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Introduction

Let G be a group which acts completely reducibly by algebra automorphisms
on a finite-dimensional associative K-algebra A, which is separable modulo its
radical.
When the characteristic of K is zero, Mostow showed in [4], using the repre-

sentation theory of reductive algebraic groups, that there is a G-invariant
separable subalgebra of A complementary to the radical (a G-invariant
Wedderburn factor).

Taft in I-5] conjectured that there is a G-invariant Wedderburn factor when
characteristic K is p 4: 0.

In this paper, we verify the conjecture when K is perfect and the image of G
in the algebraic group of algebra automorphisms of A (R)K K has connected
closure [see Theorem 1].

Relevant facts about separable algebras may be found in [1, Section 72], and
about algebraic groups in [3].

Let A be a finite-dimensional associative algebra over a field K, with radical R.
Suppose that AIR is a separable algebra and that S is a separable subalgebra of
A complementary to R. S will be called a Wedderburn factor of A. Let
p" A --, R be the projection of the sum A S @ R onto the factor R; let
re" A AIR be the quotient map.

Let G be a group which acts completely reducibly on A by algebra auto-
morphisms. Write #b for the image of b A under # G.

All mappings are K-linear.

Section 1

Throughout this section, R2 (0).
Let V be a G-invariant subspace of A complementary to R, and let h: A R

be the projection of the sum A V @ R onto the factor R. Let f hl S:
SRo
We introduce a second action (,) of G on A which stabilizes S. The two

actions coincide if and only if S is G-invariant under the original action.
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DEFINITION 1. For g G, let

# , b f#b if b e R
#b p(#b) ifb6S.

When a subspace W of A is invariant under the (,)-action of G, we will say that
W is G,-invariant.

LEMMA 1. Under (,), G acts completely reducibly on A by algebra auto-
morphisms.

Proof. Section 4.1.

Lemmas 2-4 and Proposition below describe some properties off relative
to the two actions of G on A. Let Homo. (S, R) be the G-module homo-
morphisms relative to the (,)-action.

LEMMA 2. For a S, ga g a g f(a) f(g a).

Proof. Section 4.2.

Thus, S is G-invariant if and only iff 6 Hom. (S, R).
The following Hochschild cohomology sequence will be convenient for our

purposes.

DEFINITION 2.

R Hom (S, R) Horn (S (R) S, R)

is the exact [2, Theorem 4.1] sequence such that:
(a) ForreR, sS,lr(s) st- rs.
(b) Forfe Hom (S, R) and s, s’ S,

62f(s (R) s’) sf(s’) + f(s)s’ f(ss’).

The kernel of 6 is the space Der (S, R) of derivations in Horn (S, R); since
the sequence is exact, 61R Der (S, R), i.e., every derivation is inner.

Let G act on S (R) S by the diagonal ,-action:

g,(s(R) s’) g,s(R) g,s’.

ForN= SorS(R) S, let G act on Hom (N, R) by

(gf)(n) g (f(g-1 , n)) forf Horn (N, R) and n N.

Homa. (N, R) is then the space of G-fixed elements in Hom (N, R); furthermore,
a straightforward verification shows that 51 and 5z are G-module morphisms.

Since R2 (0), {(1 + r)S(1 r) r e R} is the set of Wedderburn factors
in A. In what follows, f h S.

LEMMA 3. (1 + r)S(1- r) is G-invariant if and only if f-blr is in

Hom. (S, R).
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Proof. Section 4.3.

As a consequence of Lemma 3, we have the following proposition"

PROPOSITION 1. There is a G-invariant Wedderburn factor in A if and only if
f is in Hom. (S, R) + R.

LEMMA 4. t$2f Homo, (S (R) S, R).

Proof. Section 4.4.

PROPOSITION 2. (a) The condition

2 (Hom, (S, R)) Hom, (S (R) S, R) c 62 (Hom (S, R))

is sufficient for the existence of a G-invariant Wedderburn factor.
(b) Let F be afield extension of K.

