COMPLEMENTARY 1-ULC PROPERTIES FOR 3-SPHERES IN 4-SPACE

BY

Fredric D. Ancel and D. R. McMillan, Jr.¹

1. Introduction

A recurring theme in geometric topology is the importance of the 1-ULC property. For example, if Σ is an (n-1)-sphere topologically embedded in S^n ($n \neq 4$), then Σ is flat if and only if $S^n - \Sigma$ is 1-ULC. (See [2], [8], and [5].) If U is a component of $S^n - \Sigma$, it is natural to ask: For which sets $T \subset \Sigma$ is it true that $U \cup T$ is 1-ULC? (Of course, $T = \Sigma$ always works.) For n = 3, R. H. Bing has shown [3] that for some 0-dimensional $T \subset \Sigma$, $U \cup T$ is 1-ULC. For $n \geq 5$, Robert J. Daverman has found [6] a 1-dimensional $T \subset \Sigma$ such that $U \cup T$ is 1-ULC. (It is suspected that the dimension of Daverman's set cannot, in general, be lowered but no example is yet at hand.)

In Theorem 1 we extend Daverman's result to cover the case n=4. Moreover, as constructed our 1-dimensional set T is easily seen to have embedding dimension at most 1 relative to Σ ("dem $_{\Sigma}$ $T \leq 1$ "), in the sense of [13] and [10]. We cannot hope to strengthen Daverman's high-dimensional result to obtain dem $_{\Sigma}$ $T \leq 1$, when $n \geq 5$. For in Theorem 2 we observe that when $n \geq 6$, if T can be found with dem $_{\Sigma}$ $T \leq 1$, then T can be chosen so that dem $_{\Sigma}$ $T \leq 0$. But in [7], Daverman constructs embeddings of Σ in S^n , for all $n \geq 4$, for which T can never be chosen to have dem $_{\Sigma}$ $T \leq 0$. In fact, in these examples T must satisfy dem $_{\Sigma}$ $T \geq n - 3$.

We account for our inability to obtain $\dim_\Sigma T \le 1$ when n > 4 by remarking that for a σ -compactum T in Σ , " $\dim_\Sigma T \le 1$ " is a stronger statement when $\dim \Sigma > 3$ than when $\dim \Sigma = 3$. For when $\dim \Sigma > 3$, $\dim_\Sigma T \le 1$ implies $\Sigma - T$ is 1-ULC. No such implication holds when $\dim \Sigma = 3$. We can appreciate the relative weakness of the statement " $\dim_\Sigma T \le 1$ " when $\dim \Sigma = 3$ in another way: James W. Cannon has observed that when $\dim \Sigma = 3$, " $\dim_\Sigma T \le 1$ " is equivalent to the existence of a 0-dimensional subset S of T such that $(\Sigma - T) \cup S$ is 1-ULC. However when $\dim \Sigma > 3$, any codimension 2 σ -compactum T in Σ contains a 0-dimensional subset S for which $(\Sigma - T) \cup S$ is 1-ULC.

Examples are easily constructed in all dimensions $n \ge 3$ with the property that any subset T of Σ for which $U \cup T$ is 1-ULC must be dense in Σ . Thus the subset T constructed by Daverman and the present authors is, in general, noncompact. In fact, Carl Pixley has noted that for $n \ge 5$, if T is a compact

Received August 18, 1975.

¹ Research of the second author was supported in part by a National Science Foundation grant.

1-dimensional subset of Σ for which $U \cup T$ is 1-ULC, then three is a (possibly noncompact) 0-dimensional subset T' of T for which $U \cup T'$ is 1-ULC. A proof of Pixley's observation can be based on the last statement of the previous paragraph. The extension of this proof to the case n=4 seems to require the stronger hypothesis "dem $_{\Sigma} T \leq 1$." This suggests that for n=4, "dem $_{\Sigma} T \leq 1$ " is an important part of the conclusion of Theorem 1.

Throughout the paper, Σ will denote an (n-1)-sphere topologically embedded in S^n . Let U be a component of $S^n - \Sigma$, and put $C = \operatorname{Cl} U$. (Cl denotes closure.) We will denote an n-simplex by Δ^n , with $\partial \Delta^{n+1} = S^n$. Suppose Y and Y' are metric spaces, $Y \subset Y'$. Let $k \geq 0$ be an integer. Then Y is k-ULC in Y' if for each $\varepsilon > 0$ there is a $\delta > 0$ such that each mapping (= continuous function) of $\partial \Delta^{k+1}$ into a subset of Y of diameter less than δ can be extended to a map of Δ^{k+1} into an ε -subset of Y'. (Usually, Y = U, $Y' = U \cup T$, and k = 0 or 1.) Also we would say "Y is k-ULC" rather than "Y is k-ULC in Y".

