COMPLETELY REDUCIBLE ACTIONS OF CONNECTED ALGEBRAIC GROUPS ON FINITE-DIMENSIONAL ASSOCIATIVE ALGEBRAS

BY

JOHN BRENDAN SULLIVAN¹

Introduction

Let G be a group which acts completely reducibly by algebra automorphisms on a finite-dimensional associative K-algebra A, which is separable modulo its radical.

When the characteristic of K is zero, Mostow showed in [4], using the representation theory of reductive algebraic groups, that there is a G-invariant separable subalgebra of A complementary to the radical (a G-invariant Wedderburn factor).

Taft in [5] conjectured that there is a G-invariant Wedderburn factor when characteristic K is $p \neq 0$.

In this paper, we verify the conjecture when K is perfect and the image of G in the algebraic group of algebra automorphisms of $A \otimes_K \overline{K}$ has connected closure [see Theorem 1].

Relevant facts about separable algebras may be found in [1, Section 72], and about algebraic groups in [3].

Let A be a finite-dimensional associative algebra over a field K, with radical R. Suppose that A/R is a separable algebra and that S is a separable subalgebra of A complementary to R. S will be called a Wedderburn factor of A. Let $p: A \to R$ be the projection of the sum $A = S \oplus R$ onto the factor R; let $\pi: A \to A/R$ be the quotient map.

Let G be a group which acts completely reducibly on A by algebra automorphisms. Write gb for the image of $b \in A$ under $g \in G$.

All mappings are K-linear.

Section 1

Throughout this section, $R^2 = (0)$.

Let V be a G-invariant subspace of A complementary to R, and let $h: A \to R$ be the projection of the sum $A = V \oplus R$ onto the factor R. Let $f = h | S: S \to R$.

We introduce a second action (*) of G on A which stabilizes S. The two actions coincide if and only if S is G-invariant under the original action.

Received January 16, 1975.

¹ Supported in part by a National Science Foundation grant.

DEFINITION 1. For $g \in G$, let

$$g * b = \begin{cases} gb & \text{if } b \in R \\ gb - p(gb) & \text{if } b \in S. \end{cases}$$

When a subspace W of A is invariant under the (*)-action of G, we will say that W is G_* -invariant.

LEMMA 1. Under (*), G acts completely reducibly on A by algebra automorphisms.

Proof. Section 4.1.

Lemmas 2-4 and Proposition 1 below describe some properties of f relative to the two actions of G on A. Let $\operatorname{Hom}_{G_*}(S, R)$ be the G-module homomorphisms relative to the (*)-action.

LEMMA 2. For $a \in S$, ga - g * a = g * f(a) - f(g * a).

Proof. Section 4.2.

Thus, S is G-invariant if and only if $f \in \text{Hom}_{G_*}(S, R)$.

The following Hochschild cohomology sequence will be convenient for our purposes.

DEFINITION 2.

$$R \xrightarrow{\delta_1} \text{Hom } (S, R) \xrightarrow{\delta_2} \text{Hom } (S \otimes S, R)$$

is the exact [2, Theorem 4.1] sequence such that:

- (a) For $r \in R$, $s \in S$, $\delta_1 r(s) = sr rs$.
- (b) For $f \in \text{Hom}(S, R)$ and $s, s' \in S$,

$$\delta_2 f(s \otimes s') = sf(s') + f(s)s' - f(ss').$$

The kernel of δ_2 is the space Der (S, R) of derivations in Hom (S, R); since the sequence is exact, $\delta_1 R = \text{Der } (S, R)$, i.e., every derivation is inner.

Let G act on $S \otimes S$ by the diagonal *-action:

$$g * (s \otimes s') = g * s \otimes g * s'.$$

For N = S or $S \otimes S$, let G act on Hom (N, R) by

$$(gf)(n) = g * (f(g^{-1} * n))$$
 for $f \in \text{Hom}(N, R)$ and $n \in N$.

 $\operatorname{Hom}_{G_{\star}}(N, R)$ is then the space of G-fixed elements in Hom (N, R); furthermore, a straightforward verification shows that δ_1 and δ_2 are G-module morphisms.

Since $R^2 = (0)$, $\{(1 + r)S(1 - r) | r \in R\}$ is the set of Wedderburn factors in A. In what follows, f = h | S.

LEMMA 3. (1 + r)S(1 - r) is G-invariant if and only if $f - \delta_1 r$ is in $\operatorname{Hom}_{G_*}(S, R)$.

426

Proof. Section 4.3.