62 (Hom, (S, R)) Hom6, (S (R) S, R) c 62 (Hom (S, R))

if and only if
62 (Horn6, (S (R) F, R (R) F))

Homo,(S(R)F(R)vS(R)F,R(R)F) c62(Hom(S(R)F,R(R)F)).

Proof. (a) From the condition and Lemma 4, we have

62fe 62 (Homo, (S, R)),

i.e., there existsf Hom, (S, R) such thatf- f Ker 62 6R.
(b) This is a straightforward verification which we omit.

PROPOSITION 3. If there is a G-invariqnt complement M to Der (S, R) in
Hom (S, R), then

62 (Homo, (S, R)) Homo, (S (R) S, R) c 62 (Hom (S, R)).

Proof The proof is group-theoretical. We have

62 (Hom (S, R)) c Homo, (S (R) S, R)

62 (M) c Homo. (S (R) S, R)

62 (M c Homo, (S, R))

62 (Homo, (S, R)).

since 62 M is an injective G-module morphism,

Section 2

We give circumstances under which the hypothesis of Proposition 3 holds.
2.1. Let R2 (0). Let K be a perfect field, the algebraic closure of K, and
the K-algebra A (R) K. Let Aut (,) be the algebraic group of K-algebra

automorphisms of A.
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Let t,’G--, Aut (,) be the group homomorphism determined by the

(,)-action of G on A, and t,(G) the closure of t,(G) in Aut (A).

PROPOSITION 4. If t.(G) is connected, then there & a G-invariant complement
to Der (S, R)/n Hom (S, R).

Proof Section 4.5.
2.2. Let n be the index of nilpotency of R. Let t" G Aut (A) be the group

homomorphism determined by the original action of G on A.

THEOREM 1. K a perfect field.
If t(G) is a connected subyroup of Aut (A), then there is a G-invariant

Wedderburn factor in A.
In particular, if G is a connected alyebraic 9roup which acts rationally on A,

then there is a G-invariant Wedderburn factor in A.

Proof By induction on n. Denote t(G) by H.
By [3, Proposition 1.4-1, since K is perfect and G acts completely reducibly

on A, G acts completely reducibly on A. Since G and H stabilize the same sub-
spaces of A, H acts completely reducibly on A.

Let j" Aut () Aut (AIR2) be the natural morphism of algebraic groups.
j induces a completely reducible rational action ofH on ,/K2. The (,)-action of
H on AIR2 is also rational, since S/K2, as an H,-module, is canonically iso-
morphic to the rational H-module AIR. Thus the natural map t,’H
Aut (/K2) is a morphism of algebraic groups, and hence t,(H) is a connected
algebraic subgroup of Aut (A/J2). By Proposition 4, there is an H-invariant
(hence G-invariant) complement to Der
therefore by Proposition 3,

62 (HomE. (SIRE, 12))
HomE. (SiRE (R) /2, //2) c 62 (Hom (SIRE, /2).

Hence by Proposition 2(b), (a), there is a G-invariant Wedderburn factor T in

AIR2.
Let p: A AIR2 be the quotient G-module morphism, p-l(T) is a G-

invariant subalgebra of A with radical R2, which has index of nilpotency less

than n. The action of H on p-l(T) is completely reducible and the image of H
in Aut (p-(T)) is connected since H is connected. Therefore, by induction,
there is an H-invariant (hence G-invariant) Wedderburn factor S in p-(T).
S is also a Wedderburn factor in A.

Section 3

Here more information is given on the significance of the condition of
Proposition 2(a) with regard to the existence of G-invariant Wedderburn factors.
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Let Rz (0). Let (,) be any completely reducible action of G on A which
stabilizes S. A completely reducible action of G on A is called a twisting of (,)
if the action induces (,) according to Definition 1.