Here is a summary of some basic facts.

PROPOSITION 1. The notation is as above.

- (a) C is 0-ULC and 1-ULC. (In fact, C is a compact absolute retract and hence is uniformly locally contractible.)
 - (b) U is 0-ULC.
- (c) If $f: \Delta^2 \to C$ is a map, P is a closed 1-dimensional subpolyhedron of Δ^2 and $\varepsilon > 0$, then there is a map $f': \Delta^2 \to C$ such that $f'(P) \subset U$ and $d(f, f') < \varepsilon$.
 - (d) If $T \subset \Sigma$, then $U \cup T$ is 0-ULC.
 - (e) If $T \subset \Sigma$ and U is 1-ULC in $U \cup T$, then $U \cup T$ is 1-ULC.
- (f) If $T \subset \Sigma$ and $U \cup T$ is 1-ULC, then there is a σ -compact subset T' of T such that $U \cup T'$ is 1-ULC.

Reference [4] is a compendium of information on ULC properties. In particular, a proof of Proposition 1 can be extracted from the statements and proofs of Propositions 2A, 2B.1, 2C.2, 2C.2.1, 2C.3, and 2C.7(2) of [4].

Suppose G is an open subset of a PL manifold Q and that there is a compact subpolyhedron X of Q of dimension at most k such that $X \subset G$, there is a compact metric space Y, and there is a continuous proper surjection $p: Y \times (0, 1] \to G$ such that $p^{-1}(X) = Y \times \{1\}, p \mid Y \times (0, 1)$ is injective and

diam
$$p(\lbrace y \rbrace \times (0, 1]) < \varepsilon$$
 for every $y \in Y$.

In this situation, we say that G is an open ε -mapping cylinder neighborhood of X in Q and that X is a k-spine of G.

Suppose X is a nonempty compact subset of the interior of a PL manifold Q. For an integer $k \geq 0$, we say that the dimension of the embedding of X in Q is at most k (abbreviated $\deg_Q X \leq k$), if for each $\varepsilon > 0$, X is contained in an open ε -mapping cylinder neighborhood with a k-spine in Int Q. We say that the dimension of the embedding of X in Q is k (abbreviated $\deg_Q X = k$) if $\deg_Q X \leq k$ but not $\deg_Q X \leq k - 1$. For a nonempty σ -compact subset F

of the interior of a PL manifold Q, we define the dimension of the embedding of F in Q (abbreviated $dem_Q F$) to be

max
$$\{ \text{dem}_Q X : X \text{ is a compact subset of } F \}$$
.

We put $dem_o \emptyset = -\infty$.

PROPOSITION 2. Suppose F is a σ -compact subset of the interior of a PL manifold Q (dim Q = q). Then:

- (a) $\dim F \leq \dim_{\mathbb{Q}} F$,
- (b) Suppose $k \geq \bar{0}$ is an integer. Then $\operatorname{dem}_Q F \leq k$ if and only if for each closed subpolyhedron P of Q of dimension at most q k 1, there is an ambient isotopy of Q which pushes P off F, is arbitrarily close to the identity on Q and is fixed outside an arbitrarily tight neighborhood of $P \cap F$.
- (c) Suppose $F = \bigcup_{i=1}^{\infty} X_i$ where each X_i is compact for $i = 1, 2, 3, \ldots$ Then

$$dem_{O} F = max \{ dem_{O} X_{i} : i = 1, 2, 3, ... \}.$$

Reference [10] is a comprehensive source about the dimension of an embedding. The proof of Proposition 2 follows from Propositions 1.1(1), 1.1(4), 1.2(2'), and 2.2(2') of [10].

We end this section by establishing some notation and recalling a well-known method of obtaining an open ε -mapping cylinder neighborhood with a k-spine in the interior of a PL manifold. First suppose K is a simplicial complex: then for $i=0,1,2,\ldots$, let $K^i=\{\alpha\in K:\dim\alpha\leq i\}$, the *i-skeleton* of K. Let |K| denote the union of all the simplices of K; and let K' stand for some first derived subdivision of K. Second, suppose Q^q is a PL q-manifold, $\varepsilon>0$ and k is one of the integers $0,1,\ldots,q-1$. Let K be a simplicial complex of mesh less than ε which triangulates Q^q . If L is a subcomplex such that

$$\partial Q^q \cup |K^{q-k-1}| \subset |L|,$$

and if we let

$$L_* = \{\alpha \in K' \colon \alpha \cap |L| = \emptyset\}$$

(the subcomplex of K' which is dual to L), then $L_* \subset (K')^k$, $|L_*| \cap \partial Q^q = \emptyset$, and $Q^q - |L|$ is an open ε -mapping cylinder neighborhood with a k-spine $|L_*|$ in Int Q^q .

