ON THE SCHUR MULTIPLIER OF A WREATH PRODUCT

BY

E. W. Read

Introduction

This work is a generalization of a paper by N. Blackburn [1] on the Schur multiplier of the wreath product of two finite groups G and H. This wreath product is the group called the *complete* or *unrestricted* wreath product by H. Neumann [5], and the *regular* wreath product by Huppert [3]. We will consider wreath products as defined by Kerber [4] and Huppert, and the notation $G \subset H$ will always be taken to mean a group defined in this way. The regular wreath product of G and H will be denoted by $G \subset H$.

Our proofs sometimes follow closely along the lines of those of [1], and where the argument is almost identical, we have omitted the details. To show that our work is in fact a true generalization of Blackburn's work, we note that $G \searrow_r H \cong G \bigcirc H^+$, where H^+ is a permutation group on the elements of H which is itself isomorphic to H; indeed, we are able to recover Blackburn's result as a corollary to our main theorem (Theorem 3). We also apply our results to determine the multipliers of the groups $C_l \supseteq S_n$, $C_l \supseteq A_n$, $S_l \supseteq S_n$, $S_l \supseteq A_n$, $A_l \supseteq S_n$, $A_l \supseteq A_n$, where C_l is the cyclic group of order l, and S_l and A_l are respectively the symmetric and alternating groups on l symbols.

Section 1

Let G be a finite group, H a permutation group on the set $X = \{1, \ldots, n\}$. We define $G \subset H$ to be the set $\{(f, h) | f: X \to G, h \in H\}$, together with the product $(f, h)(f', h') = (ff'_h, hh')$, where $f'_h(i) = f'(h^{-1}(i))$ for all $i \in X$. This makes $G \subset H$ into a group with identity $(e, 1_H)$, called the wreath product of G with H, where $e(i) = 1_G$ for all $i \in X$. (See [4, p. 24].) Let $G^* = \{(f, 1_H) | f: X \to G\}$. Then

$$G^* = \bigvee_{i=1}^n G_i \lhd G \checkmark H \quad \text{where } G_i = \{(f, 1_H) \mid f(j) = 1_G \text{ for all } j \neq i\} \cong G.$$

If $H^* = \{(e, h) \mid h \in H\} \cong H$, then $G^* \cap H^* = \{(e, 1_H)\}$, and $G \subset H$ is the semidirect product of G^* and H^* . Thus $|G \subset H| = |G|^n |H|$. Henceforth, we will identify H^* with H.

Let $\{X_i \mid i = 1, ..., m\}$ be the orbits of H on X, and for simplicity of notation, we assume that $i \in X_i$, i = 1, ..., m. We define $W_i(H) = \{h \in H \mid h(i) =$

Received April 1, 1975.

i}, i = 1, ..., m. (We will merely write W_i when no confusion arises over the group H in question.) Then for all i = 1, ..., m, there exist $\{w_j \mid j \in X_i\}$ such that $w_j(j) = i$ if $j \in X_i$, and $H = \bigcup_{j \in X_i} W_i w_j$, i = 1, ..., m. From now on, we will always assume that

$$\{w_i \mid j \in X_i, i = 1, \ldots, m\}$$

is a fixed set satisfying these conditions with $w_i = 1$ for all i = 1, ..., m, and thus if $j \in X_i$ and $h \in H$ then

$$W_i W_{h^{-1}(j)} = W_i(w_j h)$$
 and $G_j = G_i^{w_j} = w_j^{-1} G_i w_j$.

If $G^{(i)} = X_{j \in X_i} G_j$, then $G^* = X_{i=1}^m G^{(i)}$, and each $x \in G^*$ may be written (uniquely) as a product $x = \prod_{i=1}^m x^{(i)}$, $x^{(i)} \in G^{(i)}$. Further, each $x^{(i)} \in G^{(i)}$, i = 1, ..., m, may be expressed in the form $x^{(i)} = \prod_{j \in X_i} x_j^{w_j}$, where each x_j , $j \in X_i$ is an uniquely defined element of G_i called the *j*th component of $x^{(i)}$. At this stage, it is convenient to introduce some standard notation which will often be used without further reference. h, h', h'' will denote arbitrary elements of H, h_i an element of $H \setminus W_i, h'_i, h''_i$ elements of W_i , and g_i, g'_i, g''_i elements of G_i , i = 1, ..., m.

We now derive a set of generators and relations for $G \curvearrowright H$.

THEOREM 1. Let $\{v(h) \mid h \in H\}$, $\{v(g_i) \mid g_i \in G_i\}$ be sets in 1-1 correspondence with H and G_i , i = 1, ..., m, respectively, and let F be the free group generated by $\{v(h), v(g_i)\}$, with $v(1_H) = v(1_{G_i}) = 1$, i = 1, ..., m. If R is the normal closure in F of the elements

$$b_{i}(g_{i}, g_{i}') = v(g_{i}g_{i}')^{-1}v(g_{i})v(g_{i}'), \qquad c(h, h') = v(hh')^{-1}v(h)v(h')$$

$$d_{i}^{h_{i}}(g_{i}, g_{i}') = [v(g_{i})^{v(h_{i})}, v(g_{i}')], \qquad e_{i}(h_{i}', g_{i}) = [v(h_{i}'), v(g_{i})]$$

$$f_{ij}^{h}(g_{i}, g_{j}) = [v(g_{i})^{v(h)}, v(g_{i})], \quad j \neq i, i = 1, ..., m,$$

then $F/R \cong G \mathcal{N}H$.

