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We discuss the implications of the techniques introduced in [2-1 for the theory
of disjointness [3] of minimal transformation groups (called flows here).
We were motivated by the question: (i) given flows X and Ywith no common

factor, under what conditions are they disjoint ? (I.e., when is X x Yminimal?)
Since our techniques are algebraic in character, the question must be stated in
terms of algebras rather than flows. This introduces the possibility of confusion
since algebras correspond to pointed flows not to flows. Thus suppose that Z
is a common factor of the flows X and Y. This means that there are epimor-
phisms b: X --, Z and : Y Z. To translate this into the language of algebras
we pick base points Xo X and Yo e Y with XoU Xo and you Yo (see
Section for details). This allows us to correspond algebras .’, M, c and to
the pointed flows (X, Xo), (Y, Yo), (Z, tk(Xo)) and (Z, @(Yo)) respectively. The
existence of the homomorphisms tk and implies that c and .
In general cg

_ . However, the theory guarantees that ca for some
aG.
The above discussion shows that the proper translation of (i) is (ii): given

algebras and & with d c 0 C (the constants) (a G), under what
conditions are they disjoint? (I.e., when is [11 x [[ minimal?)
When stated in this way the original question naturally gives rise to (iii): given

algebras and & with 1 c C, under what conditions are they disjoint?
The hypothesis of (iii) is a priori weaker than that of (ii) (whence the theorems

obtained in answer to (iii) are stronger). However, it is easy to see that problems
(ii) and (iii) coincide when one of the algebras involved is regular.
The results obtained in this paper are answers to (iii). Since these results are

stronger than the ones occurring in the literature apropos (i), these latter are
also true under the weaker hypotheses of (iii).
The conjecture is that no common factor implies disjointness when T is

abelian, i.e., no conditions need be added when T is abelian. (If T is not abelian
then it is known that no common factor does not imply disjointness [7].)
Along these lines we show that if T is abelian, 1 c C and AB Goo,
then d and M are disjoint. This is the strongest result known so far.
The above result gives rise to some subsidiary questions: (1) If & C

will 9(A) c 9/(B) equal C? (2) When is AB a group? (3) Does AB a group
imply that the answer to (1) is affirmative?

In Section we review the definitions and notation used in the paper. Section
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2 contains results about the groups 15() which will be used to obtain results
on disjointness. In Section 3 we present some conditions equivalent to dis-
jointness. Sections 2 and 3 are independent of each other. In Section 4 we use
results of the previous two sections to describe some classes of flows for which

c C implies disjointness.

1. Definitions

We will assume the notations and conventions of i-2, Section 1], briefly re-
viewing the most important definitions as they arise.
Two flows , 9 are disjoint (written z’ I M) if Il Il is minimal. In

considering the concept of disjointness it will be useful to relativize it and to
consider: and 9 are disjoint over (written 1 _1_4 &) if c
and given x ]’1, Y I1 with x l y], there exists z I V ] with

zl’ xandzl y.
If C denotes the constant functions, then clearly _Lc iff ’ _L M. It is

also clear that _1_4 iff given x I’1 and y I1 with x Y , there
is anetr, eflTwithr, lxlCandr, lYl. It is this latter con-
dition which we will use.
The symbols , , etc. refer to T-subalgebras of some fixed OA(u) and

A, B, F etc. refer to their groups 15(), (), etc.

2. When does AB F?

We shall see that what is involved in proving disjointness of algebras and. (or more generally disjointness over the intersection ) is showing that
AB G (AB F). This in turn involves the groups H(F, ).

2.1 PROPOSITION. Let AB F. Then

AH(B, z) = H(F, ) and H(A, )B = H(F, ).

Proof. The inclusion AH(B, ) H(F, ) is proved in [2, 3.12]. (Note that
in that proposition, the assumption F AB is not used in the proof that
AH(B, z) H(F, z).) The second inclusion follows from the first by taking
inverses.
As in [2, 7.2 and 7.7.5] we define F1 H(F, z), F+I H(F, z) for

ordinals , and F, a<, Fa for limit ordinals . We set Foo Fv where v
is the first ordinal such that Fv F+ 1- Then 9(Foo) is the largest P! extension
of. We will often use the fact [2, 3.9] that 0, BF, BFoo for any z-closed
subset B.