2. Topologically planar subsets of 3-manifolds

Theorem 3 of [12] is the foundation of the results of this section. Before describing this theorem, we define a topological space to be topologically planar if it can be embedded in the Euclidean plane, R^2 . Furthermore, let us observe that Proposition 2(b) implies that a compact subset X of Euclidean 3-space R^3 has the "strong arc pushing property" as defined in [12] if and only if $dem_{R^3} X \le 1$. Consequently, Theorem 3 of [12], when restricted to compacta, translates into the following proposition: If X is a compact, topologically

planar subset of R^3 and dim $X \le 1$, then $\deg_{R^3} X \le 1$. We extend this proposition slightly to a form which is more convenient for our purposes.

PROPOSITION 3. If X is a compact, topologically planar subset of the interior of a PL 3-manifold Q^3 and dim $X \le 1$, then dem_{Q3} $X \le 1$.

Proof. Let $X = \bigcup_{i=1}^k X_i$ so that for each i = 1, 2, ..., k, X_i is a compactum, R_i is an open subset of Int Q^3 which is PL homeomorphic to R^3 , and $X_i \subset R_i$. Thus $\dim_{R_i} X_i \leq 1$; so since $R_i \subset Q^3$ implies $\dim_{Q^3} X_i \leq \dim_{R_i} X_i$, we have $\dim_{Q^3} X_i \leq 1$, for i = 1, 2, ..., k. Now Proposition 2(c) implies $\dim_{Q^3} X \leq 1$.

We combine the next proposition with the preceding one to produce the corollary which is the goal of this section. Although this result is needed mainly for the case $Q^3 = S^3$, the proof does not seem to simplify much in the special case.

PROPOSITION 4. Suppose Q^3 is a compact PL 3-manifold with fixed metric. Then, for each $\varepsilon > 0$, there is a $\delta > 0$ such that if X_1, X_2, \ldots, X_r are disjoint compact subpolyhedra of Int Q^3 each of dimension at most one and each of diameter less than δ , then there is a connected open ε -mapping cylinder neighborhood G with a 1-spine in Int Q^3 such that $\bigcup X_i \subset G$ and each X_i contracts to a point in a subset of G of diameter less than ε .

The idea of the proof is to take a triangulation T of Q^3 of small mesh, and to choose δ so small that each X_i lies in the interior of a small PL 3-cell C_i in Q^3 . In each C_i we judiciously form a "singular cone" over X_i so that distinct singular cones intersect nicely. We then put T^1 in general position with respect to the collection of singular cones. Finally we pipe $|T^1|$ entirely off the collection of singular cones. In removing an intersection point of $|T^1|$ with one singular cone, it may be necessary to push other singular cones out of the way keeping their bases fixed. G is chosen to be the complement of $|T^1| \cup \partial Q$. Then G is an open ϵ -mapping cylinder neighborhood of an appropriate subcomplex of the 1-skeleton of a first derived subdivision of T, and G contains all the singular cones.

Proof. Let T be a triangulation of Q^3 of mesh less than $\varepsilon/3$. Let $\delta > 0$ be so that any subset of Int Q^3 of diameter less than δ lies in the interior of a PL 3-cell in Q^3 of diameter less than $\varepsilon/3$.

Suppose X_1, X_2, \ldots, X_r are disjoint compact subpolyhedra of Int Q^3 each of dimension at most 1 and each of diameter less than δ . For each $i = 1, 2, \ldots, r$, there is a PL 3-cell C_i in Q^3 of diameter less than $\varepsilon/3$ such that $X_i \subset \text{Int } C_i$. If $v \in C_i$, let $v * X_i$ denote the set obtained by joining v to the points of X_i by straight line segments in the linear structure of C_i . For each $i = 1, 2, \ldots, r$ we

can successively choose a point $v_i \in \text{Int } C_i$ and a triangulation K_i of X_i which is linear in the linear structure of C_i such that:

(i) If α and β are distinct 1-simplices of K_i , then

$$(v_i * \operatorname{Int} \alpha) \cap (v_i * \operatorname{Int} \beta) = \{v_i\};$$

- (ii) $(v_i * X_i) \cap X_j$ is a finite set of points for $1 \le j \le r, j \ne i$;
- (iii) $(v_i * X_i) \cap (v_j * X_j)$ is a subpolyhedron of $v_i * X_i$ of dimension at most 1 for $1 \le j \le i 1$.