Proof. From the above work, it is easy to see that $G \cap H$ is a homomorphic image of F/R. For $h \in H$, $g_i \in G_i$, $j \in X_i$, i = 1, ..., m, we define

$$u_i(g_i) = v(g_i)^{v(w_j)}R, \quad u(h) = v(h)R.$$

Then any element of F/R may be expressed as a product $\prod_{j=1}^{n} u_j(g_i)u(h)$, where $h \in H$ and $g_i \in G_i$ whenever $j \in X_i$, and thus $|F/R| \leq |G|^n |H|$.

Section 2

Let F, R be as above. We now consider the group R/[F, R]; the Schur multiplier of $G \sim H$ (denoted by $H^2(G \sim H; C^*)$) is then isomorphic to the torsion subgroup of R/[F, R]. (See [3, p. 631].)

We shall use \bar{r} to denote the left coset of [R, F] containing $r \in R$. Thus R/[F, R] is generated by $\bar{b}_i(g_i, g'_i), \bar{c}(h, h'), \bar{d}_i^{h_i}(g_i, g'_i), \bar{e}_i(h'_i, g_i), \bar{f}_i^{h_j}(g_i, g_j), j \neq i$.

THEOREM 2. These elements satisfy the following relations:

(1)
$$\bar{b}_i(g_i, 1) = \bar{b}_i(1, g_i) = 1$$
, $\bar{b}_i(g_ig'_i, g''_i)\bar{b}_i(g_i, g'_i) = \bar{b}_i(g'_i, g''_i)\bar{b}_i(g_i, g'_ig''_i)$,

(2)
$$\bar{c}(h, 1) = \bar{c}(1, h) = 1, \ \bar{c}(hh', h'')\bar{c}(h, h') = \bar{c}(h', h'')\bar{c}(h, h'h''),$$

(3)
$$\overline{d}_{i}^{h_{i}}(g_{i}g_{i}',g_{i}'') = \overline{d}_{i}^{h_{i}}(g_{i},g_{i}'')\overline{d}_{i}^{h_{i}}(g_{i}',g_{i}''), \quad \overline{d}_{i}^{h_{i}}(g_{i},g_{i}'g_{i}'') = \overline{d}_{i}^{h_{i}}(g_{i},g_{i}')\overline{d}_{i}^{h_{i}}(g_{i},g_{i}''), \\ \overline{d}_{i}^{h_{i}}(g_{i},g_{i}')\overline{d}_{i}^{h_{i}}(g_{i},g_{i}'') = \overline{d}_{i}^{h_{i}}(g_{i},g_{i}')\overline{d}_{i}^{h_{i}}(g_{i},g_{i}''),$$

$$d_i^{h_i}(g_i, g'_i)d^{h_i-1}(g'_i, g_i) = 1,$$

(4)
$$\vec{d}_{i}^{h_{i}'h_{i}h_{i}''}(g_{i}, g_{i}') = \vec{d}_{i}^{h_{i}}(g_{i}, g_{i}')$$

(5)
$$\bar{e}_i(h'_ih''_i, g_i) = \bar{e}_i(h'_i, g_i)\bar{e}_i(h''_i, g_i), \quad \bar{e}_i(h'_i, g_ig'_i) = \bar{e}_i(h'_i, g_i)\bar{e}_i(h'_i, g'_i)$$

(6)
$$\begin{array}{l}
\bar{f}_{ij}^{h}(g_{i},g_{j}g_{j}') = \bar{f}_{ij}^{h}(g_{i},g_{j})\bar{f}_{ij}^{h}(g_{i},g_{j}'), \quad \bar{f}_{ij}^{h}(g_{i}g_{i}',g_{j}) = \bar{f}_{ij}^{h}(g_{i},g_{j})\bar{f}_{ij}^{h}(g_{i}',g_{j}) \\
\bar{f}_{ij}^{h}(g_{i},g_{j})\bar{f}_{ji}^{h^{-1}}(g_{j},g_{i}) = 1, \quad \bar{f}_{ij}^{hi'hhj'}(g_{i},g_{j}) = \bar{f}_{ij}^{h}(g_{i},g_{j}),
\end{array}$$

for all $i = 1, \ldots, m, j \neq i$.

Proof. (1), (2), (3) are proved in a similar manner to (7)–(10) in [1, p. 120]. For (4) we need the following result:

LEMMA 1.
$$(v(g_i)^{v(h_i)})^{-1}v(g_i)^{v(h_i'h_i)} \in R, i = 1, ..., m.$$

Proof.
$$v(h'_ih_i) = v(h'_i)v(h_i)c(h'_i, h_i)^{-1}$$
, where $c(h'_i, h_i) \in R$, and thus,

$$(v(g_i)^{v(h_i)})^{-1}v(g_i)^{v(h_i'h_i)}$$

= $v(h_i)^{-1}v(g_i)^{-1}v(h_i)c(h'_i, h_i)v(h_i)^{-1}v(h'_i)^{-1}v(g_i)v(h'_i)v(h_i)c(h'_i, h_i)^{-1}$
= $v(h_i)^{-1}v(g_i)^{-1}v(h_i)c(h'_i, h_i)v(h_i)^{-1}rv(g_i)v(h_i)c(h'_i, h_i)^{-1}$

where $r \in R$, which gives the result.

