Q4)
and so with g € G chosen as in 4.4 and 4.5, Y = Cx(Qs, Q5). Since Cg(Q3)
acts fixed-pointfree on Qs P/Q; (as P/Q; is the standard module for SL(2, q) =~
C;,(03)/P), we have I/ = 1 and so L = 1. Now the assertion follows as in
the proof of 5.2.

LEMMA 5.4. The case s = 71 does not occur.

Proof. As usual P = O, G) = {Q,,..., Q). By 49, [0,0;]=1
whenever |i — j| < 3. Also the proof of 4.9 shows us that [Q,, Os] = Q5.
Since Ps is not abelian by 4.8, we have [Q;, Os] = Qs, [Q1, Q6] = O4

and [Q;, O,] = Os. Hence O, and T = (Q3, Q4, Qs are normal subgroups
of G,. So C; (Q,) covers G2 and as in the proof of 5.3 we have

K =Z4 1vyu * Zg-1ym

whered = 1 ifgisevenand d = 2if g is odd. Also C¢ (T/Q4) 0 C(Q4) = P
and so C¢ (Q4)/P =~ L,(q) acts faithfully on 7/Q,. Since

O,P|Pe Sylp(CG,,,(Q4)/P) and CT/Q4(Q1P/P) = 0304/Q4

we have by 2.5 and 2.6 that ¢ is even and 7/Q, is the standard module for
Ce(Q)/P.
Further [Qy, Qs] € (@3-, Os) and [Q,, 07] = (0, ..., Q). Take

x,€Q¥, xge QF. Then there are x;€ Q; (2 <i < 5) with [x, x¢] =
X, ...Xs and

1= xlxéxl = (x1x6x1)2 = (x2x3x4x5x6)2 = (xzx6)2~

Since 7/Q, is the standard module for C4(Q,)/P, we have for y, € Qf that
Co(y;) = 1. Hence x, = 1. So [0y, Qs] € {Q3, @4, @5y and similarly

EQu Q6]> < <Q3, @3, Q4). So finally [Q}, Q6] < (@3, Q4) and [Q,, 07] =
Q4a QS .

Now we claim that A(e,) is self~paired (notation as in Section 4 and a = aj).
N=G,, = NG%(P(,) = NGQI(P6). Since N7 is also a S,-normalizer in G,
there is a he G,, with N* = N and k = ghe Ng(Ps) — Ng, (Ps). Now
Ng(Q4) = G,, and Py = {Q3, Q,). Since N = P¢K we can use a Frattini-
argument and find a k € Ng(K) N Ng(Ps) — Ng, (Pe). So 0% # Q,. Since
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Q5 and Q, are the only K-invariant subgroups in P, of order ¢ we have Q% =
Q; and Q% = Q,. Hence k* € N3(Ps) N G,, = N. So [¢kYN| = 2|N| and
we may assume that A(o,) is self-paired (see [9; 5.16]).

Set a_; = af. Then ay, a_; € Axy), since A(x,) is self-paired. @, does not
fix f € A(ag) — {o,} as otherwise Q; would fix the 7-arc f, o, ..., %s. Hence
Q, acts regularly on A(ey) — {o;}. By definition Q, does not fix «, but does
fix «_,;. So wecan find x, € Q, and x,; € Q; with ¢™;, = f and 7 = «;. Set
h = gx,x, and af = «, and a" = a, follows. So h? € N.

Now

h™lyih = x9X197 1 9X1X7 = XX 93X1X7 = Y[ X7, 2] € {Q2, Qu, Os)
where y; € Q;for1 < i < 2. In the same way

h_lJ"2h € {03, 04, Os), h™'ysh e {Q3, Qs), and hﬂ)’sh € {03, 04, 0s, Q6)

where y; € Q; for i = 2,4,5. Hence h™2y,h* € {Q,, O3, Q4, Q) = P. But
h? € P¢K and so h™2y,h* € P — P for y, € Qf, a contradiction.

6. Thecasep = 2

In this section we will show that in the case p = 2 we have G, », = 1, or
equivalently s < 2. Always we will use the notation of Section 4 and 5.

LEMMA 6.1. s # 3.