General position techniques provide a small PL homeomorphism h_1 of Q^3 such that:

- (i) $h_1(|T^1|) \cap \bigcup_{i=1}^r [X_i \cup (v_i * |K_i^0|) \cup \bigcup_{i=1}^{i-1} (v_i * X_i) \cap (v_i * X_i)] = \emptyset;$
- (ii) $h_1(|T^0|) \cap \bigcup_{i=1}^r (v_i * X_i) = \emptyset;$
- (iii) $h_1(|T^1|) \cap \overline{\bigcup_{i=1}^r (v_i * X_i)}$ is a finite set of points, at each of which $h_1(|T^1|)$ pierces $\bigcup_{i=1}^r (v_i * X_i)$;
 - (iv) $h_1(T) = \{h_1(\alpha) : \alpha \in T\}$ is a triangulation of Q^3 of mesh less than $\varepsilon/3$;
 - (v) $h_1 = \text{identity on } \partial Q^3$.

For i = 1, 2, ..., r, let

$$h_1(|T^1|) \cap (v_i * X_i) = \{p_{i1}, \dots, p_{is(i)}\}.$$

Then for $1 \le k \le s(i)$, there is a 1-simplex $\alpha_{ik} \in K_i$ such that

$$p_{ik} \in \text{Int } (v_i * \alpha_{ik}).$$

Now we can find a disjoint collection

$$\{\lambda_{ik}: 1 \le i \le r, \ 1 \le k \le s(i)\}$$

of PL arcs in Q^3 satisfying:

- (i) Int $\lambda_{ik} \subset \text{Int } (v_i * \alpha_{ik})$; p_{ik} is one endpoint of λ_{ik} ; and the other endpoint lies in Int α_{ik} ,
 - (ii) $\lambda_{ik} \cap h_1(|T^1|) = \{p_{ik}\};$
 - (iii) $\lambda_{ik} \cap X_j = \emptyset$ for $1 \le j \le r, j \ne i$;
- (iv) $\lambda_{ik} \cap (v_j * X_j)$ is a finite set of points not containing p_{ik} for $1 \le j \le r$, $j \ne i$.

Each λ_{ik} serves as the core of a pipe P_{ik} . Indeed, we can construct a disjoint collection

$$\{P_{ik}: 1 \le i \le r; 1 \le k \le s(i)\}$$

of PL 3-cells in Q^3 such that:

- (i) $\lambda_{ik} \subset \operatorname{Int} P_{ik}$;
- (ii) $P_{ik} \subset \operatorname{Int} C_i$;
- (iii) $P_{ik} \cap (v_i * X_i) \subset (v_i * \alpha_{ik}) (v_i * \partial \alpha_{ik});$
- (iv) $P_{ik} \cap X_i = \emptyset$ for $1 \le j \le r, j \ne i$;

(v) there is a PL homeomorphism of quintuples from

$$(P_{ik}, \lambda_{ik}, P_{ik} \cap (v_i * X_i), P_{ik} \cap \alpha_{ik}, P_{ik} \cap h_1(|T^1|))$$

to

$$([0, 3] \times [-1, 1] \times [-1, 1], [1, 2] \times \{0\} \times \{0\}, [0, 2] \times [-1, 1] \times \{0\},$$

 $\{2\} \times [-1, 1] \times \{0\}, \{1\} \times \{0\} \times [-1, 1]).$

Consequently there is a PL homeomorphism g_{ik} of P_{ik} such that

- (vi) $g_{ik}(P_{ik} \cap h_1(|T^1|) \cap (v_i * X_i) = \emptyset$ and
- (vii) $g_{ik} = identity on \partial P_{ik}$.

Define the PL homeomorphism h_2 of Q^3 by

$$h_2 = \begin{cases} g_{ik} & \text{on } P_{ik} & \text{for } 1 \le i \le r, \ 1 \le k \le s(i), \\ \text{identity} & \text{on } Q^3 - \bigcup \{ \text{Int } P_{ik} \colon 1 \le i \le r, \ 1 \le k \le s(i) \}. \end{cases}$$

For each i = 1, 2, ..., r, define the PL homeomorphism g_i of Q^3 by

$$g_i = \begin{cases} g_{jk} & \text{on } P_{jk} & \text{for } 1 \le j \le r, j \ne i, 1 \le k \le s(j). \\ \text{identity} & \text{on } Q^3 - \bigcup \{ \text{Int } P_{jk} \colon 1 \le j \le r, j \ne i, 1 \le k \le s(j) \}. \end{cases}$$

Then:

- (i) h_2 and each g_i $(1 \le i \le r)$ are $PL \varepsilon/3$ -homeomorphisms of Q^3 which are the identity on ∂Q^3 . Hence $h_2h_1(T) = \{h_2h_1(\alpha) : \alpha \in T\}$ is a triangulation of Q^3 of mesh less than ε .
- (ii) For $1 \le i \le r$, $g_i(X_i) = X_i$; thus X_i contracts to a point in $g_i(v_i * X_i)$ and diam $g_i(v_i * X_i) < \varepsilon$.
 - (iii) For $1 \le i \le r$, $g_i(v_i * X_i) \cap (\partial Q^3 \cup h_2h_1(|T^1|)) = \emptyset$.

