
KRULL DIMENSION AND NOETHERIANNESS

BY

B. SARATH

This paper essentially deals with the following question: Over what rings are
all modules with Krull dimension (as defined in [1]; Gordon-Robson A.M.S.
memoirs) noetherian. The problem originates with [-2] Theorem 4.2 where it is
shown that k-rings of Krull-dimension are, among many other things,
noetherian. In attempting to generalize this to higher dimensions it transpires
that all modules with Krull dimension over a V-ring are noetherian and this
leads to the question of other rings having this property. We tackle this mainly
in Section 2 devoting Section to proving the following somewhat independent
result about noetherian V-rings: a ring R is a noetherian V-ring if and only if
every R-module M has a minimal generating set and given a submodule N of
M every minimal generating set of N can be extended to a minimal generating
set of M. In Section 2 we prove (Theorem 2.8) that over a ring R, every module
with Krull-dimension is noetherian if and only if every non-noetherian module
has a proper non-noetherian submodule. Constructing an analogue of
we show that there are non-noetherian modules with Krull-dimension over a
polynomial ring and also study the case of group rings.

It has been pointed out to me that M. Teply has proved that V-rings with
Krull dimension are noetherian using Proposition 1.5 and the resulting iso-
morphism constructed in the proof of our Theorem 1.6, though the work is
unpublished. I would also like to acknowledge my indebtedness to Dr. K.
Varadarajan for his valuable advice and the many improvements he suggested.

All the rings in this paper possess a unit and all modules are left unital. All
properties will be assumed to be left properties e.g., "ideal" will mean "left
ideal". The symbol ( ) will denote "module generated by by" i.e., (C) will
mean the module generated by C, will denote set theoretic complement and
{b} the singleton set consisting of b.

1. Irredundant and redundant subsets of a module

DEFINITION 1.1. Let M be a module, B a subset of M. We say B is ir-
redundant iff A B, (A) (B) A B. If B is not irredundant we call
it redundant.

Remarks 1.2. (i) If B
___
M is irredundant and A

___
B then A is irredundant.

(ii) If {B,},j is a family of irredundant subsets of M totally ordered by
inclusion then , B, is irredundant.
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(iii) B is redundant iff for some subset A
_

B, (A) (A {a}) for
some a A.

We need the following lemma which is straightforward to verify.

LEMMA 1.3. Let B be an irredundant subset of M, {Mb}bB a collection of
maximal submodules of M satisfying b Mb and (B {b}> c Mb. Let
I (B), N NbeB eb and

M M

the natural imbedding (the bth coordinate ofj(x + N) is x + Mb). Then j maps
(1 + N)/N isomorphically onto M/Mb.

DEFINITION 1.4.
injective.

A ring is called a V-ring iff every simple R-module is

The following is well known 1-2; Theorem 2. I].

PROPOSITION 1.5. Let R be a ring M any R-module. Let 1 M be any
submodule and a M 1. Then R is a V-ring iff there exists a maximal sub-
module N M with a C N and I N.

THEOREM 1.6. The Jbllowing are equivalent for a ring R.
(i) R is a noetherian V-ring.
(ii) Given any irredundant generating set ofa submodule N ofany module M,

it can be extended to an irredundant generating setJbr M. In particularfor every
R-module M there exists an irredundant generating set.

Proof (i) = (ii). Let C be an irredundant, generating set for N. Let

E {BI C
_

B
_
M with B irredundant}.

E is non-empty, and when partially ordered by inclusion, by 1.2 (ii) and Zorn’s
lemma, has a maximal element say B. Suppose (B) 4: M. From 1.5 and the
irredundancy of B, there exist maximal submodules {M}bn of M with b Mo
and (B {b})

_
M. Let/, N, J be as in 1.3. The proof now breaks into two

cases.

Case(I). 1 :b N. PickueN, u$1. ThenB’ Bw {u} is irredundant by
1.2 (iii) since u(B) 1 and b(B’- {b})

___
(B,- {b}) + N_ M,

contradicting maximality of B.

