ON THE SCHUR MULTIPLIER OF A WREATH PRODUCT

BY
E．W．Read
Introduction

This work is a generalization of a paper by N．Blackburn［1］on the Schur multiplier of the wreath product of two finite groups G and H ．This wreath product is the group called the complete or unrestricted wreath product by H．Neumann［5］，and the regular wreath product by Huppert［3］．We will consider wreath products as defined by Kerber［4］and Huppert，and the notation $G 乙 H$ will always be taken to mean a group defined in this way．The regular wreath product of G and H will be denoted by $G 乙_{r} H$ ．

Our proofs sometimes follow closely along the lines of those of［1］，and where the argument is almost identical，we have omitted the details．To show that our work is in fact a true generalization of Blackburn＇s work，we note that $G 乙_{r} H \cong G \simeq H^{+}$，where H^{+}is a permutation group on the elements of H which is itself isomorphic to H ；indeed，we are able to recover Blackburn＇s result as a corollary to our main theorem（Theorem 3）．We also apply our results to determine the multipliers of the groups C_{l} 乙 S_{n}, C_{l} 乙 A_{n}, S_{l} 乙 S_{n} ， $S_{l} 乙 A_{n}, A_{l} 乙 S_{n}, A_{l}$ 乙 A_{n} ，where C_{l} is the cyclic group of order l ，and S_{l} and A_{l} are respectively the symmetric and alternating groups on l symbols．

Section 1

Let G be a finite group，H a permutation group on the set $X=\{1, \ldots, n\}$ ． We define $G \mathcal{Z} H$ to be the set $\{(f, h) \mid f: X \rightarrow G, h \in H\}$ ，together with the product $(f, h)\left(f^{\prime}, h^{\prime}\right)=\left(f f_{h}^{\prime}, h h^{\prime}\right)$ ，where $f_{h}^{\prime}(i)=f^{\prime}\left(h^{-1}(i)\right)$ for all $i \in X$ ．This makes $G \mathcal{Z} H$ into a group with identity $\left(e, 1_{H}\right)$ ，called the wreath product of G with H ，where $e(i)=1_{G}$ for all $i \in X$ ．（See［4，p．24］．）Let $G^{*}=$ $\left\{\left(f, 1_{H}\right) \mid f: X \rightarrow G\right\}$ ．Then
$G^{*}=X_{i=1}^{n} G_{i} \triangleleft G 乙 H \quad$ where $G_{i}=\left\{\left(f, 1_{H}\right) \mid f(j)=1_{G}\right.$ for all $\left.j \neq i\right\} \cong G$.
If $H^{*}=\{(e, h) \mid h \in H\} \cong H$ ，then $G^{*} \cap H^{*}=\left\{\left(e, 1_{H}\right)\right\}$ ，and $G 乙 H$ is the semidirect product of G^{*} and H^{*} ．Thus $|G 乙 H|=|G|^{n}|H|$ ．Henceforth，we will identify H^{*} with H ．

Let $\left\{X_{i} \mid i=1, \ldots, m\right\}$ be the orbits of H on X ，and for simplicity of nota－ tion，we assume that $i \in X_{i}, i=1, \ldots, m$ ．We define $W_{i}(H)=\{h \in H \mid h(i)=$
$i\}, i=1, \ldots, m$. (We will merely write W_{i} when no confusion arises over the group H in question.) Then for all $i=1, \ldots, m$, there exist $\left\{w_{j} \mid j \in X_{i}\right\}$ such that $w_{j}(j)=i$ if $j \in X_{i}$, and $H=\bigcup_{j \in X_{i}} W_{i} w_{j}, i=1, \ldots, m$. From now on, we will always assume that

$$
\left\{w_{j} \mid j \in X_{i}, i=1, \ldots, m\right\}
$$

is a fixed set satisfying these conditions with $w_{i}=1$ for all $i=1, \ldots, m$, and thus if $j \in X_{i}$ and $h \in H$ then

$$
W_{i} w_{h^{-1}(j)}=W_{i}\left(w_{j} h\right) \quad \text { and } \quad G_{j}=G_{i}^{w_{j}}=w_{j}^{-1} G_{i} w_{j}
$$

If $G^{(i)}=X_{j \in X_{i}} G_{j}$, then $G^{*}=X_{i=1}^{m} G^{(i)}$, and each $x \in G^{*}$ may be written (uniquely) as a product $x=\prod_{i=1}^{m} x^{(i)}, x^{(i)} \in G^{(i)}$. Further, each $x^{(i)} \in G^{(i)}$, $i=1, \ldots, m$, may be expressed in the form $x^{(i)}=\prod_{j \in X_{i}} x_{j}^{w_{j}}$, where each x_{j}, $j \in X_{i}$ is an uniquely defined element of G_{i} called the j th component of $x^{(i)}$. At this stage, it is convenient to introduce some standard notation which will often be used without further reference. $h, h^{\prime}, h^{\prime \prime}$ will denote arbitrary elements of H, h_{i} an element of $H \backslash W_{i}, h_{i}^{\prime}, h_{i}^{\prime \prime}$ elements of W_{i}, and $g_{i}, g_{i}^{\prime}, g_{i}^{\prime \prime}$ elements of G_{i}, $i=1, \ldots, m$.