Proof. By 5.1 (ii) we have G, = X x Y where X ~ SL(2,¢q) and Y =
Nsp2,o(F) with Fe Syl,(SL(2, q)). Now G, ,, = (E x F)K where Fe
Syl,(Y) and E € Syl,(X). Set S = EF. Take x e G with oy = o;. Then
(SK)* = G,, and there is an /e G, with (SK)* = SK. Set y = xh, then
af = oy and y € No(SK) — G,,. Since E and F are the only minimal normal
subgroups of SK and G, = Ng(F), we have EY = F and F* = E. Since
y? € Ng(F) n N4(SK) = SK, we may choose—by using a Frattini argument—
¥ as an involution in Ng(K). Now S splits in the two { y)K-orbits F* U E*
and (F*)(E™).

Assume first that S* = (y>S € Syl,(N4(S)). Since S char S* it follows that
S* e Syl,(G). Let X be a minimal normal subgroup of G. If X n G, = 1, then
|X| is odd as |X|, < 2. But then G, X = G and |G|, < |S*|, a contradiction.
Hence X n G, # 1 and so S € X. Even $* € X as G, and so G can not
contain a subgroup of index 2. Hence X is simple, in contradiction to 2.2.
So if T e Syl,(Ng(S)), then S* = T implies S* = T. Then T does not nor-
malize E* U F* and all elements in S* are conjugate under Ng(S). Let
E=F o E, o--- > E, o 1 be an arbitrary sequence of hyperplanes.

Suppose we have already shown by induction that S e Syl,(Ng(E;_))).
Certainly, NG(E;_;) N Ng(E;) is the preimage of Cy g, /e (Ei-1/E).

Assume first that S/E; ¢ Syl,(Ng(E))/E;). Since

S/E; € SyL,(NG(E;- 1) N NG(E))/E))
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for all subgroups E; < E;_, < E with |E;_,: E;| = 2, it follows that E/E;
contains only noncentral involutions of Ngy(E;)/E;. Take

Then (E/E))' n E/E;, = 1. If (E/E)' n FE,JE; # 1 then the involutions in
FE,/E; are conjugate under Ny_s)(E;)/E; to involutions in E/E;. Hence

FEi/Ei N (FEi/Ei)t = 1

which is not true since |FE;/E;| = g > \/|S/E;|. Therefore the involutions in
FE,/E, are central and the map

(E/Ei)# El eEi - etFEi

is a bijection of (E/E;)* onto (S/FE;})*. So all involutions in S/E; — FE/E;
are conjugate to an involution in E/E;. Also t normalizes FE;/E; and thus fixes
every coset eFE;/E; where e € E. Denote by T a S,-subgroup in

Ng(S) n CG(S/FE;) n Ng(E)

and set K, = Cyg(FE). Then TK, induces a Frobenius group of order q(g — 1)
on the coset eFE;/E;fore € E — E; (see also [12; lemma 2]). Themap T's ¢ —
[e, t] € E; for e € E; is a K,-homomorphism of 7/S into [T, E;]/[E;, T, T].
So E; c Z(T). Set Ty = [T, Ko]E;; then Ty/E; n E/E; = 1 and ToE = T.
Also T,/E; is abelian since Ty/FE; and FE,/E; are K,-isomorphic. If

[FEi’ TO] = 1’

then |Ng(F)|, > q?, a contradiction.

So we can find a hyperplane E* < E; such that T,/E* is not abelian. If
Ko, = (k), then k has on FE,/E; and Ty/FE; the eigenvalues {1, A%,..., 2"}
where A is a primitive (¢ — 1)th root of unit. Since the commutator map is a
nontrivial, bilinear, and K,-admissible map from Ty/E; onto the trivial K-
module E;/E* we have

02,0 Y = (L AT T

Therefore ¢ — 1 = 2" — 1 must divide 2* + 2/ for some 0 < k, / < n — 1.
It follows that n = 2, k = 1, and I = 0. (For these arguments also compare
with [5].)
So if n > 2, we have by induction that S € Syl,(Cs(e)) where e € E*, con-
tradicting the fact that all elements in S* are conjugate and that S ¢ Syl,(G).
So we are in the case n = 2 with E, = E;, and 2% - 3?5 divides |N4(S)/S|.
Suppose first 22-3% -5 # |N4(S)/S|. Then