As a consequence of Lemma 3, we have the following proposition:

PROPOSITION 1. There is a G-invariant Wedderburn factor in A if and only if f is in $\operatorname{Hom}_{G_*}(S, R) + \delta_1 R$.

LEMMA 4. $\delta_2 f \in \operatorname{Hom}_{G_*}(S \otimes S, R).$

Proof. Section 4.4.

PROPOSITION 2. (a) The condition

 $\delta_2 (\operatorname{Hom}_{G_*}(S, R)) = \operatorname{Hom}_{G_*}(S \otimes S, R) \cap \delta_2 (\operatorname{Hom}(S, R))$

is sufficient for the existence of a G-invariant Wedderburn factor.

(b) Let F be a field extension of K.

 $\delta_2 (\operatorname{Hom}_{G_*}(S, R)) = \operatorname{Hom}_{G_*}(S \otimes S, R) \cap \delta_2 (\operatorname{Hom}(S, R))$

if and only if

$$\delta_2 (\operatorname{Hom}_{G_*}(S \otimes F, R \otimes F))$$

 $= \operatorname{Hom}_{G_{\star}}(S \otimes F \otimes_{F} S \otimes F, R \otimes F) \cap \delta_{2} (\operatorname{Hom}(S \otimes F, R \otimes F)).$

Proof. (a) From the condition and Lemma 4, we have

$$\delta_2 f \in \delta_2$$
 (Hom _{G_*} (S, R)),

i.e., there exists $f_1 \in \text{Hom}_{G_*}(S, R)$ such that $f - f_1 \in \text{Ker } \delta_2 = \delta_1 R$.

(b) This is a straightforward verification which we omit.

PROPOSITION 3. If there is a G-invariant complement M to Der (S, R) in Hom (S, R), then

 δ_2 (Hom_{*G**} (*S*, *R*)) = Hom_{*G**} (*S* \otimes *S*, *R*) $\cap \delta_2$ (Hom (*S*, *R*)).

Proof. The proof is group-theoretical. We have

 δ_2 (Hom (S, R)) \cap Hom_{G_*} $(S \otimes S, R)$

 $= \delta_2(M) \cap \operatorname{Hom}_{G_*}(S \otimes S, R)$

 $= \delta_2 (M \cap \operatorname{Hom}_{G_*}(S, R)) \text{ since } \delta_2 \mid M \text{ is an injective } G \text{-module morphism,}$

 $= \delta_2 (\operatorname{Hom}_{G_*}(S, R)).$

Section 2

We give circumstances under which the hypothesis of Proposition 3 holds.

2.1. Let $R^2 = (0)$. Let K be a perfect field, \overline{K} the algebraic closure of K, and \overline{A} the \overline{K} -algebra $A \otimes \overline{K}$. Let Aut (\overline{A}) be the algebraic group of \overline{K} -algebra automorphisms of \overline{A} .

Let $t_*: G \to \operatorname{Aut}(\overline{A})$ be the group homomorphism determined by the (*)-action of G on \overline{A} , and $\overline{t_*(G)}$ the closure of $t_*(G)$ in Aut (\overline{A}).

PROPOSITION 4. If $\overline{t_*(G)}$ is connected, then there is a G-invariant complement to Der (S, R) in Hom (S, R).

Proof. Section 4.5.

2.2. Let *n* be the index of nilpotency of *R*. Let $t: G \to \text{Aut}(\overline{A})$ be the group homomorphism determined by the original action of *G* on *A*.

THEOREM 1. K a perfect field.

If $\overline{t(G)}$ is a connected subgroup of Aut (\overline{A}), then there is a G-invariant Wedderburn factor in A.

In particular, if G is a connected algebraic group which acts rationally on A, then there is a G-invariant Wedderburn factor in A.

Proof. By induction on *n*. Denote $t(\overline{G})$ by *H*.

By [3, Proposition 1.4], since K is perfect and G acts completely reducibly on A, G acts completely reducibly on \overline{A} . Since G and H stabilize the same subspaces of \overline{A} , H acts completely reducibly on \overline{A} .