We now derive a set of generators and relations for G 乙 H.
Theorem 1. Let $\{v(h) \mid h \in H\},\left\{v\left(g_{i}\right) \mid g_{i} \in G_{i}\right\}$ be sets in 1-1 correspondence with H and $G_{i}, i=1, \ldots, m$, respectively, and let F be the free group generated by $\left\{v(h), v\left(g_{i}\right)\right\}$, with $v\left(1_{H}\right)=v\left(1_{G_{i}}\right)=1, i=1, \ldots, m$. If R is the normal closure in F of the elements

$$
\begin{array}{cc}
b_{i}\left(g_{i}, g_{i}^{\prime}\right)=v\left(g_{i} g_{i}^{\prime}\right)^{-1} v\left(g_{i}\right) v\left(g_{i}^{\prime}\right), & c\left(h, h^{\prime}\right)=v\left(h h^{\prime}\right)^{-1} v(h) v\left(h^{\prime}\right) \\
d_{i}^{h_{i}}\left(g_{i}, g_{i}^{\prime}\right)=\left[v\left(g_{i}\right)^{v\left(h_{i}\right)}, v\left(g_{i}^{\prime}\right)\right], & e_{i}\left(h_{i}^{\prime}, g_{i}\right)=\left[v\left(h_{i}^{\prime}\right), v\left(g_{i}\right)\right] \\
f_{i j}^{h}\left(g_{i}, g_{j}\right)=\left[v\left(g_{i}\right)^{v(h)}, v\left(g_{i}\right)\right], & j \neq i, i=1, \ldots, m
\end{array}
$$

then $F / R \cong G \simeq H$.
Proof. From the above work, it is easy to see that $G 乙 H$ is a homomorphic image of F / R. For $h \in H, g_{i} \in G_{i}, j \in X_{i}, i=1, \ldots, m$, we define

$$
u_{j}\left(g_{i}\right)=v\left(g_{i}\right)^{v\left(w_{j}\right)} R, \quad u(h)=v(h) R
$$

Then any element of F / R may be expressed as a product $\prod_{j=1}^{n} u_{j}\left(g_{i}\right) u(h)$, where $h \in H$ and $g_{i} \in G_{i}$ whenever $j \in X_{i}$, and thus $|F / R| \leq|G|^{n}|H|$.

Section 2

Let F, R be as above. We now consider the group $R /[F, R]$; the Schur multiplier of $G \simeq H\left(\right.$ denoted by $\left.H^{2}\left(G \simeq H ; C^{*}\right)\right)$ is then isomorphic to the torsion subgroup of $R /[F, R]$. (See [3, p. 631].)

We shall use \bar{r} to denote the left coset of $[R, F]$ containing $r \in R$. Thus $R /[F, R]$ is generated by $\bar{b}_{i}\left(g_{i}, g_{i}^{\prime}\right), \bar{c}\left(h, h^{\prime}\right), \bar{d}_{i}^{h_{i}}\left(g_{i}, g_{i}^{\prime}\right), \bar{e}_{i}\left(h_{i}^{\prime}, g_{i}\right), \bar{f}_{i j}^{h}\left(g_{i}, g_{j}\right), j \neq i$.

Theorem 2. These elements satisfy the following relations:
(1) $\bar{b}_{i}\left(g_{i}, 1\right)=\bar{b}_{i}\left(1, g_{i}\right)=1, \quad \bar{b}_{i}\left(g_{i} g_{i}^{\prime}, g_{i}^{\prime \prime}\right) \bar{b}_{i}\left(g_{i}, g_{i}^{\prime}\right)=\bar{b}_{i}\left(g_{i}^{\prime}, g_{i}^{\prime \prime}\right) \bar{b}_{i}\left(g_{i}, g_{i}^{\prime} g_{i}^{\prime \prime}\right)$,
(2) $\bar{c}(h, 1)=\bar{c}(1, h)=1, \quad \bar{c}\left(h h^{\prime}, h^{\prime \prime}\right) \bar{c}\left(h, h^{\prime}\right)=\bar{c}\left(h^{\prime}, h^{\prime \prime}\right) \bar{c}\left(h, h^{\prime} h^{\prime \prime}\right)$,

$$
d_{i}^{h_{i}}\left(g_{i} g_{i}^{\prime}, g_{i}^{\prime \prime}\right)=\bar{d}_{i}^{h_{i}}\left(g_{i}, g_{i}^{\prime \prime}\right) d_{i}^{h_{i}}\left(g_{i}^{\prime}, g_{i}^{\prime \prime}\right), \quad d_{i}^{h_{i}}\left(g_{i}, g_{i}^{\prime} g_{i}^{\prime \prime}\right)=\bar{d}_{i}^{h_{i}}\left(g_{i}, g_{i}^{\prime}\right) d_{i}^{h_{i}}\left(g_{i}, g_{i}^{\prime \prime}\right)
$$

$$
\begin{equation*}
\bar{e}_{i}\left(h_{i}^{\prime} h_{i}^{\prime \prime}, g_{i}\right)=\bar{e}_{i}\left(h_{i}^{\prime}, g_{i}\right) \bar{e}_{i}\left(h_{i}^{\prime \prime}, g_{i}\right), \quad \bar{e}_{i}\left(h_{i}^{\prime}, g_{i} g_{i}^{\prime}\right)=\bar{e}_{i}\left(h_{i}^{\prime}, g_{i}\right) \bar{e}_{i}\left(h_{i}^{\prime}, g_{i}^{\prime}\right) \tag{5}
\end{equation*}
$$

$$
\begin{align*}
& d_{i}^{h_{i}}\left(g_{i}, g_{i}^{\prime}\right) d^{h_{i}-1}\left(g_{i}^{\prime}, g_{i}\right)=1 \tag{3}\\
& \bar{d}_{i}^{h_{i}^{\prime} h_{i} h_{i}^{\prime \prime}}\left(g_{i}, g_{i}^{\prime}\right)=\bar{d}_{i}^{h_{i}}\left(g_{i}, g_{i}^{\prime}\right) \tag{4}
\end{align*}
$$

$$
\begin{equation*}
\bar{f}_{i j}^{h}\left(g_{i}, g_{j} g_{j}^{\prime}\right)=\bar{f}_{i j}^{h}\left(g_{i}, g_{j}\right) \bar{f}_{i j}^{h}\left(g_{i}, g_{j}^{\prime}\right), \quad \bar{f}_{i j}^{h}\left(g_{i} g_{i}^{\prime}, g_{j}\right)=\bar{f}_{i j}^{h}\left(g_{i}, g_{j}\right) \bar{f}_{i j}^{h}\left(g_{i}^{\prime}, g_{j}\right) \tag{6}
\end{equation*}
$$

$$
\bar{f}_{i j}^{h}\left(g_{i}, g_{j}\right) \bar{f}_{j i}^{h-1}\left(g_{j}, g_{i}\right)=1, \quad \bar{f}_{i j}^{h^{\prime} h h_{j^{\prime}}}\left(g_{i}, g_{j}\right)=\bar{f}_{i j}^{h}\left(g_{i}, g_{j}\right)
$$

for all $i=1, \ldots, m, j \neq i$.
Proof. (1), (2), (3) are proved in a similar manner to (7)-(10) in [1, p. 120]. For (4) we need the following result:

Lemma 1. $\quad\left(v\left(g_{i}\right)^{v\left(h_{i}\right)}\right)^{-1} v\left(g_{i}\right)^{v\left(h_{i}^{\prime} h_{i}\right)} \in R, i=1, \ldots, m$.
Proof. $v\left(h_{i}^{\prime} h_{i}\right)=v\left(h_{i}^{\prime}\right) v\left(h_{i}\right) c\left(h_{i}^{\prime}, h_{i}\right)^{-1}$, where $c\left(h_{i}^{\prime}, h_{i}\right) \in R$, and thus, $\left(v\left(g_{i}\right)^{v\left(h_{i}\right)}\right)^{-1} v\left(g_{i}\right)^{v\left(h_{i}^{\prime} h_{i}\right)}$

$$
\begin{aligned}
& =v\left(h_{i}\right)^{-1} v\left(g_{i}\right)^{-1} v\left(h_{i}\right) c\left(h_{i}^{\prime}, h_{i}\right) v\left(h_{i}\right)^{-1} v\left(h_{i}^{\prime}\right)^{-1} v\left(g_{i}\right) v\left(h_{i}^{\prime}\right) v\left(h_{i}\right) c\left(h_{i}^{\prime}, h_{i}\right)^{-1} \\
& =v\left(h_{i}\right)^{-1} v\left(g_{i}\right)^{-1} v\left(h_{i}\right) c\left(h_{i}^{\prime}, h_{i}\right) v\left(h_{i}\right)^{-1} r v\left(g_{i}\right) v\left(h_{i}\right) c\left(h_{i}^{\prime}, h_{i}\right)^{-1}
\end{aligned}
$$

where $r \in R$, which gives the result.
Then we have

$$
\begin{aligned}
\bar{d}_{i}^{h_{i}}\left(g_{i}, g_{i}^{\prime}\right) \bar{d}_{i}^{h_{i}^{\prime} h_{i}}\left(g_{i}, g_{i}^{\prime}\right)^{-1} & =\left[v\left(g_{i}\right)^{v\left(h_{i}\right)}, v\left(g_{i}^{\prime}\right)\right]\left[v\left(g_{i}^{\prime}\right), v\left(\dot{g}_{i}\right)^{v\left(h_{i}^{\prime} h_{i}\right)}\right][F, R] \\
& =\left[v\left(g_{i}^{\prime}\right),\left(v\left(g_{i}\right)^{v\left(h_{i}\right)}\right)^{-1} v\left(g_{i}\right)^{v\left(h_{i}^{\prime} h_{i}\right)}\right][F, R] \\
& =[F, R]
\end{aligned}
$$

by Lemma 1 , and thus, $\vec{d}_{i}^{h_{i}}\left(g_{i}, g_{i}^{\prime}\right)=d^{h_{i}^{\prime} h_{i}}\left(g_{i}, g_{i}^{\prime}\right)$. Further,

$$
\begin{aligned}
d_{i}^{h_{i} h_{i}^{\prime \prime}}\left(g_{i}, g_{i}^{\prime}\right) & =\left(\bar{d}_{i}^{h_{i}^{\prime \prime}-1 h_{i}-1}\left(g_{i}^{\prime}, g_{i}\right)\right)^{-1} \quad \text { by }(3) \\
& =\left(\bar{d}_{i}^{h_{i}-1}\right. \\
& \left.\left.=g_{i}^{\prime}, g_{i}\right)\right)^{-1} \\
& d_{i}^{h_{i}}\left(g_{i}, g_{i}^{\prime}\right) \quad \text { by }(3)
\end{aligned}
$$

This proves (4).
(5) is proved as in [3], p. 650, and (6) is proved as (3) and (4) above.

Section 3

Let A be the abelian group generated by

$$
\left\{\underline{b}\left(g_{i}, g_{i}^{\prime}\right), \underline{c}\left(h, h^{\prime}\right), \underline{d}_{i}^{h_{i}}\left(g_{i}, g_{i}^{\prime}\right), \underline{e}_{i}\left(h_{i}^{\prime}, g_{i}\right), \underline{f}_{i j}^{h}\left(g_{i}, g_{j}\right), i=1, \ldots, m, j \neq i\right\}
$$

with relations given by inserting $\underline{b}_{i}, \underline{c}, \underline{d}_{i}, \underline{e}_{i}, \underline{f}_{i j}$ for $\bar{b}_{i}, \bar{c}, \bar{d}_{i}, \bar{e}_{i}, \bar{f}_{i j}$ respectively in (1)-(6) of Theorem 2. The map $\Phi: A \rightarrow R /[F, R]$ given by $\Phi\left(\underline{b}_{i}\right)=\bar{b}_{i}, \Phi(\underline{c})=$ $\bar{c}, \Phi\left(\underline{d}_{i}\right)=\bar{d}_{i}, \Phi\left(\underline{e}_{i}\right)=\bar{e}_{i}, \Phi\left(\underline{f}_{i j}\right)=\bar{f}_{i j}, i=1, \ldots, m, j \neq i$, is an epimorphism. We now show that Φ is an isomorphism.

Definition. Let $z \in G^{(i)}$ for some $i=1, \ldots, m, h \in H$. We define z_{h} to be the $h^{-1}(i)$ th component of z. In other words, if $z=\prod_{j \in X_{i}} x_{j}^{w_{j}}, x_{j} \in G_{i}$, then $z_{h}=x_{h^{-1}(i)}$.