Observe that we need to shift $v_i * X_i$ to $g_i(v_i * X_i)$. For if $j \neq i$ and $1 \leq k \leq s(j)$, then even though $h_1(|T^1|)$ misses $v_i * X_i$ inside P_{jk} , nevertheless $h_2 | P_{jk}$ may push $h_1(|T^1|)$ onto $v_i * X_i$. However $h_2h_1(|T^1|)$ misses $g_i(v_i * X_i)$ inside P_{jk} because $h_2 | P_{jk} = g_i | P_{jk}$.

Let $T^* = \{ \alpha \in T : \text{ either dim } \alpha \leq 1 \text{ or } \alpha \subset \partial Q^3 \}$. Then

$$g_i(v_i * X_i) \cap h_2h_1(|T^*|) = \emptyset$$
 for $1 \le i \le r$.

If T' is a first derived subdivision of T and

$$T_* = \{\alpha \in T' : \alpha \cap |T^*| = \emptyset\}$$

—the subcomplex of T' which is dual to T^* —then $G=Q^3-h_2h_1(|T^*|)$ is an open ε -mapping cylinder neighborhood with a 1-spine $h_2h_1(|T_*|)$ in Int Q^3 . Moreover, for $1 \le i \le r$, $X_i \subset g_i(v_i * X_i) \subset G$, X_i contracts to a point in $g_i(v_i * X_i)$ and diam $g_i(v_i * X_i) < \varepsilon$.

Finally we combine the previous two propositions to produce the main result of this section.

الم تير

Piping along λ_{ik}

COROLLARY 5. Suppose Q^3 is a compact PL 3-manifold with fixed metric. Then, for each $\varepsilon > 0$, there is a $\delta > 0$ such that if X_1, X_2, \ldots, X_r are disjoint compact topologically planar subsets of Int Q^3 each of dimension at most 1 and each of diameter less than δ , then there is an open ε -mapping cylinder neighborhood G with a 1-spine in Int Q^3 such that $\bigcup X_i \subset G$ and X_i contracts to a point in a subset of G of diameter less than ε .

Proof. Given $\varepsilon > 0$, Proposition 4 supplies a $0 < \delta < \varepsilon/4$ such that if Y_1, Y_2, \ldots, Y_s are disjoint compact subpolyhedra of Int Q^3 each of dimension at most 1 and each of diameter less than δ , then there is an open $\varepsilon/4$ -mapping cylinder neighborhood H with a 1-spine in Int Q^3 such that for $i = 1, 2, \ldots, s$, $Y_i \subset H$ and Y_i contracts to a point in a subset of H of diameter less than $\varepsilon/4$. Suppose X_1, X_2, \ldots, X_r are disjoint compact topologically planar subsets of Int Q^3 each of dimension at most 1 and each of diameter less than δ . Then there are compact PL 3-manifolds $Q_1^3, Q_2^3, \ldots, Q_r^3$ embedded disjointly as PL submanifolds of Q^3 such that for $i = 1, 2, \ldots, r, X_i \subset Int Q_i^3$ and diam $Q_i^3 < \delta$. Proposition 3 implies $\text{dem}_{Q_i^3} X_i \leq 1$ for $i = 1, 2, \ldots, r$. Thus for each $i = 1, 2, \ldots, r$, X_i is contained in an open δ -mapping cylinder neighborhood G_i with a 1-spine Y_i in Int Q_i^3 . Then Y_1, Y_2, \ldots, Y_r are disjoint compact subpolyhedra of Int Q^3 each of dimension at most 1 and each of diameter less than δ . It follows that there is an open $\varepsilon/4$ -mapping cylinder neighborhood H with a 1-spine Z in Int Q^3 such that for $i = 1, 2, \ldots, r$, $Y_i \subset H$ and Y_i contracts to a point in a subset \widetilde{Y}_i of H of diameter less than $\varepsilon/4$.