Case (2). I N. By 1.3, (! + N)/N is isomorphic to 03 M/Mb which
is injective since R is a noetherian V-ring and each M/Mb is simple. Therefore
(1 + N)/N I/N (I N) is a direct summand of M/N. Let M]N (I/N) O)
(I’]N) where I’ is a submodule of M. Then loll’ N and l’ v 0 since
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I - M by hypothesis. Let 0 # u I’. Again B’ B w {u) is irredundant by
1.2 (iii) since u 6 (B) I and

(B’ {b}) c I ((B {b}) + I’) c I
_

(B {b}) + N
___

Mb,

and hence b q (B’ {b}) for all b e B. This contradicts maximality of B,
and hence we conclude that (B) M proving (i) = (ii).

(ii) = (i). Let {Sk}k>_l be a countable family of simple R-modules, S
O)k Sk and E the injective hull of S. We show E S and hence conclude by
[-3; Proposition 1] that R is a noetherian V-ring. Suppose E - S. Let 0
Xk Sk for k >_ 1. Then C {Xk}k is an irredundant generating for S and
let D C be an irredundant generating set for E. Let x D C. Since
x - 0 and S is essential in E, there exist 2, 2i e R, <_ _< n with Ax
]’= 2xi where 2nXn :/: 0. Hence there exists # e R with laA,Xn Xn, SO

p(2X- .- 2iXi) X, contradicting irredundancy of D. Hence E S.

2. Tall rings

DEFINITION 2.1. A module M is said to be tall iff there exists a submodule
N c M with both N and M/N non-noetherian.

Clearly, if either a submodule or quotient module of M is tall then M itself
is tall.

LEMMA 2.2. Let M have an infinite irredundant set. Then M is tall.

Proof Let B be the infinite irredundant set and let B C D where C
and D are infinite and C c D 0. Let N (C). It is then clear that N and
M[N are non-noetherian.

DEFINITION 2.3.
R-module is tall.

A ring R will be called a tall ring iff every non-neotherian

Given any module M over a ring R we define two submodules G(M) and
H(M) of M as follows:

DEFINITION 2.4. If M is noetherian we set G(M) H(M) 0. In case M
is not noetherian

G(M) ( {NI N a submodule of M with M/N noetherian}
H(M) {N IN a non-noetherian submodule of M}.

When M is not noetherian, and N a submodule ofM such that M/N is noether-
ian, then clearly N is not noetherian. It follows that H(M) G(M). Also if I
is a maximal submodule of M then M/I is simple and hence noetherian. Hence
H(M) c G(M) J(M) where J(M) is the Jacobson radical of M.

LEMMA 2.5. IfM/G(M) is noetherian and H(G(M)) v G(M) then M is tall.



332 B. SARA’r

Proof From H(G(M)) v G(M) we see immediately that G(M) 4:0 and
hence that M is not noetherian. Since H(G(M)) 4: G(M) let P c G(M) be
such that P is not noetherian. M/G(M) is noetherian by assumption so G(M)/P
noetherian = M/P noetherian =,, G(M) c P a contradiction. Since G(M)/P
M/P, M is tall.

PROPOSITION 2.6. Let M be a module that is not finitely generated. Suppose
that H(G(M/I)) G(M/I)for anyfinitely generated submodule I ofM, with the
property that G(M/I) is non-noetherian. Suppose further that G(M) O. Then
M is tall.

Proof The proof splits into two cases.

Case (1). Suppose for some finitely generated submodule /, G(M/1) is
non-noetherian. Let P (M/1)/(G(M/1)). If P is non-noetherian clearly M/1
is tall. If P is noetherian, by 2.5, since H(G(M/I)) 4: G(M/I), M/I is tall.
Hence M itself is tall.

Case (2). Suppose G(M/I) is noetherian for every finitely generated sub-
module 1 of M. In this case, we show that there exists an infinite irredundant
subset of M. Let 0 4: al M. Then clearly, the singleton {al} is an irredun-
dant subset of M. Since G(M) 0, there exists a submodule N of M with
MINI noetherian and al q N1. Taking this as a first step, assume inductively
that we have determined distinct elements a,..., ar of M, submodules
N1,. Nr of M satisfying the following conditions"

(i) {a1,..., a,} is an irredundant set of M;
(ii) M/Ni is neotherian;
(iii) ai N;
(iv) aj eNwhenever < 4:j < r.