Then we have

$$\begin{aligned} \bar{d}_{i}^{h_{i}}(g_{i}, g_{i}')\bar{d}_{i}^{h_{i}'h_{i}}(g_{i}, g_{i}')^{-1} &= \left[v(g_{i})^{v(h_{i})}, v(g_{i}')\right] \left[v(g_{i}'), v(g_{i})^{v(h_{i}'h_{i})}\right] \left[F, R\right] \\ &= \left[v(g_{i}'), (v(g_{i})^{v(h_{i})})^{-1} v(g_{i})^{v(h_{i}'h_{i})}\right] \left[F, R\right] \\ &= \left[F, R\right] \end{aligned}$$

by Lemma 1, and thus, $\overline{d}_{i}^{h_{i}}(g_{i}, g'_{i}) = \overline{d}^{h_{i}'h_{i}}(g_{i}, g'_{i})$. Further,

$$\begin{aligned} \overline{d}_{i}^{h_{i}h_{i}''}(g_{i}, g_{i}') &= (\overline{d}_{i}^{h_{i}''^{-1}h_{i}^{-1}}(g_{i}', g_{i}))^{-1} \quad \text{by (3),} \\ &= (\overline{d}_{i}^{h_{i}^{-1}}(g_{i}', g_{i}))^{-1} \\ &= \overline{d}_{i}^{h_{i}}(g_{i}, g_{i}') \quad \text{by (3).} \end{aligned}$$

This proves (4).

(5) is proved as in [3], p. 650, and (6) is proved as (3) and (4) above.

Section 3

Let A be the abelian group generated by

$$\{\underline{b}(g_i, g'_i), \underline{c}(h, h'), \underline{d}_i^{h_i}(g_i, g'_i), \underline{e}_i(h'_i, g_i), \underline{f}_{ij}^{h}(g_i, g_j), i = 1, \ldots, m, j \neq i\},\$$

with relations given by inserting \underline{b}_i , \underline{c} , \underline{d}_i , \underline{e}_i , \underline{f}_{ij} for \overline{b}_i , \overline{c} , \overline{d}_i , \overline{e}_i , \overline{f}_{ij} respectively in (1)-(6) of Theorem 2. The map $\Phi: A \to R/[F, R]$ given by $\Phi(\underline{b}_i) = \overline{b}_i$, $\Phi(\underline{c}) = \overline{c}$, $\Phi(\underline{d}_i) = \overline{d}_i$, $\Phi(\underline{e}_i) = \overline{e}_i$, $\Phi(f_{ij}) = \overline{f}_{ij}$, $i = 1, ..., m, j \neq i$, is an epimorphism. We now show that Φ is an isomorphism.

DEFINITION. Let $z \in G^{(i)}$ for some $i = 1, ..., m, h \in H$. We define z_h to be the $h^{-1}(i)$ th component of z. In other words, if $z = \prod_{j \in X_i} x_j^{w_j}, x_j \in G_i$, then $z_h = x_{h^{-1}(i)}$.

LEMMA 2. Let $z \in G^{(i)}$, $h, h' \in H$. Then $(z^h)_{h'} = z_{h'h^{-1}}$.

Proof. Let $z = \prod_{j \in X_i} x_j^{w_j}$. Then $z^h = \prod_{j \in X_i} x_j^{w_j h} = \prod_{j \in X_i} x_j^{w_j h} = \prod_{j \in X_i} x_j^{w_j h-1(j)} = \prod_{j \in X_i} x_{h(j)}^{w_j}$. Thus $(z^h)_{h'} = x_{h(h')^{-1}(i)} = x_{(h'h^{-1})^{-1}(i)} = z_{h'h^{-1}}$. Let $x, y, z \in G^*, h \in H$. We define mappings $\sigma, \rho, \lambda: G^* \times G^* \to A$, and

Let $x, y, z \in G^*$, $h \in H$. We define mappings σ , ρ , λ : $G^* \times G^* \to A$, and $\tau_h, \kappa_h: G^* \to A$ as follows:

$$\sigma(x, y) = \prod_{i=1}^{m} \prod_{h \in H} \underline{b}_{i}(x_{h}^{(i)}, y_{h}^{(i)}),$$

$$\rho(x, y) = \prod_{i=1}^{m} \prod_{\substack{j,k \in X_{i}, \\ j < k}} \underline{d}_{i}^{w_{k}w_{j}^{-1}}(x_{w_{k}}^{(i)}, y_{w_{j}}^{(i)}),$$

$$\lambda(x, y) = \prod_{i < j} \prod_{\substack{k \in X_{i}, \\ i \in X_{j}}} f_{ij}^{w_{k}w_{i}^{-1}}(x_{w_{k}}^{(i)}, y_{w_{l}}^{(j)}),$$

$$\tau_{h}(z) = \prod_{i=1}^{m} \prod_{\substack{j,k \in X_{i}, \\ j < k, \\ h^{-1}(j) > h^{-1}(k)}} \underline{d}_{i}^{w_{j}w_{k}^{-1}}(z_{w_{j}}^{(i)}, z_{w_{k}}^{(i)}),$$

$$\kappa_{h}(z) = \prod_{i=1}^{m} \prod_{j \in X_{i}} \underline{e}_{i}(w_{h^{-1}(j)}h^{-1}w_{j}^{-1}, z_{w_{j}}^{(i)}),$$