For each $i=1,2,\ldots,r$, if T_i denotes the track of the homotopy pulling X_i down the fibers of G_i into Y_i , then there is a fiber-preserving homeomorphism g_i of G_i which is fixed on Y_i and outside a compact neighborhood of Y_i in G_i such that $T_i \subset g_i(G_i \cap H)$. Define the homeomorphism g of Q^3 by

$$g = \begin{cases} g_i & \text{on } G_i & \text{for } i = 1, 2, \dots, r. \\ \text{identity} & \text{on } Q^3 - \bigcup_{i=1}^r G_i. \end{cases}$$

Then g is an $\varepsilon/4$ -homeomorphism of Q^3 which fixes

$$Y_1 \cup Y_2 \cup \cdots \cup Y_r \cup \partial Q^3$$
.

Thus g(H) is an open $3\varepsilon/4$ -mapping cylinder neighborhood of g(Z) in Int Q^3 such that for $i=1,2,\ldots,r,\ X_i\subset T_i\cup g(\widetilde{Y}_i),\ X_i$ contracts to a point in $T_i\cup g(\widetilde{Y}_i)$ and

diam
$$(T_i \cup g(\tilde{Y}_i)) < \varepsilon$$
.

Unfortunately, g(Z) may not be a subpolyhedron of Q^3 . We remedy this by invoking Theorem 3 of [1] to obtain a PL homeomorphism $g': H \to g(H)$ such that $d(g \mid H, g') < \varepsilon/8$. Then g'(Z) is a subpolyhedron of Q^3 . It follows that g'(H) is an open ε -mapping cylinder neighborhood with a 1-spine g'(Z) in Int Q^3 , and for each $i = 1, 2, \ldots, r, X_i \subset g'(H)$ and X_i contracts to a point in the subset $T_i \cup g(\widetilde{Y}_i)$ of g'(H) of diameter less than ε .

3. Proof of theorem 1

We return to the situation and notation of the introduction, with n = 4. Our goal is to establish:

THEOREM 1. Let Σ be a 3-sphere topologically embedded in S^4 . Let U be a complementary domain of Σ , with closure C. Then there is a σ -compact $T \subset \Sigma$ such that $\dim_{\Sigma} T \leq 1$ and $U \cup T$ is 1-ULC.

Let \(\mathscr{C}\) denote the separable metric space of all maps

$$f: (\Delta^2, \partial \Delta^2) \to (C, U)$$

with the supremum metric. Let

$$\mathscr{D} = \{ f \in \mathscr{C} : \operatorname{dem}_{\Sigma} (f(\Delta^2) \cap \Sigma) \leq 1 \}.$$

The following lemma implies that \mathscr{D} is a dense subset of \mathscr{C} . So we may select a countable subset $\{f_1, f_2, f_3, \ldots\}$ of \mathscr{D} which is dense in \mathscr{C} . Let $T = \bigcup_{i=1}^{\infty} (f_i(\Delta^2) \cap \Sigma)$. Then U is 1-ULC in $U \cup T$. Hence Proposition 1(e) implies $U \cup T$ is 1-ULC, while Proposition 2(c) implies $\dim_{\Sigma} T \leq 1$. The proof of Theorem 1 is complete modulo a few lemmas.

THE DENSITY LEMMA. \mathcal{D} is a dense G_{δ} subset of \mathscr{C} .

If for $i = 1, 2, 3, ..., \mathcal{U}_i$ denotes the set of all $f \in \mathcal{C}$ such that $f(\Delta^2) \cap \Sigma$ lies in an open 1/i-mapping cylinder neighborhood with a 1-spine in Σ , then \mathcal{U}_i is an open subset of \mathcal{C} , and $\mathcal{D} = \bigcap_{i=1}^{\infty} \mathcal{U}_i$.

Let f be a map in $\mathscr C$ and let $\varepsilon > 0$. We must construct a map f' in $\mathscr C$ such that $d(f,f') < \varepsilon$ and $\dim_{\Sigma} (f'(\Delta^2) \cap \Sigma) \le 1$. To obtain f', we construct three sequences: f_0, f_1, f_2, \ldots , where each f_i is a map in $\mathscr C$; $\varepsilon_0, \varepsilon_1, \varepsilon_2, \ldots$, where each $\varepsilon_i > 0$; and G_0, G_1, G_2, \ldots , where each G_i ($i \ne 0$) is an open ε_i -mapping cylinder neighborhood with a 1-spine in Σ . The sequences $\{f_i\}$, $\{\varepsilon_i\}$, and $\{G_i\}$ satisfy

- (i) $f_0 = f$;
- (ii) $G_0 = \Sigma$;
- (iii) $\varepsilon_0 = \varepsilon$;

and for i = 1, 2, 3, ...

- (iv) $\varepsilon_i = \frac{1}{2} \min \{ \varepsilon_{i-1}, d(f_{i-1}(\Delta^2), \Sigma G_{i-1}) \};$
- (v) $d(f_{i-1}, f_i) < \varepsilon_i$; and
- (vi) $f_i(\Delta^2) \cap \Sigma \subset G_i$.