Let N

_
N, M/I and r/" M the canonical quotient map.

M/N is noetherian since it imbeds into I-I’= MINi. M is not noetherian since
I is finitely generated and M is not, and hence r/(N) is not noetherian. So there
exists e r/(N), a G()(G() noetherian by hypothesis). Let a P where

is such that M/P is noetherian. Pick a,+ q-l() and set N,+
q-l(p). It is easy to verify that the induction postulates (i) to (iv) are satisfied
for r + 1. Let B (a,..., a,) for r > and set B {0,zl B,. Then
B is an infinite irredundant set and M is tall by 2.2.
We recall the definition of Krull-dimension as outlined by Gordon and

Robson [1]. The Krull dimension (written K-dim) of a module is detined by
transfinite recursion as follows" K-dim M -I when M 0. Given an
ordinal u, and assuming that the concept K-dim N < u is already defined, then
K-dim M is defined to be if K-dim M : and there exists no desceoding
sequence M Io D 11 D... of submodules of M with K-dim (1_ 1]li)
for/> I.
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THEOREM 2.7. Thefollowin9 conditions are equivalent for a ring R.
(i) Every R-module with Krull dimension is noetherian.
(ii) R is a tall ring.
(iii) Every non-noetherian R-module has a proper non-noetherian submodule.

Proof (i) (ii). To show that R is a tall ring, it suffices to show that if
M is an R-module with the property that for any submodule N of M, one of N
or M/N is noetherian, then M itself is noetherian. Ifwe assume (1) we have only
to show that such an M has Krull dimension. Let

a sup {K-dim N IN M, N noetherian}
fl sup {K-dim MINI N M, M/N noetherian)

sup (a, fl).

Given any descending sequence M Mo M =.-- it is clear that K-dim
(M,_ /Mg) < for >_ and hence that M has Krull dimension.

(ii) =:, (i). The proof is by transfinite induction. The only module of Krull-
dimension is 0 and clearly 0 is noetherian. Let a be any ordinal and assume
that all modules with Krull dimension < a have been shown to be noetherian.
Now suppose M is a module of Krull-dimension a. IfM is not noetherian using
the fact that R is a tall ring, we can construct a descending sequence M
Mo Ma M of submodules of M with M, and M_/M, both non-
noetherian, for > 1. Then K-dim (M,_/Mi) , since Mi_a/Mi is not
noetherian and this contradicts the fact that K-dim M a.

(ii) =:, (iii). Immediate by definition.
(iii) =:, (ii). Let M be a non-noetherian R-module. We have to show that

M is tall. We consider two cases.

Case (1). M/G(M) noetherian. Then G(M) O. Hence H(G(M)) v
G(M) and by Lemma 2.5 M is tall.

Case (2). M/G(M) non-noetherian. Let us write A for M/G(M). Then
G(A) 0 and if I

___
A is a submodule with G(A/I) 0 then H(G(A/I))

G(A/I) (by hypothesis). By 2.6, A is tall and hence M is tall. This proves
(iii) (ii).
The abelian group Zm is not noetherian, but has no proper noetherian sub-

modules. Thus Z is not a tall ring. We will show that the construction ofZo
can be imitated over a polynomial ring and hence show that no polynomial ring
is a tall ring.

PROPOSITION 2.8. For any ring R the polynomial ring R[(X,),s] is any set

of indeterminates (X,),s (J v O) is not a tall ring.

Proof It suffices to show that the polynomial ring R[X] in one indetermin-
ate X is not a tall ring. Let S be a simple R-module. Let u r/(1) where
q: R S is the canonical quotient map. Let S S for all integers > and
T @, S. Let u be the element of T whose ith coordinate is u and all other
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coordinates zero. Define Xut 0, Xut Ut-x for > 2 and X2ut 2Xut
for any 2 R. Since the u generate T, we get a well defined action of R[X] on
T. It is straight forward to see that T is not noetherian as an R[X] module and
that every proper submodule of T is noetherian as an R[X] module. Hence
R[X] is not a tall ring.