2.2 COROLLARY. Let AB Foo.
Foo we have A ooBoo F

Then A B

2.3 PROPOSITION. Let F ABH(F, ).
addition AB Foo, then AB F.

Thus if F AB

Then ABFoo F. Thus if in
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Proof Set F H(F, z) as above. It is proved in [1, 14.6] that F1 is
normal in F. Since B

_
F, BFa is a subgroup of G. Thus we may apply 2.1

with BFx in place of both AB and F, then left multiply by A, to get

ABH(F1, z) AH(BFI, z).
Thus we have

ABF2 ABH(F1, z) AH(BF, z) H(F, z)= F,
where the last inclusion is obtained by applying 2.1 with BFI in place of B.

It follows from a slight generalization of [2, 3.13] that F2 is normal in F, so

BF2 is a group, and equals BF2B; hence,

ABFz ABF2B AFIB ABF F.

By transfinite induction we obtain ABF, F for all , so ABFo F.

2.4 PROPOSITION. Let BF F AFx and BA F. Then (B c A)F
F. The same is true for F ( any ordinal) instead of F.

Proof Notice that since BF F, BF2 Fx by 2.2 and so BF2 BFx
F. Hence by transfinite induction BFo BF, F for all . Now BA F(R)
implies that BA BFoo F. Thus the assumption BA Foo is only ap-
parently weaker than BA F.
By 2.1, BA1 Fx whence BA BF F. Hence by induction BAoo F.

Since A c F, we conclude A BAoo.
Let aA. Then a-baoo with bB and aooeAoo c A. Hence b

aaLeA. Thus beBcA and so A (BcA)Aoo. Now A
_

Fimplies
Ao c F(R) F1, hence AooF F1 and (B c A)AooF (B c A)F. Finally
we get

F AF (B c A)AooF (B c A)Fx.
The reverse inclusion is clear.
The algebra off is defined by

off {f 9.1(u)" ft 9.1(u) (t T)).
Notice that any point distal flow is in off, and that ’

_
3r iff G]’ is a T-

invariant set. Thus if q’ off, G ’ is dense in
We denote by the algebra of equicontinuous functions.

2.5 LEMMA. If
_

off then AE AH(G, z).

Proof. By [1, 15.13], E H(G, off). By [2, 3.10], E KH(G, z). Hence
if ’

_
Of" then A K so AE AKH(G, z) AH(G, z).

3. Disjointness and the group of a flow

The first theorem relating groups to disjointness was [5] that if T is abelian,
then ’ _L iff AB G. The following sequence of results generalizes both
that theorem and [4, Theorem 2.3].
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For any z-closed A, the algebra (A, &) is [-2, Section 5] the norm-closed sub-
algebra of (u) generated by the functions {fa.f }. The flow I(A, &)[ is
isomorphic to

{(A &)op-p M},
which is a subflow of 2I1. For a full discussion of this flow and the circle
operation see [2, Section 5]. The following properties of this operation will be
used extensively in this section" (AI)op (A op)[ and (AI&)opr
((A ) p) r for all subsets A of G, subalgebras of (u) elements p, r of M.

3.1 THEOREM. For arbitrary z-closed subgroups A and T-subal#ebras
(9.I(A, )) is the largest z-closed subgroup F satisfying A

_
F
_

BA.

Proof. First we show A
_

ffi((A,))___ BA. Since Ao Aou
( e A), A c ffi(l(A, B)). If ffi((A, 3)) then (A
and since y e A y, we know

1(o)1 (ou) l I)ou.
Then by [2, 2.4-1, cls()A. Now by [-2, 3.2], cls()A B cls A BA,
hence V BA.
Now suppose A

_
F
_
BA for some z-closed subgroup F. We will show that

F
_

ffi((A, )). First note that since A
_
F and BF BA, we have

(A u) l c (Fo u) l (Fi) u (BFI&)o u (BA u) l&
( u) l,

so(Aou) l (Fou) l. Now ifyFthenFoy Fou, thus

(Aoy) l& (Aouoy)[ (Fouoe)[ (Foy)[
(Fou) l (ou) l.

This shows F
_

ffi((A, )).

3.2 COROLLARY. If z, are given algebras, then BA
_

Goo iff 9gl(A, B) is
a Jflow.

Proof. If (A, &) is a flow, then ffi(9(A, ))
_

Suppose BA
_

Goo. Then BA
_

GooA. Since Goo is normal in G, GooA is a
group. Thus 3.1 implies ffi(9(A, ))

_
GooA. Hence ffi(9(A, &))

___
Go and

a(A, ) is .
The next lemma s proved in [1, 18.4].