PROPOSITION 5.
of (*) iJ" and only if

There & a G-invariant Wedderburn factor for each twisting

62 (Homo, (S, R)) Homo, (S (R) S, R) c 62 (Hom (S, R)).

Proof Proposition 2(a).

Let fe Hom (S, R) have the property 02fe Homo. (S (R) S, R). The

following action is a twisting of (,):

gb g , b ifbeR,

gb g , b + g , f(b) f(g , b) ifb e S.

By the hypothesis, there is a G-invariant (relative to the twisted action)
Wedderburn factor (1 + r)S(1 r). As in the proof (Section 4.3) of Lemma 3,
one can compute thatf- 61r Homo. (S, R). Hence,

Homo, (S (R) S, R) c 62 (Hom (S, R)) c 62 (Homo, (S, R)).

The other inclusion holds since t2 is a G-module morphism.
Using an induction on the index of nilpotency of R and Proposition 5, we

have"

COROLLARY. Let G be a group. There are G-invariant Wedderburn factors
for all algebras and all completely reducible actions ofG if and only if

62 (Homo (S, R)) Hom (S (R) S, R) c 62 (3om (S, R))

holdsfor all algebras with radical ofsquare zero and completely reducible actions

of G which stabilize a Wedderburn factor S.

4.1. Proof of Lemrna 1. We have:
(a) Via 7z[ S, S under (,) is G-(and algebra) isomorphic to AIR under the

original action.
(b) The two actions agree on R.
Since G acts completely reducibly on A, G acts completely reducibly on AIR.

Therefore, by (a) and (b) G acts (via (,)) completely reducibly on S and R, and
so on A.
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The (,)-action is by algebra automorphisms" let a, a’ e S; b, b’ R; and
gG.

g, ((a + b)(a’ + b’))

g (aa’ + ab’ + ba’) since R2 (0),

g, (aa’) + g(ab’) + g(ba’)

(g, a)(g, a’) + (ga)(gb’) + (gb)(ga’) by (a)above,

(g a)(g a’) + (g a)(g b’) + (g b)(g a’)
from the definition of and the fact that R (0),

(g (a + b))(g (a’ + b’)).

4.2. Proof ofLemma 2.

f(a) -f(# a)

9 * f(a) h(g * a ga + ga)

g, f(a) h(-p(ga) + #a)

9 * f(a) + p(ga) 9(h(a))
since h R id and h is a G-module morphism,

p(ga) sincef(a) h(a) R

ga g,a.

4.3. Proof ofLemma 3. Let s S.

g((1 q- r)s(1 r)) gs h- (gr)(gs) (gs)(gr)

g s + (gs g s) + (gr)(gs) (gs)(gr).

Comparing the S and R components, we have that

if and only if

g((1 + r)s(1 r)c (1 + r)S(1 r)

(gs g s) + (gr)(gs) (gs)(gr) r(g s) (g s)r

if and only if

g ,f(s) -f(# s) + (gr)(#s) (#s)(gr) 6lr(g * s)

if and only if

(f far)(9 * s) g ((f 61r)(s)).

by Lemma 2
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4.4. Proof ofLemma 4.

g * f(ss’) --f(g * (ss’))

(gs)(gs’) (g * s)(g * s’) by Lemmas 2 and 1,

(g s + g ,f(s) f(g s))(g s’ + g ,f(s’) -f(g s’)) (g s)(g s’)
by Lemma 2,

g (f(s)s’) (g s)f(g s’) + g (sf(s’)) f(g s)(9 * s’).

Therefore, g (62f(s (R) s’)) 62f(g * (s (R) s’)).

