KRULL DIMENSION AND NOETHERIANNESS

BY
B. SARATH

This paper essentially deals with the following question: Over what rings are
all modules with Krull dimension (as defined in [1]; Gordon-Robson A.M.S.
memoirs) noetherian. The problem originates with [2] Theorem 4.2 where it is
shown that V-rings of Krull-dimension 1 are, among many other things,
noetherian. In attempting to generalize this to higher dimensions it transpires
that all modules with Krull dimension over a V-ring are noetherian and this
leads to the question of other rings having this property. We tackle this mainly
in Section 2 devoting Section 1 to proving the following somewhat independent
result about noetherian V-rings: a ring R is a noetherian V-ring if and only if
every R-module M has a minimal generating set and given a submodule N of
M every minimal generating set of N can be extended to a minimal generating
set of M. In Section 2 we prove (Theorem 2.8) that over a ring R, every module
with Krull-dimension is noetherian if and only if every non-noetherian module
has a proper non-noetherian submodule. Constructing an analogue of Z,00
we show that there are non-noetherian modules with Krull-dimension over a
polynomial ring and also study the case of group rings.

It has been pointed out to me that M. Teply has proved that V-rings with
Krull dimension are noetherian using Proposition 1.5 and the resulting iso-
morphism constructed in the proof of our Theorem 1.6, though the work is
unpublished. I would also like to acknowledge my indebtedness to Dr. K.
Varadarajan for his valuable advice and the many improvements he suggested.

All the rings in this paper possess a unit and all modules are left unital. All
properties will be assumed to be left properties e.g., “ideal” will mean “left
ideal”. The symbol ¢ > will denote “module generated by by” i.e., {C) will
mean the module generated by C, ~ will denote set theoretic complement and
{b} the singleton set consisting of b.

1. lrredundant and redundant subsets of a module

DerINITION 1.1.  Let M be a module, B a subset of M. We say B is ir-
redundant iff 4 = B, (4> = {(B) == A = B. If B is not irredundant we call
it redundant.

Remarks 1.2. (i) If B € M isirredundant and 4 < B then A is irredundant.
(i) If {B,} <, is a family of irredundant subsets of M totally ordered by
inclusion then |, B, is irredundant.
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(iii) B is redundant iff for some subset 4 = B, (4> = (A ~ {a}) for
some a € A.

We need the following lemma which is straightforward to verify.

LemMA 1.3, Let B be an irredundant subset of M, {M,},.g a collection of
maximal submodules of M satisfying b¢ M, and (B ~ {b}) < M,. Let
I= <B>,N= nbeBMba”d

the natural imbedding (the bth coordinate of j(x + N) is x + M,). Then j maps
(I + N)/N isomorphically onto @,z M|M,,.

DEerINITION 1.4, A ring is called a V-ring iff every simple R-module is
injective.

The following is well known [2; Theorem 2.1].

PROPOSITION 1.5. Let R be a ring M any R-module. Let I ¢ M be any
submodule and a € M ~ 1. Then R is a V-ring iff there exists a maximal sub-
module N = M witha¢ N and I = N.

THEOREM 1.6.  The following are equivalent for a ring R.

(i) R is a noetherian V-ring.

(ii) Given any irredundant generating set of a submodule N of any module M,
it can be extended to an irredundant generating set for M. In particular for every
R-module M there exists an irredundant generating set.

Proof (i) = (ii)). Let C be an irredundant, generating set for N. Let
E = {B|C < B = M with B irredundant}.

E is non-empty, and when partially ordered by inclusion, by 1.2 (ii) and Zorn’s
lemma, has a maximal element say B. Suppose {B) # M. From 1.5 and the
irredundancy of B, there exist maximal submodules {M,}, 5 of M with b ¢ M,
and (B ~ {b}> < M,. Let I, N, J be asin 1.3. The proof now breaks into two
cases.

Case(1). I N. Pickue N,u¢ Il Then B' = B u {u}isirredundant by
1.2 (iii) since u¢ {(B) =1 and b¢ (B ' ~ {b}) = (B~ {b}) + N M,
contradicting maximality of B.