Let R be a subring of S. We determine some sufficient conditions for the
implication R is a tall ring S is a tall ring to hold. In the course of the proof
we need the following lemma which is easy to verify.

LEMMA 2.9. Let M be an R-module A, B, C, D submodules ofM with A B,
C D. Then there exists an epimorphism

A+C A C
B + D B + AC D + AC

We now fix the following notation" R is a subring of S containing the identity
of S. G {1 go, gl,..., g,} is a finite subset of the centralizer of R in S,
and as an R module, S (G). If M is any S-module and A an R-submodule
of M, then we define R-submodules At (0 < < n) ofM by At o_<js gtA.
Clearly A Ao c A c = A,, and A, is an S-submodule of M. Setting
g;- I(A) {m M gtm A}, it is clear that g- 1A is an R-submodule of M.

PROPOSITION 2.10. Let R, S, G be as above, with R a tall ring and M an S-
module. IfM is non-noetherian when considered as an R-module in the natural
way, then there exists an S-submodule NofM with both NandM]Nnon-noetherian
as R-modules.

Proof We will construct R-submodules A(), A(1),..., A(n) of M such that

A and M/A are both non-noetherian as R-modules. Since M is non-
noetherian and R is a tall ring, there exists an R-submodules A() A(o) of M
with A() and M]A() non-noetherian. Suppose A(),..., A(r) have been
constructed with the required property. If (A) + g,+ 1A,)]A is noetherian,
set A(’+ ) A(’) It is easy to see that a(+ 1) and t/a(r+ 1)

’,+ ...,+ are non-noetherian.
Now suppose

1A(r) A(r)A) + g+ gr+a

A") A") c g,+ A(")

is non-noetherian. Then the proof splits into two cases.

A" is not noetherian. Then there exists a non-Case (1). B A(f c gr+
noetherian submodule C of B with B/C also non-noetherian. We set A(r+ 1)

g-)l(C). Then A(+ 1) = A(o, and A(+1) is non-noetherian as an R-module.
Case (2). B A) c g,+lA is noetherian. In this case, since gr+ 1A, is

not noetherian and R is a tall ring we can get a non-noetherian submodule C
of g,+ 1A( with C D B and 9+ 1A(]C non-noetherian. Again we set A(+ 1)
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O;-+I(C), and A(r+l) is non-noetherian. By lemma 2.9 there exists an epi-
morphism

Ar) + gr+xA() Ar) A()_
Ar+ 1) _. gr+ 1A(r+ 1) Ar+ 1) + B gr+ 1A(r+ 1) + B

and in both cases the second component of the direct sum is non-noetherian.

THEOaM 2.11. Let R be a subring ofS and let S be generated as an R-module
b afinite subset of the centralizer ofR in S. Then R is a tall ring so too is S.

Proof. Let M be a non-noetherian S-module. M is a non-noetherian R-
module and by Proposition 2.10 has an S-submodule N such that N and M/N
are non-noetherian as R-modules. In particular M N. Again by applying
Proposition 2.10 to N, we get an S-submodule N such that N and N/N are
non-noetherian and hence N N. A simple induction allows us to construct
a chain N Nz ’" N which allows us to conclude that N is not
noetherian. Hence by 2.7 S is a tall ring.
We conclude with some examples of tall rings.
(1) Every V-ring and every perfect ring R is a tall ring. In both these cases,

given a module M 0, the Jacobson radical J(M) M. Since H(M)
G(M) J(M) it follows from 2.7 that R is a tall ring.

(2) Let A be an infinite direct product of copies of Zz. Then A is a V-ring,
but A is not perfect (J(A) 0). Let G be a finite group of order 2. Then A(G)
is a tall ring from example (1) and Theorem 2.7, but A[G] is neither perfect
(epimorphic images of perfect rings are perfect) nor a V-ring from [2; Corollary
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