Lemma 2. Let $z \in G^{(i)}, h, h^{\prime} \in H$. Then $\left(z^{h}\right)_{h^{\prime}}=z_{h^{\prime} h^{-1}}$.
Proof. Let $z=\prod_{j \in X_{i}} x_{j}^{w_{j}}$. Then $z^{h}=\prod_{j \in X_{i}} x_{j}^{w_{j} h}=\prod_{j \in X_{i}} x_{j}^{w h^{-1}(j)}=$ $\Pi_{j \in X_{i}} x_{h(j)}^{w_{j}}$. Thus $\left(z^{h}\right)_{h^{\prime}}=x_{h\left(h^{\prime}\right)^{-1}(i)}=x_{\left(h^{\prime} h^{-1}\right)^{-1}(i)}=z_{h^{\prime} h^{-1}}$.

Let $x, y, z \in G^{*}, h \in H$. We define mappings $\sigma, \rho, \lambda: G^{*} \times G^{*} \rightarrow A$, and $\tau_{h}, \kappa_{h}: G^{*} \rightarrow A$ as follows:

$$
\begin{gathered}
\sigma(x, y)=\prod_{i=1}^{m} \prod_{h \in H} b_{i}\left(x_{h}^{(i)}, y_{h}^{(i)}\right), \\
\rho(x, y)=\prod_{i=1}^{m} \prod_{\substack{j, k \in X_{i} \\
j<k}} \underline{d}_{i}^{w_{k} w_{j}-1}\left(x_{w_{k}}^{(i)}, y_{w_{j}}^{(i)}\right), \\
\lambda(x, y)=\prod_{i<j} \prod_{\substack{k \in X_{i}, l \in X_{j}}} f_{i j}^{w_{i} w_{i}-1}\left(x_{w_{k}}^{(i)}, y_{w_{l}}^{(j)}\right), \\
\tau_{h}(z)=\prod_{i=1}^{m} \prod_{\substack{j, k \in X_{i}, j<k_{i} \\
h^{-1}(j)>h^{-1}(k)}} \underline{d}_{i}^{w_{j} w_{k}-1}\left(z_{w_{j}}^{(i)}, z_{w_{k}}^{(i)}\right), \\
\kappa_{h}(z)=\prod_{i=1}^{m} \prod_{j \in X_{i}} e_{i}\left(w_{h^{-1}(j)} h^{-1} w_{j}^{-1}, z_{w_{j}}^{(i)}\right),
\end{gathered}
$$

Lemma 3.

$$
\begin{aligned}
& \qquad \begin{array}{l}
\sigma(x, y) \sigma(x y, z)=\sigma(x, y z) \sigma(y, z), \quad \sigma\left(x^{h}, y^{h}\right)=\sigma(x, y), \\
\rho(x y, z)=\rho(x, z) \rho(y, z), \quad \rho(x, y z)=\rho(x, y) \rho(x, z), \\
\tau_{h}(x y) \tau_{h}(x)^{-1} \tau_{h}(y)^{-1}=\rho\left(x^{h}, y^{h}\right) \rho(x, y)^{-1}, \quad \tau_{h h^{\prime}}(x)=\tau_{h}(x) \tau_{h^{\prime}}\left(x^{h}\right), \\
\kappa_{h h^{\prime}}(x)=\kappa_{h}(x) \kappa_{h^{\prime}}\left(x^{h}\right),
\end{array} \\
& \lambda(x, y z)=\lambda(x, y) \lambda(x, z), \quad \lambda(x y, z)=\lambda(x, z) \lambda(y, z), \quad \lambda\left(x^{h}, y^{h}\right)=\lambda(x, y), \\
& \text { for all } x, y, z \in G^{*}, h \in H .
\end{aligned}
$$

Proof. These results are mostly proved as in Lemma 2 of [1]. We give two proofs.

$$
\begin{aligned}
& \kappa_{h h^{\prime}}(z)=\prod_{i=1}^{m} \prod_{j \in X_{i}} e_{i}\left(w_{k}\left(h h^{\prime}\right)^{-1} w_{j}^{-1}, z_{w_{j}}^{(i)}\right) \quad \text { where } k=\left(h h^{\prime}\right)^{-1}(j) \\
& =\prod_{i=1}^{m} \prod_{j \in X_{i}} e_{i}\left(w_{k}\left(h^{\prime}\right)^{-1} w_{l}^{-1} w_{l} h^{-1} w_{j}^{-1}, z_{w_{j}}^{(i)}\right) \quad \text { where } l=h^{-1}(j) \\
& =\prod_{i=1}^{m}\left(\prod_{j \in X_{i}} e_{i}\left(w_{k} h^{\prime-1} w_{l}^{-1}, z_{w_{j}}^{(i)}\right)\right)\left(\prod_{j \in X_{i}} e_{i}\left(w_{l} h^{-1} w_{j}^{-1}, z_{w_{j}}^{(i)}\right)\right) \\
& =\prod_{i=1}^{m}\left(\prod_{j \in X_{i}} e_{i}\left(w_{k} h^{\prime-1} w_{h^{\prime}(k)}^{-1},\left(z^{(i)}\right)_{w_{h^{\prime}(k)}}^{h}\right)\left(\prod_{j \in X_{i}} e_{i}\left(w_{l} h^{-1} w_{h(l)}^{-1}, z_{w_{h(l)}}^{(i)}\right)\right),\right. \\
& =\kappa_{h^{\prime}}\left(z^{h}\right) \kappa_{h}(z) . \\
& \tau_{h^{\prime}}\left(z^{h}\right)=\prod_{i=1}^{m} \prod_{\substack{j, k \in X_{i}, h^{\prime-1}(j)>h^{\prime}-1}} \underline{d}_{i}^{w_{j} w_{k}-1}\left(\left(z^{(i)}\right)_{w_{j}}^{h},\left(z^{(i)}\right)_{w_{k}}^{h}\right) \\
& =\prod_{i=1}^{m} \prod_{\substack{j, k \in X_{i}, j<k \\
h^{\prime}-1 \\
h^{\prime}-1 \\
j \\
h^{\prime}-1 \\
\hline}} \underline{d}_{i}^{w_{j} w_{k}-1}\left(z_{w_{h(j)}}^{(i)}, z_{w_{h(k}}^{(i)}\right)
\end{aligned}
$$