Case (2). I > N. By 1.3, (I + N)/N is isomorphic to ®,.5 M/M, which
is injective since R is a noetherian V-ring and cach M/M, is simple. Therefore
(I + N)/IN = IIN (I o N)is adirect summand of M/N. Let M|N = (I/N) ®
(I'/N) where I' is a submodule of M. Then I nI' = N and I' # 0 since
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I # M by hypothesis. Let 0 # u € I'. Again B’ = B v {u} is irredundant by
1.2 (iii) since u ¢ {(B) = I and

(B~ B> I (B~} +I)AnIc(B~{b})+NcM,

and hence b ¢ (B’ ~ {b}) for all b e B. This contradicts maximality of B,
and hence we conclude that {(B) = M proving (i) = (ii).

(ii) = (i). Let {S;}i»; be a countable family of simple R-modules, S =
@1 S and E the injective hull of S. We show E = S and hence conclude by
[3; Proposition 1] that R is a noetherian V-ring. Suppose E # S. Let 0 =
x, €S, for k = 1. Then C = {x};>, is an irredundant generating for S and
let D 2 C be an irredundant generating set for E. Let xe D ~ C. Since
x # 0 and S is essential in E, there exist 4, ;€ R, 1 < i < n with ix =
iy Ax; where A,x, # 0. Hence there exists ue R with pulx, = x,, so
u(Ax — 3"Z1 Axx;) = x, contradicting irredundancy of D. Hence E = S.

2. Tall rings

DEFINITION 2.1. A module M is said to be tall iff there exists a submodule
N < M with both N and M/N non-noetherian.

Clearly, if either a submodule or quotient module of M is tall then M itself
is tall.

LEMMA 2.2. Let M have an infinite irredundant set. Then M is tall.

Proof. Let B be the infinite irredundant set and let B = C U D where C
and D are infinite and C n D = Q. Let N = {(C). Itis then clear that N and
M|N are non-noetherian.

DErFINITION 2.3. A ring R will be called a tall ring iff every non-neotherian
R-module is tall.

Given any module M over a ring R we define two submodules G(M) and
H(M) of M as follows:

DEerINITION 2.4. If M is noetherian we set G(M) = H(M) = 0. In case M
is not noetherian

G(M) = () {N| N a submodule of M with M/N noetherian}
H(M) = [} {N| N a non-noetherian submodule of M}.

When M is not noetherian, and N a submodule of M such that M/N is noether-
ian, then clearly N is not noetherian. It follows that H(M) <= G(M). Also if I
is a maximal submodule of M then M/I is simple and hence noetherian. Hence
H(M) « G(M) < J(M) where J(M) is the Jacobson radical of M.

LemMmaA 2.5. If M|G(M) is noetherian and H(G(M)) # G(M) then M is tall.
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Proof. From H(G(M)) # G(M) we see immediately that G(M) # 0 and
hence that M is not noetherian. Since H(G(M)) # G(M) let P =, G(M) be
such that P is not noetherian. M/G(M) is noetherian by assumption so G(M)/P
noetherian = M/P noetherian = G(M) < P a contradiction. Since G(M)/P <
M|P, M is tall.

PROPOSITION 2.6. Let M be a module that is not finitely generated. Suppose
that H(G(M|I)) = G(M|I) for any finitely generated submodule I of M, with the
property that G(M|I) is non-noetherian. Suppose further that G(M) = 0. Then
M is tall.

Proof. The proof splits into two cases.

Case (1). Suppose for some finitely generated submodule I, G(M/I) is
non-noetherian. Let P = (M/I)/(G(M/[I)). If P is non-noetherian clearly M/|I
is tall. If P is noetherian, by 2.5, since H(G(M|I)) # G(M|I), M|l is tall.
Hence M itself is tall.

Case (2). Suppose G(M|I) is noetherian for every finitely generated sub-
module I of M. In this case, we show that there exists an infinite irredundant
subset of M. Let 0 # a, € M. Then clearly, the singleton {a,} is an irredun-
dant subset of M. Since G(M) = O, there exists a submodule N, of M with
M|N, noetherian and a, ¢ N;. Taking this as a first step, assume inductively
that we have determined distinct elements a,,...,a, of M, submodules
Ny, ..., N, of M satisfying the following conditions:

(i) {ay,...,a,} isan irredundant set of M;
(ii) M]|N, is neotherian;
(i) a; ¢ N;
(iv) a; € N;whenever | < i # j<r.