Lemma 3.

$$\sigma(x, y)\sigma(xy, z) = \sigma(x, yz)\sigma(y, z), \qquad \sigma(x^{h}, y^{h}) = \sigma(x, y),$$

$$\rho(xy, z) = \rho(x, z)\rho(y, z), \qquad \rho(x, yz) = \rho(x, y)\rho(x, z),$$

$$\tau_{h}(xy)\tau_{h}(x)^{-1}\tau_{h}(y)^{-1} = \rho(x^{h}, y^{h})\rho(x, y)^{-1}, \qquad \tau_{hh'}(x) = \tau_{h}(x)\tau_{h'}(x^{h}),$$

$$\kappa_{hh'}(x) = \kappa_{h}(x)\kappa_{h'}(x^{h}),$$

$$\begin{split} \lambda(x, yz) &= \lambda(x, y)\lambda(x, z), \qquad \lambda(xy, z) = \lambda(x, z)\lambda(y, z), \qquad \lambda(x^h, y^h) = \lambda(x, y), \\ for all x, y, z \in G^*, h \in H. \end{split}$$

Proof. These results are mostly proved as in Lemma 2 of [1]. We give two proofs.

$$\begin{split} \kappa_{hh'}(z) &= \prod_{i=1}^{m} \prod_{j \in X_{i}} \varrho_{i}(w_{k}(hh')^{-1}w_{j}^{-1}, z_{w_{j}}^{(i)}) \text{ where } k = (hh')^{-1}(j) \\ &= \prod_{i=1}^{m} \prod_{j \in X_{i}} \varrho_{i}(w_{k}(h')^{-1}w_{l}^{-1}w_{l}h^{-1}w_{j}^{-1}, z_{w_{j}}^{(i)}) \text{ where } l = h^{-1}(j) \\ &= \prod_{i=1}^{m} \left(\prod_{j \in X_{i}} \varrho_{i}(w_{k}h'^{-1}w_{l}^{-1}, z_{w_{j}}^{(i)}) \right) \left(\prod_{j \in X_{i}} \varrho_{i}(w_{l}h^{-1}w_{j}^{-1}, z_{w_{j}}^{(i)}) \right) \\ &= \prod_{i=1}^{m} \left(\prod_{j \in X_{i}} \varrho_{i}(w_{k}h'^{-1}w_{h'(k)}^{-1}, (z^{(i)})_{w_{h'(k)}}^{h}) \right) \left(\prod_{j \in X_{i}} \varrho_{i}(w_{l}h^{-1}w_{h(l)}^{-1}, z_{w_{h(l)}}^{(i)}) \right) \\ &= \kappa_{h'}(z^{h})\kappa_{h}(z). \\ \tau_{h'}(z^{h}) &= \prod_{i=1}^{m} \prod_{\substack{j,k \in X_{i}, \\ h'^{-1}(j) > h'^{-1}(k)}} \underline{d}_{i}^{w_{j}w_{k}^{-1}}(z_{w_{h(j)}}^{(i)}, z_{w_{h(k)}}^{(i)}) \\ &= \prod_{i=1}^{m} \prod_{\substack{j,k \in X_{i}, \\ h'^{-1}(j) > h'^{-1}(k)}} \underline{d}_{i}^{w_{j}w_{k}^{-1}}(z_{w_{j}}^{(i)}, z_{w_{k}}^{(i)}) \\ &= \prod_{i=1}^{m} \prod_{\substack{j,k \in X_{i}, \\ (hh')^{-1}(j) > (h')^{-1}(k)}} \underline{d}_{i}^{w_{j}w_{k}^{-1}}(z_{w_{j}}^{(i)}, z_{w_{k}}^{(i)}) \\ &= \prod_{i=1}^{m} \prod_{\substack{j,k \in X_{i}, \\ (hh')^{-1}(j) > (h')^{-1}(k)}} \underline{d}_{i}^{w_{j}w_{k}^{-1}}(z_{w_{j}}^{(i)}, z_{w_{k}}^{(i)}) \\ &= \prod_{i=1}^{m} \prod_{\substack{j,k \in X_{i}, \\ (hh')^{-1}(j) > (h')^{-1}(k)}} \underline{d}_{i}^{w_{j}w_{k}^{-1}}(z_{w_{j}}^{(i)}, z_{w_{k}}^{(i)}) \\ &= \prod_{i=1}^{m} \prod_{\substack{j,k \in X_{i}, \\ (hh')^{-1}(j) > (h')^{-1}(k)}} \underline{d}_{i}^{w_{j}w_{k}^{-1}}(z_{w_{j}}^{(i)}, z_{w_{k}}^{(i)}) \\ &= \prod_{i=1}^{m} \prod_{\substack{j,k \in X_{i}, \\ (hh')^{-1}(j) > (h')^{-1}(k)}} \underline{d}_{i}^{w_{j}w_{k}^{-1}}(z_{w_{j}}^{(i)}, z_{w_{k}}^{(i)}) \\ &= \prod_{i=1}^{m} \prod_{\substack{j,k \in X_{i}, \\ (hh')^{-1}(j) > (h')^{-1}(k)}} \underline{d}_{i}^{w_{j}w_{k}^{-1}}(z_{w_{j}}^{(i)}, z_{w_{k}}^{(i)}) \\ &= \prod_{i=1}^{m} \prod_{\substack{j,k \in X_{i}, \\ (hh')^{-1}(j) > (h')^{-1}(k)}} \underline{d}_{i}^{w_{j}w_{k}^{-1}}(z_{w_{j}}^{(i)}, z_{w_{k}}^{(i)}) \\ &= \prod_{i=1}^{m} \prod_{\substack{j,k \in X_{i}, \\ (hh')^{-1}(j) > (h')^{-1}(k)}} \underline{d}_{i}^{w_{j}w_{k}^{-1}}(z_{w_{j}}^{(i)}, z_{w_{k}}^{(i)}) \\ &= \prod_{i=1}^{m} \prod_{\substack{j,k \in X_{i}, \\ (hh')^{-1}(j) > (h')^{-1}(k)}} \underline{d}_{i}^{w_{j}w_{k}^{-1}}(z_{w_{j}}^{(i)}, z_{w_{k}}^{(i)}) \\ &= \prod_{i=1}^{m} \prod_{$$