INg(S)/S| = 23-3%-5
and as S possesses exactly 35 subgroups of order 4 we have a contradiction to

ING(S): (Ne(S) N Ng(E))| = 2°-5 = 40.
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So |[N4(S)/S| = 2%-3%-5. Suppose every minimal normal subgroup of Ng(S)/S
is nonsolvable, then Ng(S)/S is isomorphic to 45 extended by an automorphism
of order 3 which is impossible. The structure of Ag implies that Ng(S)/S ~
As x Z3 ~ GL(2, 4) where S is the standard module for Ng(S)/S.

Now K normalizes a T € Syl,(N4(S)) by the structure of GL(2, 4). But then
either F or E is KT-invariant, a contradiction.

LEMMA 6.2. s # 4.

Proof. Suppose s = 4. N = G, ,, is the normalizer of a S,-subgroup in
G,, and G,,. Set S = O,(N) € Syl,(N) and S contains exactly two elementary
abelian subgroups—say E and F—of order g2. One of them—say E—is equal
to 0,(G,). If af = oy then there is a he G, with z = ghe Ng(N). So
z € Ng(S) and since z ¢ Ng(E) = G,, we have E* = F and F* = E. As
NG(E) = G,, we have Ng(S) = (t)N where ¢ interchanges E and F. We can
even choose t € Ng(K) and it follows |¢| = 2. Since all involutions in S lie in
Eu Fand as Cg,p(x) € Z = Z(S) for xe T — S, |x| = 2 it follows that
S char T where T = S{¢). We conclude T € Syl,(G).

Set W = T’, then W is of exponent 4 and Q,(W) = Z. Every element in
T — W induces a nontrivial automorphism on W. So |Co(W)W: W] is odd.
Further Co(W)W = M = Ng(W) where M = Cg(W/Z) and M contains T.
We apply 2.7. Thus we have either M; = C,,(Z) has S as a S,-subgroup, or W
is homocyclic of exponent 4 and ¢ inverts W. In the second case [Ck(t), T] = S
and the cosets tW and f W with f e F are never conjugate in G. Let R be a
2-complement of the preimage of O(M,/W). In any case R stabilizes the chain
1c Z c Wandso R = Cg(W). By 2.1 we have

O**(M,/WR) or O¥(M,/WR) =Vy x V; x -+ x V,,
where V, is an elementary abelian 2-group and V,..., V,, are nonabelian
simple. Since (T n M,)/W induces nontrivial automorphisms on W but
centralizes W/Z and Z we have SR/WR char M,/WR. The Frattini argument
gives us

NG(W) = O(Ce(W))(Ng(S) N No(W)).

Set U = Z-0(C¢(2)). Clearly, S = C4(Z). Let X/U be a minimal normal
subgroup of Ny(Z)/U lying in C43(Z)/U.

Suppose first that X/U is semisimple and not abelian. Since WU/U and
SU/U are the only K{¢)-invariant, nontrivial subgroups of SU/U we have to
distinguish the three cases W e Syl,(X), S € Syl,(X), and T € Syl,(X).

Assume first W e Syl,(X), then X/U ~ SL(2,q) by 2.1 and Ng(W) n
Cs(Z) contains a group L inducing a cyclic group of order ¢ — 1 on W/Z and
acting transitively on (W/Z)*, a contradiction.

Suppose now S € Syl,(X). Then X/U ~ SL(2, q) x SL(2, q) by 2.1. This
implies Ng(E) o G, since Nx(E) & G,,, a contradiction.
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If, finally, T € Syl,(X), then X/U is simple and by 2.2 we reach a contradic-
tion. So in any case X/U is an elementary abelian 2-group and by the above
Ng(Z) = O(CG(Z))Ng(S) follows.

