CORRECTION TO MY PAPER "A COMBINATORIAL ANALOGUE OF A THEOREM OF MYERS'

BY

David A. Stone
This is a correction of my paper [3]. The proof of Proposition 1 is mistaken (the assertion " $L>|\alpha|+\left(\left|\beta_{1}\right|-|\alpha|\right) / 3$ " does not follow from " $|\partial c| \geq 3$ for any 2-cell").

I use the same notation as in [3]. If K is a 2 -manifold, v a vertex, then the curvature $R^{*}(v)$ is defined to be

$$
2-\sum\{(1-2 /|\partial c|) \text { for all 2-cells } c \text { containing } v\}
$$

Proposition 1. Let K be a connected cell complex which is a 2-manifold without boundary. Assume:
(1) there is a number N such that $|\partial c| \leq N$ for every 2 -cell c;
(2) there is a number $R>0$ such that $R^{*}(v) \geq R$ for every vertex of K. Then K is finite.

Proof. Metrize K so that each 2-cell is a regular polygon of side-length 1. K has a simplicial subdivision K^{\prime} which introduces no new vertices. At each vertex $v \in K^{\prime}$ the piecewise linear curvature (see, for example, [2]) is $\pi R^{*}(v)$. Moreover each 2-simplex of K^{\prime} is isometric to one of a finite list of planar triangles by (1). Using the methods of Gluck ([1], quoted in [2]) it is not hard to show that in the intrinsic metric thus defined on $\left|K^{\prime}\right|,\left|K^{\prime}\right|$ is complete, and every ball of finite radius contains only finitely many vertices of K^{\prime}. Since $\left|K^{\prime}\right|$ is complete, Theorem 3 of [2] implies that $\left|K^{\prime}\right|$ is compact. Hence K^{\prime} has only finitely many vertices; and it follows that K is finite.

The remarks following Proposition 1 are correct, except that in Remark 2 there is no estimate for diam K^{*}. A corresponding form of Corollary 2 cannot be proved by the method of proof of the present Proposition 1.

The material on variational fields and variations of a path in the dual cell complex to a simplicial manifold need be altered only in the last step: the definition of Ricci curvature. The Ricci curvature of K^{*} at b_{1} in the direction $a_{1}-a_{2}$ is redefined to be

$$
R^{*}\left(b, a_{1}-a_{2}\right)=8 n-\sum_{j=1}^{2 n-1}\left\{\left|\partial c_{j}\right| \text { for } a_{1}<c_{j} \text { or } a_{2}<c_{j}\right\}
$$

In terms of K this is equivalent to redefining

$$
R\left(s, t-t^{\prime \prime}\right)=8 n-\sum_{j=1}^{2 n-1}\left\{N\left(u_{j}\right) \text { for } u_{j}<t \text { or }<t^{\prime \prime} \text { and } \operatorname{dim} u_{j}=n-2\right\}
$$

Theorem 3. Let K be a connected simplicial n-manifold without boundary, $n \geq 3$. Assume:
(1) there is a number N such that $N(u) \leq N$ for all u;
(2) there is an $R>0$ such that $R\left(s, t-t^{\prime \prime}\right) \geq R$ for all s and $t-t^{\prime \prime}$.

Then K is finite and diam $K \leq(2 N-4) / R+2$.
Remark. Hypothesis (2) implies that (1) holds with $N=2 n+6$, since $N(u) \geq 3$ for every u.