Let N = )iy N, M/ = M and 5: M - M the canonical quotient map.
M|N is noetherian since it imbeds into [T;—, M/N;. M is not noetherian since
I is finitely generated and M is not, and hence n(N) is not noetherian. So there
exists @ € n(N), a ¢ G(M)(G(M) noetherian by hypothesis). Let @ ¢ P where
P < M is such that M/P is noetherian. Pick a,,, € n~'(a) and set N,,, =
n~'(P). It is easy to verify that the induction postulates (i) to (iv) are satisfied
fori=r+ 1. Let B, = <ay,...,a) forr > 1 and set B = |J,», B,. Then
B is an infinite irredundant set and M is tall by 2.2.

We recall the definition of Krull-dimension as outlined by Gordon and
Robson [1]. The Krull dimension (written K-dim) of a module is defined by
transfinite recursion as follows: K-dim M = —1 when M = 0. Given an
ordinal «, and assuming that the concept K-dim N < « is already defined, then
K-dim M is defined to be o if K-dim M £ o and there exists no descending
sequence M = I, » I, o +-+ of submodules of M with K-dim (/,_,/I}) £ «
fori > 1.
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THEOREM 2.7. The following conditions are equivalent for a ring R.
(i) Every R-module with Krull dimension is noetherian.
(ii) R is a tall ring.
(iii) Every non-noetherian R-module has a proper non-noetherian submodule.

Proof. (i) = (ii)). To show that R is a tall ring, it suffices to show that if
M is an R-module with the property that for any submodule N of M, one of N
or M/N is noetherian, then M itself is noetherian. If we assume (1) we have only
to show that such an M has Krull dimension. Let

o = sup {K-dim N| N = M, N noetherian}
B = sup {K-dim M/N|N < M, M|N noetherian}
y = sup (a, f).
Given any descending sequence M = M, > M, o --- it is clear that K-dim

(M;_,/M;) < yfori > 1 and hence that M has Krull dimension.

(i) = (i). The proof is by transfinite induction. The only module of Krull-
dimension — 1 is 0 and clearly 0 is noetherian. Let « be any ordinal and assume
that all modules with Krull dimension <o have been shown to be noetherian.
Now suppose M is a module of Krull-dimension «. If M is not noetherian using
the fact that R is a tall ring, we can construct a descending sequence M =
My > M, > M, o --- of submodules of M with M; and M;_,/M; both non-
noetherian, for i > 1. Then K-dim (M;_,/M;) # a, since M;_,/M; is not
noetherian and this contradicts the fact that K-dim M = a.

(ii) = (iii). Immediate by definition.

(iii) = (ii). Let M be a non-noetherian R-module. We have to show that
M is tall. We consider two cases.

Case (1). M|G(M) noetherian. Then G(M) # 0. Hence H(G(M)) #
G(M) and by Lemma 2.5 M is tall.

Case (2). M|G(M) non-noetherian. Let us write 4 for M/G(M). Then
G(A) = 0 and if I = A4 is a submodule with G(A4/I) # 0 then H(G(A/I)) #
G(A/I) (by hypothesis). By 2.6, A4 is tall and hence M is tall. This proves
(iii) = (ii).

The abelian group Z,co is not noetherian, but has no proper noetherian sub-
modules. Thus Z is not a tall ring. We will show that the construction of Z,c0
can be imitated over a polynomial ring and hence show that no polynomial ring
is a tall ring.

PRrOPOSITION 2.8. For any ring R the polynomial ring R[(X,),;] is any set
of indeterminates (X,),c; (J # 0) is not a tall ring.

Proof. It suffices to show that the polynomial ring R[X] in one indetermin-
ate X is not a tall ring. Let S be a simple R-module. Let u = n(1) where
n: R — S is the canonical quotient map. Let S; = S for all integers i > 1 and
T = @;>1 S;. Letu; be the element of T whose ith coordinate is # and all other
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coordinates zero. Define Xu, = 0, Xu; = u;_, for i > 2 and Xu; = AXu;
for any A € R. Since the u; generate T, we get a well defined action of R[X] on
T. It is straight forward to see that 7 is not noetherian as an R[X'| module and
that every proper submodule of T is noetherian as an R[X] module. Hence
R[X] is not a tall ring.