Let Z; be any subgroup of Z such that either Z(T) < Z,or Z;, < Z(T), and
|Z;] = 2. We want to show by induction that N4(Z;) = O(C4(Z))(Ng(S) N
Ng(Z). Take ze Z — Z,, if Z, « Z(T) then choose ze Z(T) — Z;. Set
Ziy1 = {Z, z); then No(Z;)) N Ng(Z;,,) is the preimage of Cy_(z,,z,(2Z)-
In particular if x is an involution in T — Z; we have by induction, that

Criz(xZ;, 2Z;) € Syly)(Cng(zy2 X Zss 2Z))).

Case 1. Suppose first that Z(T) = Z(S). If xe S — Z and if T, , is the
preimage of Cy,,(xZ;, zZ;) then Z = T , and x ~ z in Ng(Z)) if x is an
involution. If x e T — S is an involution then T , n Z(T, ) = Z by 2.7
and again x ~ z in Ng(Z;). Therefore Z/Z, is strongly closed in T/Z; with
respect to Ng(Z;)/Z;. 2.3 implies that R = (ZNe\%0) < Cy(Z;) and R/O(R) is
known. If R # O(R)Z, it follows that

I(Ce(Z) N N(Z)): Co(2)] > 1

in contradiction to the structure of N4(Z). The induction goes through in this
case.

Case 2. Assume now Z # Z(T) and use the information of 2.7. Again if
x €S — Z is an involution we have z ~ x in Ng(Z;) as in Case 1. Suppose
now that x e T — S is an involution; then x ~ z in Ng(Z;) for i > n/2 as
Cy(x) # Z;. If i < n/2 then Z(T/Z;) has a preimage which is a group Z* =
Zism2pand ze Z* If xe T — Sis an involution and T, , is the preimage of
Crz(xZ;, zZ;), then the preimage of Z(T, ./Z;)is (Z*, x) but x ¢ Z({Z*, x)).
So x ~ zin N4(Z,). The weak closure of {zZ;) in

(N6(Z;11) 0 No(Z)| Z;

lies in Z/Z,. Hence by a theorem of Shult (see [3; corollary 3]) we have as
before
No(Z;) = O(Co(Z))(Ng(S) N No(Z))).
Every involution in § — Z is conjugate in G to ze Z#. Weclaimz ~ t €
T — S. Assume the contrary.

Casel. Z(T) = Z. Then Y = Cy(z, t) = {Z, t) € Syl,(C¢(z, t)) by the
above. Also Ck(?) acts transitively on Z* and t+(Z*). Ast ~ tzin W we have
that the elements in Z# as well as in ¢Z are all conjugate in X = Ng(Y). Now
t has at least ¢ conjugates under Cy(z). Since for z there is K* ~ Cg(?) in X
with K* < Cy(z) and Y = {z) x Y; where Y} and zY,; — {z} are K*-orbits.
It follows that all involutions in ¥ — {z) are conjugate under Cx(z). Hence 2
divides |Cy(z): Cx(z, z;)| where z; € Z — {(z). Take R e Syl,(Cx(z)) with
[t, T] < R and Q € Syl,(G) with R = G. Then

Z(@ <Y< (D[, T] and Z(Q) < Z([1, TKt)) = Z.
Hence Z(Q) = Z, contradicting the fact that 2 divides |Cy(z): Cx(z, z,)|.
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Case 2. Assume Z(T) # Z. Then z e Cr(x, t) but t ¢ Cr(x, z)' and so
t ~zinG.

By 2.4, G contains a subgroup of index 2. Since the maximal subgroup G,
does not contain a subgroup of index 2, we reach the final contradiction

G:Gl =10 =22 M) =g +12=5.
LEMMA 6.3. s # 5.

Proof. P = 0,(G,) = {Q,, 03, 04 and G, = N4(Q;) and Cg(Q;) covers
G2, Since [Q;, Q4] # 1 we have that C4(Q5)/P is faithfully represented on
P/Q,. The map x, — [x;, x,] where x; € QF and x, € Q, is faithful from Q,
into {Q,, Q3> and a Cx(Q,)-homomorphism.