Let j: Aut $(\overline{A}) \rightarrow$ Aut $(\overline{A}/\overline{R}^2)$ be the natural morphism of algebraic groups. j induces a completely reducible rational action of H on $\overline{A}/\overline{R}^2$. The (*)-action of H on $\overline{A}/\overline{R}^2$ is also rational, since $\overline{S}/\overline{R}^2$, as an H_* -module, is canonically isomorphic to the rational H-module $\overline{A}/\overline{R}$. Thus the natural map $t_*: H \rightarrow$ Aut $(\overline{A}/\overline{R}^2)$ is a morphism of algebraic groups, and hence $t_*(H)$ is a connected algebraic subgroup of Aut $(\overline{A}/\overline{R}^2)$. By Proposition 4, there is an H-invariant (hence G-invariant) complement to Der $(\overline{S}/\overline{R}^2, \overline{R}/\overline{R}^2)$ in Hom $(\overline{S}/\overline{R}^2, \overline{R}/\overline{R}^2)$; therefore by Proposition 3,

$$\delta_2 (\operatorname{Hom}_{G_*}(\bar{S}/\bar{R}^2, \bar{R}/\bar{R}^2))$$

= Hom_{*G*^{*}} ($\overline{S}/\overline{R}^2 \otimes \overline{S}/\overline{R}^2$, $\overline{R}/\overline{R}^2$) $\cap \delta_2$ (Hom ($\overline{S}/\overline{R}^2$, $\overline{R}/\overline{R}^2$).

Hence by Proposition 2(b), (a), there is a G-invariant Wedderburn factor T in A/R^2 .

Let $p: A \to A/R^2$ be the quotient G-module morphism. $p^{-1}(T)$ is a Ginvariant subalgebra of A with radical R^2 , which has index of nilpotency less than n. The action of H on $\overline{p^{-1}(T)}$ is completely reducible and the image of H in Aut $(\overline{p^{-1}(T)})$ is connected since H is connected. Therefore, by induction, there is an H-invariant (hence G-invariant) Wedderburn factor S in $p^{-1}(T)$. S is also a Wedderburn factor in A.

Section 3

Here more information is given on the significance of the condition of Proposition 2(a) with regard to the existence of G-invariant Wedderburn factors.

Let $R^2 = (0)$. Let (*) be any completely reducible action of G on A which stabilizes S. A completely reducible action of G on A is called a twisting of (*) if the action induces (*) according to Definition 1.

PROPOSITION 5. There is a G-invariant Wedderburn factor for each twisting of (*) if and only if

 $\delta_2 (\operatorname{Hom}_{G_*}(S, R)) = \operatorname{Hom}_{G_*}(S \otimes S, R) \cap \delta_2 (\operatorname{Hom}(S, R)).$

Proof. \Leftarrow Proposition 2(a).

 \Rightarrow Let $f \in \text{Hom}(S, R)$ have the property $\delta_2 f \in \text{Hom}_{G_*}(S \otimes S, R)$. The

following action is a twisting of (*):

$$gb = g * b \quad \text{if } b \in R,$$

$$gb = g * b + g * f(b) - f(g * b) \quad \text{if } b \in S.$$

By the hypothesis, there is a G-invariant (relative to the twisted action) Wedderburn factor (1 + r)S(1 - r). As in the proof (Section 4.3) of Lemma 3, one can compute that $f - \delta_1 r \in \text{Hom}_{G_*}(S, R)$. Hence,

 $\operatorname{Hom}_{G_*}(S \otimes S, R) \cap \delta_2 (\operatorname{Hom}(S, R)) \subset \delta_2 (\operatorname{Hom}_{G_*}(S, R)).$

The other inclusion holds since δ_2 is a G-module morphism.

Using an induction on the index of nilpotency of R and Proposition 5, we have:

COROLLARY. Let G be a group. There are G-invariant Wedderburn factors for all algebras and all completely reducible actions of G if and only if

 δ_2 (Hom_G (S, R)) = Hom_G (S \otimes S, R) $\cap \delta_2$ (Hom (S, R))

holds for all algebras with radical of square zero and completely reducible actions of G which stabilize a Wedderburn factor S.

4.1. Proof of Lemma 1. We have:

(a) Via $\pi \mid S$, S under (*) is G-(and algebra) isomorphic to A/R under the original action.

(b) The two actions agree on R.

Since G acts completely reducibly on A, G acts completely reducibly on A/R. Therefore, by (a) and (b) G acts (via (*)) completely reducibly on S and R, and so on A. The (*)-action is by algebra automorphisms: let $a, a' \in S$; $b, b' \in R$; and $g \in G$.