3.3 LMA. If1 and are disjoint over , then AB F.

3.4 THEOREm. Suppose c and 9.1(F, ). Then s is
disjoint from over iff AB F.

Proof Suppose AB F and let p[" q[. Since azt(F, s) we
have p (FI ) q, hence p (AB] ) q (BI ) q. This implies the
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existence of nets t, T and ft, B such that t, q and fl,t, [a’ p la’.
Since ft, 10 u[&, we also have

This proves disjointness.

Remark. e condition that (F, ) is eqvalent to the condition
that be a RIC extension [2, 5.10].

3.5 LMMa. Suppose A and B are z-closed subgroups of G. Then

(A) (B) (r),

where F is the z-closed subgroup 9enerated by A and B.

Proof Define (A) (B) and F (). Then since G (A),
we have A G F, and so (F) (A). Similarly (F) (B), so

G (r) (A) (B),

and equality holds.
Now let H dcnotc the z-closed subgroup generated by A and B. Then

(H) (A) (B) (F)
soFG H. Also

r ((A) (B)) AB,
soF H.

3.6 THEOREM. Fix and . Then the following are equivalent.

(a)
(b)
(c)

BA is a group
ff)(9.1(A, )) BA
9.I(A) and 9A(B) are disjoint over their intersection.

In particular when A or B is normal, (A) and 9.I(B) are disjoint over their
intersection.

Proof. (a) is equivalent to (b) by 3.1.
(b) (c). If (b) holds then BA is a group, whence by 3.5 we have

9a(A) c 9a() (A).

By [2, 5.5.3] and 3.1 9I(BA) 21(BA, 21(B)), so we can apply 3.4 with N(A),
(B) and 21(BA) in place of a’, N, and " to prove (c).

(c) (a) follows from 3.3.

3.7 THEOREM. Among the following three conditions, the implications

(a) = (b) (c) always hold. If 9.I(G) C or if
_

:/d then the three con-
ditions are equivalent.
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(a) 9.1(A, N) C
(b) _1_ N
(c)

Remark. is defined after 2.4 above.

Proof. (a) (b) Since 9.1(A, .)= C we know that if p, q e M then
qe(AIN) op. Thus there are nets ,A and t,T with t,--.p and
a,t, IN --+ pIN. Then

,t,] -pl and

This proves . _L N.
(b) (c) follows from 3.3.
(c) (a) If 21(G) C, and BA G, then BA is a group, so by 3.6 we have

(5((A, N))= G, whence (A, N)= C. On the other hand, suppose
N_ 3r. Then BA G implies A IN GIN, and I1 GIN since
N
_

3,f. Therefore

Ig.I(A, )l {(G ) P: P M} {11 p: p M},
and this last set contains one point. Hence (A, N) C.

4. Flow disjointness

We will now discuss the implications of these results for flows.
In certain cases, e.g., when T is abelian, an algebra is disjoint from (the

algebra of equicontinuous functions) iff is weakly mixing, i.e., iff I1 x I1
is ergodic. This is the relevance of the next theorem. See for example [5], [6],
and [8].

4.1 THEOREM. If: and N are disjoint from , AB Goo, and , N
_

:/:,
then 1 V N is disjoint from .
Proof The hypotheses imply that AE BE G. By 2.5, AG BG1

G. Now apply 2.4 with G in place of F to conclude (A B)G1 G. Since

Gx - E, (A c B)E G. Then by 3.7, ( V N) _L g.
The following theorem and its corollaries generalize all results we know of

concerning disjointness and no common factor, e.g., [6, 3.4] and I-8, Theorems
12 and 14].

4.2 THEOREM. Suppose
_ , ( o) _l_ ( o) and AB

_
Goo.

Then . _L N.

Proof. By [1.14.6], ffi( c g) AE and ffi(N c ) BE. So by 3.3,
AEBE G, hence ABE G. By 2.6, BE BG1, whence ABGI G. Now
use 2.3 to conclude AB G. Since N

___
3, we have a’ _L by 3.7.

4.3 COROLLARY.
C =C.

Suppose T is abelian and AB
_

Goo. Then _L ff
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Proof. If c C then (c)c() C, so (c)_1_
( c ) (see [1, 18.11.2]). Since T is abelian, both and are subalgebras
of :Of. Hence 4.2 can be applied, and _1_ .

4.4 COROLLARY. Suppose T is abelian, / _L , and
_
/, .’ are

extensions. Then I .’ iff c . C.

Proof. Since - _ ,, Aa
_

are o extensions, F
_

Aoo and L
_

Boo.
Hence FL AooBoo. Since AB G, AooBoo Goo by 2.2. Hence FL Goo.
Now apply 4.3.
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