Thus

$$\begin{aligned} \tau_{h'}(z^{h})\tau_{h}(z) \\ &= \prod_{i=1}^{m} \left(\prod_{\substack{j,k \in X_{i}, \\ h^{-1}(j) < h^{-1}(k) \\ (hh')^{-1}(j) > (hh')^{-1}(k)}} \underline{d}_{i}^{w_{j}w_{k}^{-1}}(z_{w_{j}}^{(i)}, z_{w_{k}}^{(i)}) \right) \left(\prod_{\substack{j,k \in X_{i}, \\ j < k, \\ h^{-1}(j) > h^{-1}(k)}} \underline{d}_{i}^{w_{j}w_{k}^{-1}}(z_{w_{j}}^{(i)}, z_{w_{k}}^{(i)}) \right) \\ &= \tau_{hh'}(z) \end{aligned}$$

(using Equation (3) of Theorem 2).

We now define a mapping $\alpha: G \sim H \times G \sim H \rightarrow A$ as follows:

$$\alpha(xh, x'h') = \rho(x, x'^{h^{-1}})\sigma(x, x'^{h^{-1}})\lambda(x, x'^{h^{-1}})\underline{c}(h, h')\tau_{h^{-1}}(x')\kappa_{h^{-1}}(x')$$

where $x, x' \in G^*$, $h, h' \in H$. Lemma 3 implies that $\alpha(r, s)\alpha(rs, t) = \alpha(r, st)\alpha(s, t)$, for all $r, s, t \in G \subset H$. Let K be the extension of A by $G \subset H$ with factor set α . Thus, there exists an injective mapping $\theta: G \subset H \to K$ such that $\theta(r)\theta(s) = \theta(rs)\alpha(r, s)$ for all $r, s \in G \subset H$, and we may easily prove;

Lemma 4.

$$\begin{aligned} \theta(g_ig'_i)^{-1}\theta(g_i)\theta(g'_i) &= \underline{b}_i(g_i, g'_i), \qquad \theta(hh')^{-1}\theta(h)\theta(h') &= \underline{c}(h, h)', \\ \left[\theta(g_i)^{\theta(h_i)}, \theta(g'_i)\right] &= \underline{d}_i^{h_i}(g_i, g'_i), \qquad \left[\theta(h'_i), \theta(g_i)\right] &= \underline{e}_i(h'_i, g_i), \\ \left[\theta(g_i)^{\theta(h)}, \theta(g_j)\right] &= \underline{f}_i^{h_j}(g_i, g_j) \end{aligned}$$

for all $i = 1, \ldots, m, j \neq i$.

Thus, K is generated by $\{\theta(g_i), \theta(h) \mid g_i \in G_i, h \in H\}$, and as F is free, there exists an epimorphism $\chi: F \to K$ such that $\chi(v(g_i)) = \theta(g_i), g_i \in G_i, i =$ 1,..., m, $\chi(v(h)) = \theta(h), h \in H$. Further, χ maps R onto A and vanishes on [F, R], and thus χ gives rise to an epimorphism $\overline{\chi}: R/[F, R] \to A$ such that

$$\begin{split} \bar{\chi}(\bar{b}_{i}(g_{i}, g_{i}')) &= \underline{b}_{i}(g_{i}, g_{i}'), \qquad \bar{\chi}(\bar{c}(h, h')) = \underline{c}(h, h'), \\ \bar{\chi}(\bar{d}_{i}^{h_{i}}(g_{i}, g_{i}')) &= \underline{d}_{i}^{h_{i}}(g_{i}, g_{i}'), \qquad \bar{\chi}(\bar{e}_{i}(h_{i}', g_{i})) = \underline{e}_{i}(h_{i}', g_{i}), \\ \bar{\chi}(\bar{f}_{i}^{h_{i}}(g_{i}, g_{i})) &= f_{ij}^{h}(g_{i}, g_{j}), \end{split}$$

for all $i = 1, ..., m, j \neq i$. Hence $\bar{\chi}\Phi$ is the identity map, and $A \cong R/[F, R]$.