Once we have these sequences, (i) through (vi) imply that there is a map f' in $\mathscr C$ defined by $f' = \lim_{i \to \infty} f_i$ such that $d(f, f') < \varepsilon$ and $f'(\Delta^2) \cap \Sigma \subset G_i$ for $i = 1, 2, 3, \ldots$ Thus, $\dim_{\Sigma} (f'(\Delta^2) \cap \Sigma) \leq 1$.

Clearly the following lemma is exactly the tool needed to perform the construction of the sequences $\{G_i\}$, $\{f_i\}$, and $\{\varepsilon_i\}$ inductively.

The Approximation Lemma. If f is a map in $\mathscr C$ and $\varepsilon > 0$, then there is a map f' in $\mathscr C$ and an open ε -mapping cylinder neighborhood G with a 1-spine in Σ such that $d(f,f') < \varepsilon$ and $f'(\Delta^2) \cap \Sigma \subset G$.

Proof. Invoke Corollary 5 to obtain a $\delta > 0$ so that if X_1, X_2, \ldots, X_r are disjoint, compact topologically planar subsets of Σ each of dimension at most 1 and each of diameter less than δ , then there is an open $\varepsilon/3$ -mapping cylinder neighborhood G with a 1-spine in Σ such that for $i = 1, 2, \ldots, r, X_i \subset G$ and X_i contracts to a point in a subset of G of diameter less than $\varepsilon/3$.

There is a complex K triangulating Δ^2 and there is a general position map

$$g:(\Delta^2,\,\partial\Delta^2)\to(S^4,\,U)$$

such that:

- (i) $d(f, g) < \varepsilon/3$;
- (ii) if $A \in K$, then diam $g(A) < \min \{\delta, \varepsilon/3\}$;
- (iii) $g(|K^1|) \subset U$; and
- (iv) $S = \{x \in g(\Delta^2) : g^{-1}(x) \text{ is not a singleton} \}$ is a finite set of points and $\Sigma \cap S = \emptyset$.

K and g are obtained via a sequence of small modifications of f. First choose K to be a triangulation of Δ^2 of mesh so fine that diam $f(A) < \min \{\delta, \varepsilon/3\}$ for each $A \in K$. Then use Proposition 1(c) to pull $f(|K^1|)$ slightly into U. Take a close general position approximation (into S^4) to the resulting map, and push its singularities (which are a finite number of points) off Σ by a very small homeomorphism of S^4 . It is understood that each successive modification of the map must be small enough to preserve the progress made in previous modifications.

Let $X = g^{-1}(S^4 - U)$. Then $X \subset \Delta^2 - |K^1|$, dim Bd $X \leq 1$, and g embeds Bd X in Σ . Hence

$$\{g(A \cap \operatorname{Bd} X) : A \in K \text{ and } A \cap X \neq \emptyset\}$$

is a finite disjoint collection of (nonempty) compact topologically planar subsets of Σ each of dimension at most 1 and each of diameter less than δ . So there is an open $\varepsilon/3$ -mapping cylinder neighborhood G with a 1-spine in Σ such that if $A \in K$ and $A \cap X \neq \emptyset$, then $g(A \cap \operatorname{Bd} X) \subset G$ and $g(A \cap \operatorname{Bd} X)$ contracts to a point in a subset of G of diameter less than $\varepsilon/3$. It follows that for each $A \in K$ with $A \cap X \neq \emptyset$, there is an open subset H_A of G of diameter less than $\varepsilon/3$ and there is a map

$$\phi_A \colon \{ (A \, \cap \, \operatorname{Bd} \, X) \, \times \, \big[0, \, 1 \big] \} \, \cup \, \{ (X \, \cap \, A) \, \times \, \{1\} \} \, \to \, H_A$$

such that

$$\phi_A(x, 0) = g(x)$$
 for each $x \in A \cap Bd X$

and $\phi_A((X \cap A) \times \{1\})$ is a singleton. Since H_A is an ANR, Borsuk's homotopy extension theorem provides a map

$$\psi_A:(X\cap A)\times [0,1]\to H_A$$

such that

$$\psi_A \mid \{ (A \cap \text{Bd } X) \times [0, 1] \} \cup \{ (X \cap A) \times \{1\} \} = \phi_A.$$

Define $f' \in \mathscr{C}$ by

$$f'(x) = \begin{cases} \psi_A(x, 0) & \text{if } A \in K \text{ and } x \in A \cap X. \\ g(x) & \text{if } x \in \Delta^2 - \text{Int } X. \end{cases}$$

If $A \in K$ and $A \cap X \neq \emptyset$, then

diam
$$g(X \cap A) < \varepsilon/3$$
, diam $\psi_A((X \cap A) \times \{0\}) < \varepsilon/3$

and

$$g(A \cap \operatorname{Bd} X) = \psi_A((A \cap \operatorname{Bd} X) \times \{0\});$$

therefore $d(g, f') < 2\varepsilon/3$. Consequently $d(f, f') < \varepsilon$. Since

$$f'(\Delta^2 - X) = g(\Delta^2 - X) \subset U$$

then $f'(\Delta^2) \cap \Sigma \subset f'(X) \subset G$. Theorem 1 is proven.