Thus

$$
\begin{aligned}
& \tau_{h^{\prime}}\left(z^{h}\right) \tau_{h}(z)
\end{aligned}
$$

$$
\begin{aligned}
& =\tau_{h h^{\prime}}(z)
\end{aligned}
$$

(using Equation (3) of Theorem 2).
We now define a mapping $\alpha: G \sim H \times G \sim H \rightarrow A$ as follows:

$$
\alpha\left(x h, x^{\prime} h^{\prime}\right)=\rho\left(x, x^{\prime h^{-1}}\right) \sigma\left(x, x^{\prime h^{-1}}\right) \lambda\left(x, x^{\prime h^{-1}}\right) \underline{c}\left(h, h^{\prime}\right) \tau_{h^{-1}}\left(x^{\prime}\right) \kappa_{h^{-1}}\left(x^{\prime}\right)
$$

where $x, x^{\prime} \in G^{*}, h, h^{\prime} \in H$. Lemma 3 implies that $\alpha(r, s) \alpha(r s, t)=\alpha(r, s t) \alpha(s, t)$, for all $r, s, t \in G \sim H$. Let K be the extension of A by $G \sim H$ with factor set α. Thus, there exists an injective mapping $\theta: G \sim H \rightarrow K$ such that $\theta(r) \theta(s)=$ $\theta(r s) \alpha(r, s)$ for all $r, s \in G \sim H$, and we may easily prove;

Lemma 4.

$$
\begin{gathered}
\theta\left(g_{i} g_{i}^{\prime}\right)^{-1} \theta\left(g_{i}\right) \theta\left(g_{i}^{\prime}\right)=\underline{b}_{i}\left(g_{i}, g_{i}^{\prime}\right), \\
{\left[\theta\left(g_{i}\right)^{\theta\left(h_{i}\right)}, \theta\left(g_{i}^{\prime}\right)\right]=\underline{d}_{i}^{h_{i}}\left(g_{i}, g_{i}^{\prime}\right),} \\
{\left[\theta\left(h_{i}^{\prime}\right)^{-1} \theta(h) \theta\left(h^{\prime}\right)=\underline{c}(h, h)^{\prime},\right.} \\
{\left[\theta\left(h_{i}^{\prime}\right), \theta\left(g_{i}\right)\right]=\underline{e}_{i}\left(h_{i}^{\prime}, g_{i}\right),} \\
=\underline{f}_{i j}^{h}\left(g_{i}, g_{j}\right)
\end{gathered}
$$

for all $i=1, \ldots, m, j \neq i$.

Thus, K is generated by $\left\{\theta\left(g_{i}\right), \theta(h) \mid g_{i} \in G_{i}, h \in H\right\}$, and as F is free, there exists an epimorphism $\chi: F \rightarrow K$ such that $\chi\left(v\left(g_{i}\right)\right)=\theta\left(g_{i}\right), g_{i} \in G_{i}, i=$ $1, \ldots, m, \chi(v(h))=\theta(h), h \in H$. Further, χ maps R onto A and vanishes on $[F, R]$, and thus χ gives rise to an epimorphism $\bar{\chi}: R /[F, R] \rightarrow A$ such that

$$
\begin{array}{cl}
\bar{\chi}\left(\bar{b}_{i}\left(g_{i}, g_{i}^{\prime}\right)\right)=\underline{b}_{i}\left(g_{i}, g_{i}^{\prime}\right), & \bar{\chi}\left(\bar{c}\left(h, h^{\prime}\right)\right)=\underline{c}\left(h, h^{\prime}\right), \\
\bar{\chi}\left(\bar{d}_{i}^{h_{i}}\left(g_{i}, g_{i}^{\prime}\right)\right)=\underline{d}_{i}^{h_{i}}\left(g_{i}, g_{i}^{\prime}\right), & \bar{\chi}\left(\bar{e}_{i}\left(h_{i}^{\prime}, g_{i}\right)\right)=\underline{e}_{i}\left(h_{i}^{\prime}, g_{i}\right), \\
\bar{\chi}\left(\bar{f}_{i j}^{h}\left(g_{i}, g_{j}\right)\right)=\underline{f}_{i j}^{h}\left(g_{i}, g_{j}\right),
\end{array}
$$

for all $i=1, \ldots, m, j \neq i$. Hence $\bar{\chi} \Phi$ is the identity map, and $A \cong R /[F, R]$.

Section 4

In order to determine the torsion subgroup of A, we consider the following groups:

$$
\begin{gathered}
B_{i}(G)=\left\langle\underline{b}_{i}\left(g_{i}, g_{i}^{\prime}\right)\right\rangle, i=1, \ldots, m, \quad C(H)=\left\langle\underline{c}\left(h, h^{\prime}\right)\right\rangle \\
D_{i}(G, H)=\left\langle\underline{d}_{i}^{h_{i}}\left(g_{i}, g_{i}^{\prime}\right)\right\rangle, i=1, \ldots, m, \quad E_{i}(G, H)=\left\langle\underline{e}_{i}\left(h_{i}^{\prime}, g_{i}\right)\right\rangle, i=1, \ldots, m \\
F(G, H)=\left\langle\underline{f}_{i j}^{h}\left(g_{i}, g_{j}\right), i=1, \ldots, m, j \neq i\right\rangle
\end{gathered}
$$