Section 4

In order to determine the torsion subgroup of A, we consider the following groups:

$$B_{i}(G) = \langle \underline{b}_{i}(g_{i}, g_{i}') \rangle, i = 1, \dots, m, \qquad C(H) = \langle \underline{c}(h, h') \rangle,$$
$$D_{i}(G, H) = \langle \underline{d}_{i}^{h_{i}}(g_{i}, g_{i}') \rangle, i = 1, \dots, m, \qquad E_{i}(G, H) = \langle \underline{e}_{i}(h_{i}', g_{i}) \rangle, i = 1, \dots, m,$$
$$F(G, H) = \langle f_{i}^{h_{i}}(g_{i}, g_{i}), i = 1, \dots, m, j \neq i \rangle.$$

Then $A \cong (X_{i=1}^m (B_i(G) \times D_i(G, H) \times E_i(G, H))) \times C(H) \times F(G, H).$

If we denote the torsion subgroup of a group J by Tor (J), then Tor $(B_i(G)) \cong$ $H^{2}(G; C^{*}), i = 1, ..., m$, and Tor $(C(H)) = H^{2}(H; C^{*})$. (See [3, p. 652.]) $E_i(G, H) \cong G \otimes W_i(H)$ (see [3, p. 650]) where \otimes denotes the tensor product of groups, and is a finite group. Thus Tor $(E_i(G, H)) = G \otimes W_i(H)$. Let $F_{ij} = \langle f_{ij}^h(g_i, g_j) | i \neq j \rangle$. Then $F_{ji} = F_{ij}$ $(j \neq i)$, and if p_{ij} is the number of (W_i, W_j) double cosets in $H, F_{ij} \cong X^{p_{ij}}$ $(G \otimes G)$ (see [3, p. 650]) and hence, $F(G, H) \cong X^q$ (G \otimes G), where $q = \sum_{i \le j} p_{ij}$. Finally we consider $D_i(G, H)$. Let a_i be the number of nontrivial, self inverse (W_i, W_i) double cosets in H, and let $2b_i$ be the number of (W_i, W_i) double cosets which are not self-inverse. If T(G) is the subgroup of $G \otimes G$ generated by elements of the form

$$(g \otimes g')(g' \otimes g), g, g' \in G,$$

then $D_i(G, H) = X^{a_i}(G \otimes G)/T(G) X^{b_i}(G \otimes G)$ (argument as in [1, p. 119]). The following result enables us to determine $D_i(G, H)$ more explicitly.

LEMMA 5. Let G/G' (derived factor) $\cong C_{r_1} \times C_{r_2} \times \cdots \times C_{r_t}$ where C_{r_j} is the cyclic group of order r_i generated by x_j , $j = 1, \ldots, t$. $(r_1, r_2, \ldots, r_t$ are called the invariants of G/G'.) Then:

(i) $G \otimes G = X_{i,j=1}^{t} C_{(r_i,r_j)}$ where $C_{(r_i,r_j)}$ is generated by $x_i \otimes x_j$. (ii) $(G \otimes G)/T(G) \cong X_{i < j} C_{(r_i,r_j)} X^s C_2$ where s is the number of even r_i , $i=1,\ldots,t$

Proof. (i) See [3, p. 649].

(ii) Let J_{ij} (i < j) be the subgroup of $C_{(r_i, r_j)} \times C_{(r_j, r_j)}$ generated by

 $(x_i \otimes x_j, x_j \otimes x_i)$, and let J_i be the subgroup of $C_{(r_i, r_i)}$ generated by $(x_i \otimes x_i)^2$, i = 1, ..., t. Then

$$T(G) \cong \sum_{i=1}^{t} J_i \sum_{j < k} J_{jk}$$

and the result now follows since $(C_{(r_i,r_j)} \times C_{(r_j,r_i)})/J_{ij} \cong C_{(r_i,r_i)}$, and $C_{(r_i,r_i)}/J_i \cong \{1\}$ if r_i is odd, and $\cong C_2$ if r_i is even.

Since $G \otimes G$ is a finite group, F(G, H) and $X_{i=1}^m D_i(G, H)$ are both torsion groups and we have our main result:

THEOREM 3. Let the notation be as above. Then

$$H^{2}(G \sim H; C^{*}) \cong H^{2}(H; C^{*})$$
$$\times \left(\bigvee_{i=1}^{m} \left(H^{2}(G; C^{*}) \times D_{i}(G, H) \times (G \otimes W_{i}(H)) \right) X^{q} (G \otimes G) \right)$$

Applications

(i) The regular or complete wreath product $G \to H(G, H \text{ arbitrary finite groups})$, is defined to be the set $\{(f, h) | f: H \to G, h \in H\}$, together with the product

$$(f, h)(f', h') = (ff'_h, hh'), \text{ where } f'_h(h'') = f'(h''h)$$

for all $h, h'' \in H$. (See [3, p. 95].) Let $h \in H$. We define $h^+: H \to H$ by $(h^+)(h') = h'h^{-1}$ for all $h' \in H$. Then h^+ permutes the elements of H, and $+: H \to \text{Sym}_H$ is a monomorphism. Routine checking gives the following result.