4. Proof of Theorem 2

Again we return to the scene of the introduction. We assume that T is a subset of Σ such that $U \cup T$ is 1-ULC. We must show:

THEOREM 2. If $n \ge 6$ and $\dim_{\Sigma} T \le 1$, then there is a σ -compactum T' in Σ with $\dim_{\Sigma} T' \le 0$ for which $U \cup T'$ is 1-ULC.

Proof. By Proposition 1(f) we can sssume that T is σ -compact. Theorem 3 of [9] shows that it suffices to exhibit a triangulation Q of Σ of arbitrarily small mesh for which U is 1-ULC in $U \cup (\Sigma - |Q^2|)$. Moreover, this triangulation need not be PL in some given PL structure on Σ . Since U is 1-ULC in $U \cup T$, it suffices to find triangulations of Σ of arbitrarily small mesh whose 2-skeleta miss T. To this end, let $\varepsilon > 0$ and let Q be a triangulation of Σ of mesh less than $\varepsilon/3$. Since $n \ge 6$ and dem $_{\Sigma} T \le 1$, Proposition 2(b) supplies an $\varepsilon/3$ -homeomorphism h of Σ such that $T \cap h(|Q^2|) = \emptyset$. Then $h(Q) = \{h(\alpha) : \alpha \in Q\}$ is a triangulation of Σ of mesh less than ε whose 2-skeleton misses T.

We remark that Theorems 1 and 2 can easily be generalized by replacing Σ and S^n by boundaryless connected PL manifolds M^{n-1} and N^n of dimensions n-1 and n, respectively, where M^{n-1} is topologically embedded as a closed subset of N^n which separates N^n , by substituting "1-LC" for "1-ULC", and by making minor alterations in the proofs to accommodate the lack of compactness.

REFERENCES

- 1. R. H. Bing, Locally tame sets are tame, Ann. of Math., vol. 59 (1954), pp. 145-158.
- A surface is tame if its complement is 1-ULC, Trans. A.M.S., vol. 101 (1961), pp. 294-305.
- 3. ——, Pushing a 2-sphere into its complement, Michigan Math. J., vol. 11 (1964), pp. 33–45.

- J. W. CANNON, ULC properties in neighborhoods of embedded surfaces and curves in E³, Canad. J. Math., vol. 25 (1973), pp. 31-73.
- A. V. Cernavskii, The equivalence of local flatness and local one-connectedness for embeddings of (N 1)-dimensional manifolds in N-dimensional manifolds for N > 4, Mat. Sbornik, vol. 91 (1973), pp. 279-286 = Math. USSR Sbornik, vol. 20 (1973), pp. 297-304.
- 6. ROBERT J. DAVERMAN, Pushing an (n-1)-sphere in S^n almost into its complement, Duke Math. J., vol. 39 (1972), pp. 719–723.
- 7. ——, On the scarcity of tame disks in certain wild cells, Fund. Math., vol. 79 (1973), pp. 63-77.
- 8. ——, Locally nice codimension one manifolds are locally flat, Bull. A.M.S., vol. 79 (1973), pp. 410-413.
- 9. ——, Approximating polyhedra in codimension one spheres embedded in Sⁿ by tame polyhedra, Pacific J. Math., vol. 51 (1974), pp. 417-426.
- 10. ROBERT D. EDWARDS, "Dimension theory, I," in *Geometric Topology*, Lecture Notes in Mathematics, no. 438, Springer-Verlag, New York, 1975, pp. 195-211.
- 11. D. R. McMillan, Jr., *Taming Cantor sets in Eⁿ*, Bull. A.M.S., vol. 70 (1964), pp. 706-708.
- 12. ——, Non-planar embeddings of planar sets in E³, Fund. Math., vol. 84 (1974), pp. 245–254.
- M. A. ŠTAN'KO, The embedding of compacta in Euclidean space, Dokl. Akad. Nauk SSSR, vol. 186 (1969), pp. 1269–1272 = Soviet Math. Dokl., vol. 10 (1969), pp. 758–761.

University of Wisconsin Madison, Wisconsin