Then $A \cong\left(\mathrm{X}_{i=1}^{m}\left(B_{i}(G) \times D_{i}(G, H) \times E_{i}(G, H)\right)\right) \times C(H) \times F(G, H)$.
If we denote the torsion subgroup of a group J by $\operatorname{Tor}(J)$, then $\operatorname{Tor}\left(B_{i}(G)\right) \cong$ $H^{2}\left(G ; C^{*}\right), i=1, \ldots, m$, and $\operatorname{Tor}(C(H))=H^{2}\left(H ; C^{*}\right)$. (See [3, p. 652.]) $E_{i}(G, H) \cong G \otimes W_{i}(H)$ (see [3, p. 650]) where \otimes denotes the tensor product of groups, and is a finite group. Thus $\operatorname{Tor}\left(E_{i}(G, H)\right)=G \otimes W_{i}(H)$. Let $F_{i j}=\left\langle f_{i j}^{h}\left(g_{i}, g_{j}\right) \mid i \neq j\right\rangle$. Then $F_{j i}=F_{i j}(j \neq i)$, and if $p_{i j}$ is the number of $\left(W_{i}, W_{j}\right)$ double cosets in $H, F_{i j} \cong X^{p_{i j}}(G \otimes G)$ (see [3, p. 650]) and hence, $F(G, H) \cong X^{q}(G \otimes G)$, where $q=\sum_{i<j} p_{i j}$. Finally we consider $D_{i}(G, H)$. Let a_{i} be the number of nontrivial, self inverse (W_{i}, W_{i}) double cosets in H, and let $2 b_{i}$ be the number of (W_{i}, W_{i}) double cosets which are not self-inverse. If $T(G)$ is the subgroup of $G \otimes G$ generated by elements of the form

$$
\left(g \otimes g^{\prime}\right)\left(g^{\prime} \otimes g\right), \quad g, g^{\prime} \in G
$$

then $D_{i}(G, H)=\mathrm{X}^{a_{i}}(G \otimes G) / T(G) \mathrm{X}^{b_{i}}(G \otimes G)$ (argument as in [1, p. 119]). The following result enables us to determine $D_{i}(G, H)$ more explicitly.

Lemma 5. Let G / G^{\prime} (derived factor) $\cong C_{r_{1}} \times C_{r_{2}} \times \cdots \times C_{r_{t}}$ where $C_{r_{j}}$ is the cyclic group of order r_{j} generated by $x_{j}, j=1, \ldots, t .\left(r_{1}, r_{2}, \ldots, r_{t}\right.$ are called the invariants of G / G^{\prime}.) Then:
(i) $G \otimes G=\mathrm{X}_{i, j=1}^{t} C_{\left(r_{i}, r_{j}\right)}$ where $C_{\left(r_{i}, r_{j}\right)}$ is generated by $x_{i} \otimes x_{j}$.
(ii) $(G \otimes G) / T(G) \cong \mathrm{X}_{i<j} C_{\left(r_{i}, r_{j}\right)} X^{s} C_{2}$ where s is the number of even r_{i}, $i=1, \ldots, t$.

Proof. (i) See [3, p. 649].
(ii) Let $J_{i j}(i<j)$ be the subgroup of $C_{\left(r_{i}, r_{j}\right)} \times C_{\left(r_{j}, r_{i}\right)}$ generated by
$\left(x_{i} \otimes x_{j}, x_{j} \otimes x_{i}\right)$, and let J_{i} be the subgroup of $C_{\left(r_{i}, r_{i}\right)}$ generated by $\left(x_{i} \otimes x_{i}\right)^{2}$, $i=1, \ldots, t$. Then

$$
T(G) \cong X_{i=1}^{t} J_{i} X_{j<k} J_{j k}
$$

and the result now follows since $\left(C_{\left(r_{i}, r_{j}\right)} \times C_{\left(r_{j}, r_{i}\right)}\right) / J_{i j} \cong C_{\left(r_{i}, r_{i}\right)}$, and $C_{\left(r_{i}, r_{i}\right)} / J_{i} \cong\{1\}$ if r_{i} is odd, and $\cong C_{2}$ if r_{i} is even.

Since $G \otimes G$ is a finite group, $F(G, H)$ and $X_{i=1}^{m} D_{i}(G, H)$ are both torsion groups and we have our main result:

Theorem 3. Let the notation be as above. Then

$$
\begin{aligned}
H^{2}\left(G \simeq H ; C^{*}\right) & \cong H^{2}\left(H ; C^{*}\right) \\
& \times\left(X_{i=1}^{m}\left(H^{2}\left(G ; C^{*}\right) \times D_{i}(G, H) \times\left(G \otimes W_{i}(H)\right)\right) \stackrel{q}{X}(G \otimes G)\right)
\end{aligned}
$$

Applications

(i) The regular or complete wreath product $G{ }_{r} H(G, H$ arbitrary finite groups), is defined to be the set $\{(f, h) \mid f: H \rightarrow G, h \in H\}$, together with the product

$$
(f, h)\left(f^{\prime}, h^{\prime}\right)=\left(f f_{h}^{\prime}, h h^{\prime}\right), \quad \text { where } f_{h}^{\prime}\left(h^{\prime \prime}\right)=f^{\prime}\left(h^{\prime \prime} h\right)
$$

for all $h, h^{\prime \prime} \in H$. (See [3, p. 95].) Let $h \in H$. We define $h^{+}: H \rightarrow H$ by $\left(h^{+}\right)\left(h^{\prime}\right)=h^{\prime} h^{-1}$ for all $h^{\prime} \in H$. Then h^{+}permutes the elements of H, and $+: H \rightarrow \operatorname{Sym}_{H}$ is a monomorphism. Routine checking gives the following result.

Lemma 6. $G 乙_{r} H \cong G \simeq H^{+}$where H^{+}is now thought of as a subgroup of Sym_{H}.