Let R be a subring of S. We determine some sufficient conditions for the
implication R is a tall ring =S is a tall ring to hold. In the course of the proof
we need the following lemma which is easy to verify.

LEmMMA 2.9. Let M be an R-module A, B, C, D submodules of M with A > B,
C o D. Then there exists an epimorphism

A+ C A C
B+ D B+ AC D+ AC

We now fix the following notation: R is a subring of .S containing the identity
of S. G = {1 =go,91,---,9n is a finite subset of the centralizer of R in S,
and as an R module, S = {G). If M is any S-module and 4 an R-submodule
of M, then we define R-submodules 4; (0 < i < n)of Mby 4; = ¥,_;.; 9:A.
Clearly A = Ag <« A, -+ < A4,, and A, is an S-submodule of M. Setting
g Y(A) = {me M| g;m e A}, it is clear that g; ' 4 is an R-submodule of M.

ProrosiTiON 2.10. Let R, S, G be as above, with R a tall ring and M an S-
module. If M is non-noetherian when considered as an R-module in the natural
way, then there exists an S-submodule N of M with both N and M| N non-noetherian
as R-modules.

Proof. We will construct R-submodules 49, AV, ... A™ of M such that
AP and MJA® are both non-noetherian as R-modules. Since M is non-
noetherian and R is a tall ring, there exists an R-submodules 4? = 4 of M
with 4©® and M/A® non-noetherian. Suppose A®,..., A®” have been
constructed with the required property. If (4" + g,,,4,)]A" is noetherian,
set ATt = A® Tt is easy to see that 47" and M/A"}" are non-noetherian.
Now suppose

AP + g,.,A7 ~ g1 47
AP AN O gy AV

is non-noetherian. Then the proof splits into two cases.

Case (1). B = A™ n g,,,A" is not noetherian. Then there exists a non-
noetherian submodule C of B with B/C also non-noetherian. We set AC+D =
97 4(C). Then A“*D < A, and A“*Y is non-noetherian as an R-module.

Case (2). B = A" N g,,,4" is noetherian. In this case, since g, 4, is
not noetherian and R is a tall ring we can get a non-noetherian submodule C
of g,,,A™ with C > Band g,, A”/C non-noetherian. Again we set A+ =
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9-4(C), and A“*V is non-noetherian. By lemma 2.9 there exists an epi-
morphism
Aﬁr) + ngA(r) 5 Aﬁ" 9147
A£'+1) + gr+1A(r+1) A$r+1) + B gr+1A(r+l) + B

and in both cases the second component of the direct sum is non-noetherian.

THEOREM 2.11. Let R be a subring of S and let S be generated as an R-module
by a finite subset of the centralizer of R in S. Then if R is a tall ring so too is S.

Proof. Let M be a non-noetherian S-module. M is a non-noetherian R-
module and by Proposition 2.10 has an S-submodule N such that N and M/N
are non-noetherian as R-modules. In particular M # N. Again by applying
Proposition 2.10 to N, we get an S-submodule N, such that N, and N/N, are
non-noetherian and hence N, =, N. A simple induction allows us to construct
a chain N, <, N, <, -+ < N which allows us to conclude that N is not
noetherian. Hence by 2.7 S is a tall ring.

We conclude with some examples of tall rings.

(1) Every V-ring and every perfect ring R is a tall ring. In both these cases,
given a module M # 0, the Jacobson radical J(M) # M. Since H(M) <
G(M) = J(M) it follows from 2.7 that R is a tall ring.

(2) Let A4 be an infinite direct product of copies of Z,. Then 4 is a V-ring,
but A4 is not perfect (J/(4) = 0). Let G be a finite group of order 2. Then A(G)
is a tall ring from example (1) and Theorem 2.7, but A[G] is neither perfect
(epimorphic images of perfect rings are perfect) nor a ¥V-ring from [2; Corollary
6.7].
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