4.5. Proof of Proposition 4. Since S is G,-invariant, S is t,(G)-invariant.
t,(G) permutes the simple components of S, and the isotropy subgroup of a

component has finite index in t,(G). Since t,(G) is connected, each isotropy
subgroup is t,(G), i.e., each simple component of S is i*(G) (hence G,)-invariant.
S is the direct sum of full matrix algebras {Mi}7= 1, since K is algebraically

closed. Let ei be the identity element of Mi; e S is the orthogonal direct sum

7= ei and each ei is G,-fixed.
R has the G,-invariant decomposition eRej, where each eRej is an

S-bimodule. Therefore, Hom (S, R) has the two G-invariant decompositions
Hom (S, eiRej) and

Hom (M,, e,Re) O) Hom (M, @ M, e,Re) , Hom (Mk,. e,Rej).
i=/=j k=/=i,j

The derivations, which are all inner, have the G-invariant decomposition

Der (S, R) ] Der (Mi, eiRei) O) Der (Mi O) Mj, eiRej),
i=/=j

since Der (Mk, eiRej) 0 for k i, j by the orthogonality of {ek}.
To prove the proposition we show that there are G-invariant complements to
(1) Der (Mi O) Mj, eiRei) in Hom (Mi O) Mj, eiRej) for = j,
(2) Der (Mi, eiRei) in Hom (Mi, eiRei).
Let Mi M and eiRej T.

LEMMA A. fl: M (R) T Horn (M, T), definedby fl (m (R) t)(n) mntfor
m, n M, T, is an isomorphism of G-modules.

Here M (R) T has the diagonal G,-module structure.

Proof. Let m x m be the size of M. Let T k Vk be a decomposition of
T into simple left M-modules. Since Vk is isomorphic to K" as M-modules, it
will suffice to show

m (R) K" Hom (m, K").

This is readily checked by linear algebra.
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Similarly, f2: T (R) My Hom (My, T), defined byf2 (t (R) m)(n) tnm, is a
G-module isomorphism.
For (1) above, it follows from the lemma that

M (R) T @ T (R) My----, Hom (M @ My, T).

Under this isomorphism, Der (M @ My, T) and {(e (R) r, -r (R) ey) lr T}
correspond.

Let W be a G.-invariant complement to K.ey in My. Then, M (R) T
T (R) W is a G.-invariant complement to

{(ei (R) r, -r (R) ey) r e R}

in M (R) T T (R) My. This completes the proof of (1).
(2) Let M M and T eiRei. Let M be the algebra opposite to M.
M (R) M is a full matrix algebra and T is a left-M (R) M-module, where

(N(R) N’)r NrN’ for NeM, N’eM and reR. Let T ,k Vk be the
decomposition of T into simple M (R) M-modules. Each Vk is isomorphic to
M with the natural M (R) M-module structure. Therefore, we may identify
each Vk with a copy Mtk) of M.

Let W be a G,-invariant complement to Ke in M, and let W tk) be the copy of
W in M<k). Let e (= e) be the neutral element of M and etk) that of M<k).

LEMMA B. W (k) T is a G,-invariant complement to Ke(k) in T.

Proof. For # e G, let be the automorphism of M T given by the (,)-
action of G on A. Let u M. By the Skolem-Noether theorem, u is conju-
gation by some invertible element B of M. Extend u to an automorphism of
M @ T by: 1 Mtk) conjugation by B.

t : , Mtk) - , Mtk) is readily checked to be an M (R) M-module auto-
morphism of T. Therefore, is described by a matrix (Ny) where
M<i) - Mty) is an M (R) M-module morphism. Therefore, by linear algebra,
Ny is a scalar multiplication. Hence, leaves W <k) invariant.

Since leaves W-invariant, leaves W tk) invariant. Therefore,
t leaves W tk) invariant. This completes the proof of Lemma B.
By Lemma A, f: M (R) T Horn (M, T) is a G-module isomorphism.

Underf, Der (M, T) and

{e (R) N() (N (R) N W; N() the cpy fN in W()}
correspond.
A G,-invariant complement to the latter space in M (R) T is

W(R)T@(K’e(R)k K’etk’).
This completes the proof of (2), and of Proposition 4.
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