LEMMA 6. $G \searrow_r H \cong G \searrow H^+$ where H^+ is now thought of as a subgroup of Sym_H.

We can now derive Blackburn's result [1, Theorem 1]. H^+ is a transitive subgroup of Sym_H, and thus m = 1. $W_1(H^+) = \{h^+ \mid h^+(1) = 1\} \cong \{1\}$. Hence $G \otimes W_1(H^+) \cong \{1\}$, and $D_1(G, H)$ reduces to Blackburn's group C(H; G).

(ii) $G \subset \{1\} \cong X^n G$, where $\{1\}$ represents the identity subgroup of S_n . In this case, m = n, and

$$D_i(G, \{1\}) \cong G \otimes W_i(\{1\}) \cong \{1\}, i = 1, \ldots, n,$$

and thus $H^2(X^n G; C^*) \cong X^n H^2(G; C^*) X_{i-1}^{n(n-1)/2} (G \otimes G)$, which is a simple generalization of the well-known result on the Schur multiplier of a direct product. (See [3, p. 650].)

(iii) Before proceeding further, we list some well-known properties of the groups C_n , S_n , and A_n . Proofs of those results which are not immediate may be found in [6], [7], and [8].

 \cong {1} *if* n = 1.

 $= \{1\}$ if $n \leq 3$.

Lemma 7.

(i)
$$S_n/S'_n \cong C_2$$
 if $n \ge 2$,

(ii)
$$A_n/A'_n \cong C_3 \quad if \ n = 3, 4,$$
$$\cong \{1\} \quad if \ n \neq 3, 4.$$

(iii)
$$H^2(S_n; C^*) \cong C_2 \quad if n \ge 4,$$

(iv)
$$H^{2}(A_{n}; C^{*}) \cong C_{2}$$
 if $n \ge 4, n \ne 6, 7$,
 $\cong C_{6}$ if $n = 6, 7$,
 $\cong \{1\}$ if $n \le 3$.
(v) $H^{2}(C_{n}; C^{*}) \cong \{1\}$ for all n .

LEMMA 8. Let n > 1.

(i) S_n is transitive on $\{1, \ldots, n\}$, and $W_1(S_n)$ is the symmetric group on $\{2, \ldots, n\}$.

(ii) $G \otimes W_1(S_n) \cong X^s C_2$ if n > 2 where s is the number of even invariants of G/G' and $G \otimes W_1(S_2) \cong \{1\}$.

(iii) There is precisely one nontrivial, and thus self inverse, $(W_1(S_n), W_1(S_n))$ double coset in S_n .

LEMMA 9. Let n > 2.

(i) A_n is transitive on $\{1, \ldots, n\}$ and $W_1(A_n)$ is the alternating group on $\{2, \ldots, n\}$.

(ii)
$$G \otimes W_1(A_n) \cong \bigwedge^{\prime} C_3 \quad if n = 4, 5,$$
$$\cong \{1\} \quad if n \neq 4, 5$$

where t is the number of invariants of $G/G' \equiv 0 \pmod{3}$.

(iii) If $n \ge 4$, there is one nontrivial, and thus self inverse, $(W_1(A_n), W_1(A_n))$ double coset in A_n . If n = 3, there are two nontrivial $(W_1(A_3), W_1(A_3))$ double cosets in A_3 which are inverses of each other.

Write

$$U(G, H) = \sum_{i=1}^{m} D_i(G, H) \sum_{i=1}^{m} G \otimes W_i(H) \stackrel{q}{\times} G \otimes G.$$

We may now determine $H^2(G \sim H; C^*)$ $(G = S_n, C_n, A_n, H = S_n, A_n)$ by determining U(G, H) in each case, and then applying Theorem 3 and Lemma 7. We firstly consider the trivial cases.

Lemma 10.

(i)
$$U(G, S_1) \cong U(G, A_1) \cong U(S_1, H) \cong U(A_1, H) \cong U(A_2, H) \cong \{1\}.$$

(ii) $U(G, A_2) \cong G \otimes G.$

Proof. $S_1 \cong A_1 \cong A_2 \cong \{1\}$, and (i) follows from Lemma 5 and the fact that $\{1\} \otimes J \cong J \otimes \{1\} \cong \{1\}$ for all finite groups J. To prove (ii), we simply note that A_2 has two orbits on $\{1, 2\}$.

Henceforth, we will only consider S_n for $n \ge 2$, and A_n for $n \ge 3$.

THEOREM 4. $U(C_l, S_n) \cong X^r C_2$ where r = 2 if l is even, $n \ge 2$, = 1 if l is even, n = 2, = 0 otherwise.

Proof.

 $D(_{l}C_{l}, S_{n}) \cong C_{l} \otimes C_{l}/T(C_{l})$ (by Lemma 8 (iii)) $\cong C_{2}$ if *l* is even,

$$\cong \{1\} \text{ if } l \text{ is odd}$$
(by Lemma 5 (ii))

If n > 2,

 $C_l \otimes W_1(S_n) \cong C_2$ if *l* is even $\cong \{1\}$ if *l* is odd (by Lemma 8 (ii)). $C_l \otimes W_1(S_2) \cong \{1\}.$

Note. See [2] for an alternative derivation of $H^2(C_l \sim S_n; C^*)$.