Proof. Let K^{*} be the cell complex dual to K. Let $\alpha=\left(a_{1}, \ldots, a_{r}\right)$ be a path in K^{*} with $a_{i} \cap a_{i+1}=b_{i}$ for $i=1, \ldots, r-1$; assume α is a shortest path between its endpoints. Let C_{1}, \ldots, C_{n} be the special variational fields, and $\beta_{1}, \ldots, \beta_{n}$ the corresponding variations, of α. For each b_{i} the curvature hypothesis may be formulated as

$$
\sum_{c \in C_{1} \cup \mathcal{V C}_{n}, b_{i} \in c}(|\partial c|-2) \leq 4 n+2-R
$$

Adding these inequalities for $i=1, \ldots, r-1$ gives

$$
\begin{equation*}
\sum_{i=1}^{r-1} \sum_{c \in C_{1} \cup \cdots \cup c_{n}, b_{i} \in c}(|\partial c|-2) \leq(4 n+2-R)(|\alpha|-1) \tag{*}
\end{equation*}
$$

Let L denote the left-hand side of (*). Then

$$
L=\sum_{j=1}^{n} \sum_{c \in C_{j}}(|\partial c|-2)\left(\text { number of } b_{i} \text { which are } \in c\right)
$$

Say $C_{j}=\left(c_{1}^{j}, \ldots, c_{s(j)}^{j}\right)$. Then for $c \in C_{j}$, the number of b_{i} which are in c is $\left|\partial_{\alpha} c\right|$ if $c=c_{1}^{j}$ or $c_{s(j)}^{j}$, and $\left|\partial_{\alpha} c\right|+1$ otherwise. So

$$
\begin{aligned}
L & =\sum_{j=1}^{n}\left[\sum_{c \in C_{j}}(|\partial c|-2)\left(\left|\partial_{\alpha} c\right|+1\right)-\left(\left|\partial c_{1}^{j}\right|-2\right)-\left(\left|\partial c_{s(j)}^{j}\right|-2\right)\right] \\
& \geq \sum_{j=1}^{n} \sum_{c \in C_{j}}(|\partial c|-2)\left(\left|\partial_{\alpha} c\right|+1\right)-2 n(N-2),
\end{aligned}
$$

using hypothesis (1). Now

$$
\begin{aligned}
|\partial c| & =\left|\partial_{\alpha} c\right|+\left|\partial_{\beta_{j}} c\right|+1 \quad \text { if } c=c_{1}^{j} \text { or } c_{s(j)}^{j} \\
& =\left|\partial_{\alpha} c\right|+\left|\partial_{\beta_{j}} c\right|+2 \quad \text { otherwise }
\end{aligned}
$$

So

$$
\begin{aligned}
L & \geq 2 \sum_{j=1}^{n} \sum_{c \in C_{j}}(|\partial c|-2)+\sum_{j=1}^{n} \sum_{c \in C_{j}}(|\partial c|-2)\left(\left|\partial_{\alpha} c\right|-1\right)-2 n(N-2) \\
& =2 \sum_{j=1}^{n}\left[\sum_{c \in C_{j}}\left(\left|\partial_{\alpha} c\right|+\left|\partial_{\beta_{j}} c\right|\right)-2\right]+L^{\prime}-2 n(N-2)
\end{aligned}
$$

where L^{\prime} denotes the second double-sum in the previous inequality. Hence

$$
\begin{aligned}
L & \geq 2 \sum_{j=1}^{n}\left(|\alpha|+\left|\beta_{j}\right|\right)+L^{\prime}-2 n N \\
& =2\left(n|\alpha|+\sum_{j=1}^{n}\left|\beta_{j}\right|\right)+L^{\prime}-2 n N
\end{aligned}
$$

To evaluate L^{\prime}, observe that by construction of the $C_{j},\left|\partial_{\alpha} c\right| \geq 1$ for all c. Hence

$$
\begin{aligned}
L^{\prime} & =\sum\left\{(|\partial c|-2)\left(\left|\partial_{\alpha} c\right|-1\right)\right. & & \text { for } \left.c \in C_{1} \cup \cdots \cup C_{n} \text { and }\left|\partial_{\alpha} c\right| \geq 2\right\} \\
& =\sum_{i=1}^{r-1} \sum\{(|\partial c|-2) & & \text { for } \left.a_{i} \cup a_{i+1} \subseteq c\right\}
\end{aligned}
$$