We can now derive Blackburn's result [1, Theorem 1]. \boldsymbol{H}^{+}is a transitive subgroup of Sym_{H}, and thus $m=1$. $W_{1}\left(H^{+}\right)=\left\{h^{+} \mid h^{+}(1)=1\right\} \cong\{1\}$. Hence $G \otimes W_{1}\left(H^{+}\right) \cong\{1\}$, and $D_{1}(G, H)$ reduces to Blackburn's group $C(H ; G)$.
(ii) $G 乙\{1\} \cong X^{n} G$, where $\{1\}$ represents the identity subgroup of S_{n}. In this case, $m=n$, and

$$
D_{i}(G,\{1\}) \cong G \otimes W_{i}(\{1\}) \cong\{1\}, \quad i=1, \ldots, n
$$

and thus $H^{2}\left(\mathrm{X}^{n} G ; C^{*}\right) \cong \mathrm{X}^{n} H^{2}\left(G ; C^{*}\right) \mathrm{X}_{i-1}^{n(n-1) / 2}(G \otimes G)$, which is a simple generalization of the well-known result on the Schur multiplier of a direct product. (See [3, p. 650].)
(iii) Before proceeding further, we list some well-known properties of the groups C_{n}, S_{n}, and A_{n}. Proofs of those results which are not immediate may be found in [6], [7], and [8].

Lemma 7.

$$
\begin{align*}
S_{n} / S_{n}^{\prime} \cong C_{2} \quad \text { if } n \geq 2 \tag{i}\\
\cong\{1\} \quad \text { if } n=1
\end{align*}
$$

$$
\begin{align*}
A_{n} / A_{n}^{\prime} & \cong C_{3} \quad \text { if } n=3,4 \tag{ii}\\
& \cong\{1\} \quad \text { if } n \neq 3,4 \tag{iii}
\end{align*}
$$

Lemma 8. Let $n>1$.
(i) S_{n} is transitive on $\{1, \ldots, n\}$, and $W_{1}\left(S_{n}\right)$ is the symmetric group on $\{2, \ldots, n\}$.
(ii) $G \otimes W_{1}\left(S_{n}\right) \cong X^{s} C_{2}$ if $n>2$ where s is the number of even invariants of G / G^{\prime} and $G \otimes W_{1}\left(S_{2}\right) \cong\{1\}$.
(iii) There is precisely one nontrivial, and thus self inverse, $\left(W_{1}\left(S_{n}\right), W_{1}\left(S_{n}\right)\right)$ double coset in S_{n}.

Lemma 9. Let $n>2$.
(i) A_{n} is transitive on $\{1, \ldots, n\}$ and $W_{1}\left(A_{n}\right)$ is the alternating group on $\{2, \ldots, n\}$.

$$
\begin{align*}
G \otimes W_{1}\left(A_{n}\right) & \cong X^{t} C_{3} \quad \text { if } n=4,5 \tag{ii}\\
& \cong\{1\} \quad \text { if } n \neq 4,5
\end{align*}
$$

where t is the number of invariants of $G / G^{\prime} \equiv 0(\bmod 3)$.
(iii) If $n \geq 4$, there is one nontrivial, and thus self inverse, $\left(W_{1}\left(A_{n}\right), W_{1}\left(A_{n}\right)\right)$ double coset in A_{n}. If $n=3$, there are two nontrivial $\left(W_{1}\left(A_{3}\right), W_{1}\left(A_{3}\right)\right)$ double cosets in A_{3} which are inverses of each other.

Write

$$
U(G, H)={\underset{i}{i=1}}_{m}^{m} D_{i}(G, H) X_{i=1}^{m} G \otimes W_{i}(H) \stackrel{q}{X} G \otimes G
$$

We may now determine $H^{2}\left(G \simeq H ; C^{*}\right) \quad\left(G=S_{n}, C_{n}, A_{n}, H=S_{n}, A_{n}\right)$ by determining $U(G, H)$ in each case, and then applying Theorem 3 and Lemma 7. We firstly consider the trivial cases.

Lemma 10.
(i) $U\left(G, S_{1}\right) \cong U\left(G, A_{1}\right) \cong U\left(S_{1}, H\right) \cong U\left(A_{1}, H\right) \cong U\left(A_{2}, H\right) \cong\{1\}$.
(ii) $U\left(G, A_{2}\right) \cong G \otimes G$.

Proof. $S_{1} \cong A_{1} \cong A_{2} \cong\{1\}$, and (i) follows from Lemma 5 and the fact that $\{1\} \otimes J \cong J \otimes\{1\} \cong\{1\}$ for all finite groups J. To prove (ii), we simply note that A_{2} has two orbits on $\{1,2\}$.

Henceforth, we will only consider S_{n} for $n \geq 2$, and A_{n} for $n \geq 3$.
Theorem 4. $U\left(C_{l}, S_{n}\right) \cong \mathrm{X}^{r} C_{2}$ where

$$
\begin{aligned}
r & =2 \quad \text { if } l \text { is even, } n \geq 2 \\
& =1 \quad \text { if } l \text { is even, } n=2 \\
& =0 \quad \text { otherwise. }
\end{aligned}
$$

Proof.
$D\left(C_{l}, S_{n}\right) \cong C_{l} \otimes C_{l} / T\left(C_{l}\right)($ by Lemma $8(\mathrm{iii})) \cong C_{2} \quad$ if l is even, $\cong\{1\} \quad$ if l is odd
(by Lemma 5 (ii))
If $n>2$,

$$
\begin{aligned}
C_{l} \otimes W_{1}\left(S_{n}\right) & \cong C_{2} \quad \text { if } l \text { is even } \\
& \cong\{1\} \quad \text { if } l \text { is odd } \quad \text { (by Lemma } 8(\mathrm{ii}) \text {). } \\
C_{l} \otimes W_{1}\left(S_{2}\right) & \cong\{1\} .
\end{aligned}
$$

Note. See [2] for an alternative derivation of $H^{2}\left(C_{l} \simeq S_{n} ; C^{*}\right)$.
Theorem 5. $U\left(S_{l}, S_{n}\right) \cong X^{r} C_{2}$ where $r=2$ if $n>2$, and $r=1$ if $n=2$.
Proof.