$$g * ((a + b)(a' + b')) = g * (aa' + ab' + ba') \text{ since } R^2 = (0),$$

$$= g * (aa') + g(ab') + g(ba') = (g * a)(g * a') + (g * a)(g * b') + (g * b)(g * a') \text{ from the definition of * and the fact that } R^2 = (0),$$

$$= (g * (a + b))(g * (a' + b')).$$

4.2. Proof of Lemma 2.

$$g * f(a) - f(g * a) = g * f(a) - h(-p(ga) + ga) = g * f(a) - h(-p(ga) + ga) = g * f(a) - h(-p(ga) + ga) = g * f(a) - h(-p(ga) - g(h(a))) \text{ since } h \mid R = \text{ id and } h \text{ is a } G\text{-module morphism,}$$

$$= p(ga) \text{ since } f(a) = h(a) \in R = ga - g * a.$$

4.3. Proof of Lemma 3. Let $s \in S$.

$$g((1 + r)s(1 - r)) = gs + (gr)(gs) - (gs)(gr) = g * s + (gs - g * s) + (gr)(gs) - (gs)(gr).$$

Comparing the S and R components, we have that

$$g((1 + r)s(1 - r) \in (1 + r)S(1 - r)$$

if and only if

$$(gs - g * s) + (gr)(gs) - (gs)(gr) = r(g * s) - (g * s)r$$

if and only if

$$g * f(s) - f(g * s) + (gr)(gs) - (gs)(gr) = \delta_1 r(g * s)$$
 by Lemma 2

if and only if

$$(f - \delta_1 r)(g * s) = g * ((f - \delta_1 r)(s)).$$

430

$$g * f(ss') - f(g * (ss'))$$

= $(gs)(gs') - (g * s)(g * s')$ by Lemmas 2 and 1,
= $(g * s + g * f(s) - f(g * s))(g * s' + g * f(s') - f(g * s')) - (g * s)(g * s')$
by Lemma 2,

$$= g * (f(s)s') - (g * s)f(g * s') + g * (sf(s')) - f(g * s)(g * s').$$

Therefore, $g * (\delta_2 f(s \otimes s')) = \delta_2 f(g * (s \otimes s'))$.

4.5. Proof of Proposition 4. Since S is G_* -invariant, S is $\overline{t_*(G)}$ -invariant. $\overline{t_*(G)}$ permutes the simple components of S, and the isotropy subgroup of a component has finite index in $\overline{t_*(G)}$. Since $\overline{t_*(G)}$ is connected, each isotropy subgroup is $\overline{t_*(G)}$, i.e., each simple component of S is $\overline{t_*(G)}$ (hence G_*)-invariant.

S is the direct sum of full matrix algebras $\{M_i\}_{i=1}^n$, since K is algebraically closed. Let e_i be the identity element of M_i ; $1 \in S$ is the orthogonal direct sum $\sum_{i=1}^n e_i$ and each e_i is G_* -fixed.

R has the G_* -invariant decomposition $\sum e_i Re_j$, where each $e_i Re_j$ is an *S*-bimodule. Therefore, Hom (*S*, *R*) has the two *G*-invariant decompositions \sum Hom (*S*, $e_i Re_j$) and

$$\sum_{i} \operatorname{Hom} (M_{i}, e_{i}Re_{i}) \oplus \sum_{i \neq j} \operatorname{Hom} (M_{i} \oplus M_{j}, e_{i}Re_{j}) \oplus \sum_{k \neq i, j} \operatorname{Hom} (M_{k}, e_{i}Re_{j}).$$

The derivations, which are all inner, have the G-invariant decomposition

$$\operatorname{Der}(S, R) = \sum_{i} \operatorname{Der}(M_{i}, e_{i}Re_{i}) \oplus \sum_{i \neq j} \operatorname{Der}(M_{i} \oplus M_{j}, e_{i}Re_{j}),$$

since Der $(M_k, e_i R e_j) = 0$ for $k \neq i, j$ by the orthogonality of $\{e_k\}$.

To prove the proposition we show that there are G-invariant complements to

(1) Der $(M_i \oplus M_j, e_i R e_j)$ in Hom $(M_i \oplus M_j, e_i R e_j)$ for $i \neq j$,

- (2) Der $(M_i, e_i R e_i)$ in Hom $(M_i, e_i R e_i)$.
- Let $M_i = M$ and $e_i R e_j = T$.

LEMMA A. $f_1: M \otimes T \to \text{Hom } (M, T)$, defined by $f_1 (m \otimes t)(n) = mnt$ for $m, n \in M, t \in T$, is an isomorphism of G-modules.

Here $M \otimes T$ has the diagonal G_* -module structure.

Proof. Let $m \times m$ be the size of M. Let $T = \sum_k V_k$ be a decomposition of T into simple left M-modules. Since V_k is isomorphic to K^m as M-modules, it will suffice to show

$$M \otimes K^n \xrightarrow{\cong} \operatorname{Hom}(M, K^n).$$

This is readily checked by linear algebra.