since in this last expression, $(|\partial c|-2)$ is counted $\left(\left|\partial_{\alpha} c\right|-1\right)$ times. For each i the inner sum reduces to one term. Moreover, for α to be a geodesic-that is, to minimize length locally- $|\partial c|$ must be ≥ 4 whenever the inner sum is nonzero. (Otherwise $a_{i} \cup a_{i+1}$ could be replaced by the third side of c.) So

$$
L^{\prime} \geq \sum_{i=1}^{r-1} 2=2(|\alpha|-1)
$$

Substituting for L and L^{\prime} in (*) gives

$$
2\left(n|\alpha|+\sum_{j=1}^{n}\left|\beta_{j}\right|\right)+2(|\alpha|-1)-2 n N \leq(4 n+2-R)(|\alpha|-1)
$$

Hence $\sum_{j=1}^{n}\left|\beta_{j}\right| \leq n|\alpha|-[|\alpha| R / 2-R / 2-n(N-2)]$. To assume α is as short as possible is to assume each $\left|\beta_{j}\right| \geq|\alpha|$. Hence

$$
|\alpha| R / 2-R / 2-n(N-2) \leq 0
$$

that is, $|\alpha| \leq 2 n(N-2) / R+1$.
Thus $\operatorname{diam} K^{*} \leq 2 n(N-2) / R+1$. As in [3] it follows that

$$
\operatorname{diam} K \leq 2+\left(\operatorname{diam} K^{*}-1\right) / n \leq(2 N-4) / R+2
$$

Theorem 3 is proved.
Remark 1. When $n=3$, the curvature hypothesis (2) reduces to

$$
\sum_{j=1}^{5} N\left(u_{j}\right) \leq 23
$$

whenever u_{1}, \ldots, u_{5} are edges of a tetrahedron. This occurs, for example, if each tetrahedron has four edges with $N(u)=4$, one with $N(u)=5$, and one with $N(u)=6$.

Remark 2. For general n, the curvature hypothesis (2) requires that "on the average" $N(u)$ be $\leq 4+(4-R) /(2 n-1)$. This number times the dihedral
angle of a regular n-simplex at an $(n-2)$-face is $<2 \pi$; hence Theorem 3 is in the spirit of Theorem 4 of [2] (quoted in [3]). The Theorem 3 claimed in [3] required that "on the average" $N(u)$ be less than about $4+(R+2) /(n-1)$. However, here the average is arithmetic; there it was harmonic, which is a weaker requirement on the $N\left(u_{j}\right)$ being averaged.

Remark 3. The main example of [3] is correct (the triangulation of $S^{n-1} \times R$). In this complex $R\left(s, t-t^{\prime \prime}\right)$ takes values ≥-2. Thus Theorem 3 cannot be much strengthened. I conjecture that in dimension 3 there is a true theorem with the (weaker) curvature hypothesis of Theorem 3 of [3].

Corollary 4 cannot be proved using the method of proof of Theorem 3.
Theorem 5. Theorem 3 holds if K is a geometrical n-circuit (see [3]), with $R\left(s, t-t^{\prime \prime}\right)$ redefined as

$$
8 n-\sum_{j=1}^{2 n-1}\left\{N\left(u_{j} ; s\right) \text { for } u_{j}<t \text { or }<t^{\prime \prime} \text { and } \operatorname{dim} u_{j}=n-2\right\}
$$

Here $N(u ; s)$ denotes the number of 1 -simplexes in that component of $\operatorname{link}(u, K)$ to which link (u, s) belongs.

References

1. H. R. Gluck, Piecewise linear methods in Riemannian geometry, mimeographed notes, Univ. of Pennsylvania, 1972.
2. D. A. Stone, Geodesics in piecewise linear manifolds, Trans. Amer. Math. Soc., vol. 215 (1976), pp. 1-44.
3. - A combinatorial analogue of a theorem of Myers, Illinois J. Math., vol. 20 (1976), pp. 12-21.

Brooklyn College of the City of New York
New York City