THEOREM 5. $U(S_l, S_n) \cong X^r C_2$ where r = 2 if n > 2, and r = 1 if n = 2. Proof.

 $D_1(S_l, S_n) \cong S_l \otimes S_l/T(S_l) \quad \text{(by Lemma 8 (iii)).}$ $\cong C_2 \qquad \text{(by Lemmas 5 (ii) and 7 (i)).}$ $S_l \otimes W_1(S_n) \cong C_2 \quad \text{if } n > 2,$ $\cong \{1\} \quad \text{if } n = 2 \quad \text{(by Lemmas 8 (ii) and 7 (i)).}$

Theorem 6. $U(A_l, S_n) \cong \{1\}.$

Proof.

$$D_1(A_l, S_n) \cong A_l \otimes A_l/T(A_l)$$

$$\cong \{1\} \quad \text{(by Lemmas 7 (ii) and 5 (ii)).}$$

$$A_l \otimes W_1(S_n) \cong \{1\} \quad \text{(by Lemmas 7 (ii) and 8 (ii)).}$$

464

$$U(C_l, A_3) \cong C_l.$$

$$U(C_l, A_4) \cong U(C_l, A_5) \cong C_2 \times C_3 \quad if \ l \equiv 0 \pmod{6},$$

$$\cong C_3 \qquad if \ l \equiv 3 \pmod{6},$$

$$\cong C_2 \qquad if \ l \equiv 2, 4 \pmod{6},$$

$$\cong \{1\} \qquad if \ l \equiv 1, 5 \pmod{6}.$$

$$U(C_l, A_n) \cong C_2 \quad if \ n > 5, \ l \ even,$$

$$\cong \{1\} \quad if \ n > 5, \ l \ odd.$$

Proof. $D_1(C_l, A_3) \cong C_l \otimes C_l$ (by Lemma 9 (iii) $\cong C_l$ (by Lemma 5 (i)). If n > 3,

 $D_1(C_l, A_n) \cong C_l \otimes C_l/T(C_l)$ (by Lemma 9 (iii)) $\cong C_2$ if *l* is even,

 $\cong \{1\} \quad \text{if } l \text{ is odd} \\ (by \text{ Lemma 5 (ii)}).$

 $C_l \otimes W_1(A_n) \cong C_3 \quad \text{if } 3 \mid l, n = 4, 5,$

 \cong {1} otherwise (by Lemma 9 (ii)).

Theorem 8. $U(S_l, A_n) \cong C_2$.

Proof. $D_1(S_l, A_3) \cong S_l \otimes S_l$ (by Lemmas 9 (iii) and 5 (i)) $\cong C_2$ (by Lemma 7 (i)). If n > 3, $D_1(S_l, A_n) \cong S_l \otimes S_l/T(S_l)$ (by Lemmas 9 (iii) and 5 (ii)) $\cong C_2$ (by Lemma 7 (i)). $S_l \otimes W_1(A_n) \cong \{1\}$ for all l, n (by Lemma 9 (ii)).

THEOREM 9.

 $U(A_l, A_n) \cong C_3$ if l = 3, 4, n = 3, 4, 5, $\cong \{1\}$ otherwise.

Proof.

 $D_1(A_1, A_3) \cong A_1 \otimes A_1$ (by Lemma 9 (iii)) $\cong C_3$ if l = 3, 4,

 $\cong \{1\}$ if $l \neq 3, 4$

(by Lemma 7 (ii)).

If
$$n > 3$$
, $D_1(A_l, A_n) \cong A_l \otimes A_l/T(A_l) \cong \{1\}$ (by Lemmas 5 (ii) and 7 (ii)).

 $A_l \otimes W_1(A_n) \cong C_3$ if l = 3, 4, n = 4, 5,

 \cong {1} otherwise (by Lemmas 9 (ii) and 7 (ii)).

E. W. READ

References

- 1. N. BLACKBURN, Some homology groups of wreath products, Illinois J. Math., vol. 16 (1972), pp. 116–129.
- 2. J. W. DAVIES AND A. O. MORRIS, The Schur multiplier of the generalized symmetric group, J. London Math. Soc. (2), vol. 8 (1974), pp. 615–620.
- 3. B. HUPPERT, Endliche Gruppen, Springer Verlag, New York, 1967.
- 4. A. KERBER, *Representations of permutation groups*, Lecture notes in mathematics, vol. 240, Springer Verlag, New York, 1971.
- 5. H. NEUMANN, Varieties of groups, Springer Verlag, New York, 1967.
- 6. D. S. PASSMAN, Permutation groups, W. A. Benjamin, Reading, Mass., 1968.
- I. SCHUR, Über die Darstellung der endlichen Gruppen durch gebrochene lineare Substitutionen, J. Math., vol. 127 (1904), pp. 20–50.
- 8. , Über die Darstellung der symmetrischen und alternienden Gruppen durch gebrochene lineare Substitutionen, J. Math., vol. 139 (1911), pp. 155–250.

UNIVERSITY COLLEGE OF WALES ABERYSTWYTH, WALES