Similarly, $f_2: T \otimes M_i \to \text{Hom } (M_i, T)$, defined by $f_2(t \otimes m)(n) = tnm$, is a G-module isomorphism.

For (1) above, it follows from the lemma that

 $M_i \otimes T \oplus T \otimes M_i \xrightarrow{\cong} \text{Hom} (M_i \oplus M_i, T).$

Under this isomorphism, Der $(M_i \oplus M_i, T)$ and $\{(e_i \otimes r, -r \otimes e_i) | r \in T\}$ correspond.

Let W be a G_* -invariant complement to $K \cdot e_i$ in M_i . Then, $M_i \otimes T \oplus$ $T \otimes W$ is a G_* -invariant complement to

$$\{(e_i \otimes r, -r \otimes e_i) \mid r \in R\}$$

in $M_i \otimes T \oplus T \otimes M_i$. This completes the proof of (1).

(2) Let $M = M_i$ and $T = e_i R e_i$. Let M° be the algebra opposite to M.

 $M \otimes M^{\circ}$ is a full matrix algebra and T is a left- $M \otimes M^{\circ}$ -module, where $(N \otimes N')r = NrN'$ for $N \in M$, $N' \in M^{\circ}$ and $r \in R$. Let $T = \sum_{k} V_{k}$ be the decomposition of T into simple $M \otimes M^\circ$ -modules. Each V_k is isomorphic to M with the natural $M \otimes M^\circ$ -module structure. Therefore, we may identify each V_k with a copy $M^{(k)}$ of M.

Let W be a G_* -invariant complement to Ke_i in M, and let $W^{(k)}$ be the copy of W in $M^{(k)}$. Let $e (= e_i)$ be the neutral element of M and $e^{(k)}$ that of $M^{(k)}$.

LEMMA B. $\sum W^{(k)} \subset T$ is a G_* -invariant complement to $\sum Ke^{(k)}$ in T.

Proof. For $g \in G$, let t be the automorphism of $M \oplus T$ given by the (*)action of G on A. Let $u = t \mid M$. By the Skolem-Noether theorem, u is conjugation by some invertible element B of M. Extend u to an automorphism \bar{u} of $M \oplus T$ by: $\overline{u} \mid M^{(k)} =$ conjugation by B.

 $t \circ \overline{u} \colon \sum M^{(k)} \to \sum M^{(k)}$ is readily checked to be an $M \otimes M^{\circ}$ -module automorphism of T. Therefore, $t \circ \overline{u}$ is described by a matrix (N_{ij}) where N_{ij} : $M^{(i)} \rightarrow M^{(j)}$ is an $M \otimes M^{\circ}$ -module morphism. Therefore, by linear algebra, N_{ij} is a scalar multiplication. Hence, $t \circ \overline{u}$ leaves $\sum W^{(k)}$ invariant. Since \overline{u} leaves W-invariant, \overline{u} leaves $\sum W^{(k)}$ invariant. Therefore, t =

 $t \circ \overline{u} \circ \overline{u}$ leaves $\sum W^{(k)}$ invariant. This completes the proof of Lemma B.

By Lemma A, $f_1: M \otimes T \to \text{Hom}(M, T)$ is a G-module isomorphism. Under f_1 , Der (M, T) and

$$\left\{ e \otimes \sum N^{(k)} - \sum_{k} (N_k \otimes e^{(k)}) \mid N_k \in W; N^{(k)} \text{ the copy of } N_k \text{ in } W^{(k)} \right\}$$

correspond.

A G_* -invariant complement to the latter space in $M \otimes T$ is

$$W \otimes T \oplus \left(K \cdot e \otimes \sum_{k} K \cdot e^{(k)} \right).$$

This completes the proof of (2), and of Proposition 4.

References

- 1. C. CURTIS AND I. REINER, Representation theory of finite groups and associative algebras, Interscience, New York, 1962.
- 2. G. HOCHSCHILD, On the cohomology groups of an associative algebra, Ann. of Math., vol. 46 (1945), pp. 58–67.
- 3. ____, Introduction to affine algebraic groups, Holden-Day, San Francisco, 1971.
- 4. G. D. Mostow, Fully reducible subgroups of algebraic groups, Amer. J. Math., vol. 78 (1966), pp. 200-221.
- 5. EARL J. TAFT, On Certain d-groups of algebra automorphisms and antiautomorphisms, J. of Algebra, vol. 3 (1966), pp. 115–121.

UNIVERSITY OF WASHINGTON SEATTLE, WASHINGTON