$$
\begin{array}{rlrl}
D_{1}\left(S_{l}, S_{n}\right) & \cong S_{l} \otimes S_{l} / T\left(S_{l}\right) & & \text { (by Lemma } 8 \text { (iii)). } \\
& \cong C_{2} & \text { (by Lemmas } 5 \text { (ii) and } 7 \text { (i)). } \\
S_{l} \otimes W_{1}\left(S_{n}\right) & \cong C_{2} \quad \text { if } n>2, \\
& \cong\{1\} \quad \text { if } n=2 \quad \text { (by Lemmas } 8 \text { (ii) and } 7 \text { (i)). }
\end{array}
$$

Theorem 6. $U\left(A_{l}, S_{n}\right) \cong\{1\}$.
Proof.

$$
\begin{aligned}
D_{1}\left(A_{l}, S_{n}\right) & \cong A_{l} \otimes A_{l} / T\left(A_{l}\right) \\
& \cong\{1\} \quad(\text { by Lemmas } 7(\text { ii) and } 5(\mathrm{ii})) \\
A_{l} \otimes W_{1}\left(S_{n}\right) & \cong\{1\} \quad(\text { by Lemmas } 7(\text { ii) and } 8(\mathrm{ii}))
\end{aligned}
$$

Theorem 7.

$$
\begin{array}{rlrl}
U\left(C_{l}, A_{3}\right) \cong C_{l} \\
U\left(C_{l}, A_{4}\right) \cong U\left(C_{l}, A_{5}\right) & \cong C_{2} \times C_{3} & & \text { if } l \equiv 0(\bmod 6) \\
& \cong C_{3} & & \text { if } l \equiv 3(\bmod 6) \\
& \cong C_{2} & & \text { if } l \equiv 2,4(\bmod 6) \\
& \cong\{1\} & & \text { if } l \equiv 1,5(\bmod 6) . \\
U\left(C_{l}, A_{n}\right) \cong C_{2} & \text { if } n>5, l \text { even, } & & \\
& \cong\{1\} \quad \text { if } n>5, l \text { odd. } & &
\end{array}
$$

Proof. $D_{1}\left(C_{l}, A_{3}\right) \cong C_{l} \otimes C_{l}$ (by Lemma 9 (iii) $\cong C_{l}$ (by Lemma 5 (i)). If $n>3$,
$D_{1}\left(C_{l}, A_{n}\right) \cong C_{l} \otimes C_{l} / T\left(C_{l}\right)($ by Lemma $9($ iii $)) \cong C_{2} \quad$ if l is even,
$\cong\{1\} \quad$ if l is odd
$\quad \quad($ by Lemma 5 (ii))

$$
C_{l} \otimes W_{1}\left(A_{n}\right) \cong C_{3} \quad \text { if } 3 \mid l, n=4,5
$$

$$
\cong\{1\} \text { otherwise (by Lemma } 9 \text { (ii)). }
$$

Theorem 8. $U\left(S_{l}, A_{n}\right) \cong C_{2}$.
Proof. $\quad D_{1}\left(S_{l}, A_{3}\right) \cong S_{l} \otimes S_{l}$ (by Lemmas 9 (iii) and 5 (i)) $\cong C_{2}$ (by Lemma 7 (i)). If $n>3, D_{1}\left(S_{l}, A_{n}\right) \cong S_{l} \otimes S_{l} / T\left(S_{l}\right)$ (by Lemmas 9 (iii) and 5 (ii)) \cong C_{2} (by Lemma 7 (i)). $S_{l} \otimes W_{1}\left(A_{n}\right) \cong\{1\}$ for all l, n (by Lemma 9 (ii)).

Theorem 9.

$$
\begin{aligned}
U\left(A_{l}, A_{n}\right) & \cong C_{3} \quad \text { if } l=3,4, n=3,4,5 \\
& \cong\{1\} \quad \text { otherwise } .
\end{aligned}
$$

Proof.

$$
\begin{aligned}
D_{1}\left(A_{1}, A_{3}\right) \cong A_{1} \otimes A_{1}(\text { by Lemma } 9(\text { iii })) & \cong C_{3} \quad \text { if } l=3,4 \\
& \cong\{1\} \quad \text { if } l \neq 3,4 \\
& \quad(\text { by } \operatorname{Lemma} 7(\text { ii) }))
\end{aligned}
$$

If $n>3, D_{1}\left(A_{l}, A_{n}\right) \cong A_{l} \otimes A_{l} / T\left(A_{l}\right) \cong\{1\}$ (by Lemmas 5 (ii) and 7 (ii)).

$$
\begin{aligned}
A_{l} \otimes W_{1}\left(A_{n}\right) & \cong C_{3} \quad \text { if } l=3,4, n=4,5 \\
& \cong\{1\} \quad \text { otherwise } \quad \text { (by Lemmas } 9 \text { (ii) and } 7(\text { ii)). }
\end{aligned}
$$

References

1. N. Blackburn, Some homology groups of wreath products, Illinois J. Math., vol. 16 (1972), pp. 116-129.
2. J. W. Davies and A. O. Morris, The Schur multiplier of the generalized symmetric group, J. London Math. Soc. (2), vol. 8 (1974), pp. 615-620.
3. B. Huppert, Endliche Gruppen, Springer Verlag, New York, 1967.
4. A. Kerber, Representations of permutation groups, Lecture notes in mathematics, vol. 240, Springer Verlag, New York, 1971.
5. H. Neumann, Varieties of groups, Springer Verlag, New York, 1967.
6. D. S. Passman, Permutation groups, W. A. Benjamin, Reading, Mass., 1968.
7. I. Schur, Über die Darstellung der endlichen Gruppen durch gebrochene lineare Substitutionen, J. Math., vol. 127 (1904), pp. 20-50.
8. - UÜber die Darstellung der symmetrischen und alternienden Gruppen durch gebrochene lineare Substitutionen, J. Math., vol. 139 (1911), pp. 155-250.

University College of Wales
Aberystwyth, Wales