Take k € G with af = o, then there is a x € G,, such that for Ng (P,) =
KpP, = G,, ,, we have (KP,)" = KP, where h = kx. Since P, contains
exactly two elementary abelian groups of order ¢ where one of them is P, we
have h* € KP,. As in the proof of 6.2, T = {t)P, € Syl,(G), where ¢ is an
involution in Ngz(K) n Ng(P,) interchanging P and Q the elementary abelian
subgroups of order ¢ in P,. Since

K = Cy(Q,) x Cx(Q3) = Cx(Q}) x Ci(Qy)

and as ¢ interchanges Q, and Q5 we have that Q% = Q, and K, = Cy(t) is a
cyclic group of order ¢ — 1. One computes that |Cp(f)] = g>. Moreover
there are at most g cosets tw{Q,, Q3> with w € P, which contain involutions
and each of these cosets contains at most ¢ involutions. Hence there are g?
involutions in 7 — P, and all of them are conjugate under P,.

P, e Syl,(Cs({Q,, Q3))) and by the structure of Ng(P,) we know—using
Burnside’s theorem—that

NG(<Q2» Q3>) = O(CG(<Q2a Q3>))NG(P4)-

Set Z = Z(T) = {Q,, @3). Denote by Z; any subgroup of {Q,, Q3> with
Z < Z;and |Z;| = 2'q. We want to show by induction that
No(Z)) = O(Ce(Z))(Ng(Py) N No(Z))).

P, e Syl,(Cs3(Z)) and T € Syl,(Ng(Z))) if i > 0. On the other hand if x is an
involution in P, — {Q,, Q3) and z € {Q,, Q3) — Z, then by the hypothesis
of the induction

CP4/Z,-(XZis zZ) € Sylz(ccc(z.-)/z,-(xzi, zZy)).

If T, , is the preimage of this group we have (Q,, Q;) = T, . Z; and so
x ~ z in Ng(z;). Hence {Q,, Q) is strongly closed in P, with respect to
C5(Z)). The structure of Ng({Q,, Q3)) and 2.3 now implies

(02, 03)0(C4(Z)) =2 Ne(Z)

and the assertion follows.
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Finally consider the case Z, = Z. z € {Q,, Q;) — Z is not conjugate to the
involution x € T — P, since the preimage T, , of Cyz(xZ, zZ) has {Q,, Q3)
as the only elementary abelian subgroup of index 2. If ze€<{Q,, Q3> — Z
would be conjugate in Ng(Z) to x € P, — {Q,, Q3) then all involutions in
P,/Z would be conjugate in Ny(Z)/Z. Hence N4(Z)/Z and so Cy3(Z)/Z has a
subgroup of index 2 with S,-subgroup P,/Z as the proof of 2.4 shows. This
group has class 2 and is of type L;(¢q). Soif X/O(C4(Z))Z is a minimal normal
subgroup of Ng(Z)/O(C43(Z))Z contained in Cg(Z)/O(Cy(Z))Z and is non-
solvable then X/O(C4(Z))Z ~ Li(g) by 2.2 and we get a contradiction to the
structure of Ng(P,). So as usual

Ng(Z) = O(Co(Z))(Ng(Ps) N N(Z))
follows.
Assume an involution t € T — P, is conjugate in G to x € P,. By 2.8 there
is a subgroup X < T, t, x € X satisfying conditions (1)-(4) of 2.8 (here T cor-
responds to P in 2.8) such that x ~ ¢in N where

N = No(X) if X = CH(Q(Z(X)))
or

N = No(X) 0 Co(Q(Z(X))) if X = Cr(Qy(Z(X))).

Clearly, Z{t) < X by 2.8 (2). Moreover Z = Z(X) or Q,(Z(X)) = {t)Z,
because C(t) = {t)YU, where U is homocyclic of order ¢* and Q,(U) = Z.
If X = C;(Q,(Z(X))) then in any case Z char X and x ~ ¢ in Nyz(Z) which is
impossible. If X < C(Q,(Z(X))) then N = NgX) and we get the same
contradiction.

2.4 implies that G has a subgroup of index 2 and we get the usual contradic-
tion.

Remark. The permutation groups with a suborbit of length 3 have been
determined by Sims [9] and Wong [15]. The permutation groups with a sub-
orbit of length 4 have been determined by Sims [10] and Quirin [7].
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