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1. Introduction

Suppose f(z), not identically zero, is a function meromorphic on the open
upper half plane H+, and F is a group of unimodular two by two matrices with
real entries. If

is in F, let Mz denote (az + b)/(cz + d). We wish to find possible forms for
f(Mz)/f(z) as M ranges over F. If v(z, M)- f(Mz)/f(z ), we have the
consistency condition

v(z, MN) v(z, N)v(Nz, M) VM, N e F, Vz e H +.
Bochner [-2] named a v which satisfies this equation afactor ofautomorphyforf
on F, (a "Transformationsfaktor" in Petersson’s terminology). We relax
Bochner’s stipulation that v be analytic in z by permitting meromorphic v.
Two distinguished factors of automorphy are

v(z, M) and v(z, M) u(M)(cz + d)
where

is in F SL(2, R), and u(M) is a scalar representation of F. For the first,
f(Mz) --f(z), and f is called an unrestricted automorphic function on F. For
the second, f(Mz) u(M)(cz + d)rf(z), and f is an unrestricted automorphic
form of degree -r (weight r/2) on F with multiplier system u. "Unrestricted"
here indicates the omission of the usual condition that automorphic functions
and forms satisfy certain growth conditions at parabolic vertices of a funda-
mental region [10]. Poincar6 [14] showed that if F is discontinuous and r is
integral, there is a nontrivial meromorphic function which has (dMz/dz)
(cz + d)-2, as a factor of automorphy. For this reason Gunning calls dMz/dz
the Poincar factor of automorphy. For discontinuous F, Petersson and others
studied functions which have such factors of automorphy for the cases r real
f11] and complex [12] with multiplier systems. More recently, Knopp [9] gave
a classification for these functions (automorphic forms) which correspond to
nondiscontinuous F.
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An outstanding question mentioned by Siegel [15, p. 39] is that of the de-
termination of the factors of automorphy other than powers of the Poincar6
factor. Some early results of Appell concerned discontinuous F containing only
translations. For such a cyclic F (T), he found [1, Chapter 1, Section 4]
that for any entire nonvanishing v(z), there corresponds an entire nonvanishing
f(z) such thatf(Tz)/f(z) v(z). Thus the nonvanishing entire factor of auto-
morphy defined by v(z, T) -f(Ttz)/f(z) has in some sense arbitrary form.
Particular examples such as the Weierstrass a-function and the Jacobi functions
have been well studied [3], [8, p. 158], [15, p. 41]. On the other hand, Gunning
[4], I-5, Section II] has studied discontinuous F such that lq+/F is compact,
and found through potential theoretic techniques that any analytic nonvanishing
(on gI+) factor of automorphy has the form

v(z, M) u(M)(cz + d)"h(Mz)/h(z)

where r is rational and depends on F, and h(z) is analytic and nonzero on Fl+.
Conversely, any such v(z, M) is a factor of automorphy.
More generally, for C differentiable manifolds M in place of FI +, Gunning

[5], [6], with minor qualifications, classified into cohomology classes, non-
vanishing analytic factors of automorphy which act on the full Lie group of C
automorphisms ofM, by making use ofthe fact that such a factor of automorphy
is a one-cycle with coefficients in the abelian group of all analytic nowhere
vanishing functions.

In Petersson’s paper [13-[, D C and F GL(2, C), and rational factors of
automorphy on F are considered; that is, in lowest terms,

v(z, M)= a(M)zm + a l(M)z’-I +"" + am(M)
b(M)z" + b(M)z"- +’" + b,(M)

with a(M) O, b(M) O, and m, n fixed integers. The consistency condition
v(z, MN)= v(z, N)v(Nz, M) is considered an equation in nine complex
dimensions, four for each matrix, and z, and is assumed to hold everywhere
except at most on a manifold of lower dimension. It is proved that

v(z, M)--u(M)(cz + d)"Q(Mz)/Q(z)

for some rational function Q(z) and integer n, both independent of M.
Unfortunately, little of the above cited work imparts any information about

the functionf(z) if it is known to have a given type of factor of automorphy for
a certain F. The reason is that except in [5], both Petersson and Gunning
assume the factors of automorphy act on very large groups, groups in fact
which at each point fail to be discontinuous, a situation not calculated to allow
a correspondingf(z). Even in [5], FI+/F is assumed compact, also undesirable;
e.g., the modular group. I therefore present two results valid for F arbitrary:
(1) for polynomial, and (2) for linear fractional factors of automorphy. I thank
M. Knopp for his encouragement and suggestions in this work.
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2. Polynomial factors of automorphy

A factor of automorphy on the group F GL(2, C) is a function, not
identically zero, which satisfies the consistency condition v(z, MN)=
v(z, N)v(Nz, M) for all M, N in F and all z in D, an open F-invariant subset of
the Riemann sphere. Many results cited in the introduction required F
SL(2, R) and D H+, and are easily transferable to any Fuchsian group.
However, the theorems below require no such restrictions on F and D.
A useful consequence of the consistency condition is that

v(z, m") v(z, m)v(mz, M). v(m"-lz, m).

THEOREM 1. Ifafactor ofautomorphy v(z, M) is a polynomial in z ofdegree r
or less for every M F, where the coefficients depend on M, and if r is minimal,
then

Thus if a function f(z) has such a polynomial factor of automorphy, it is an
unrestricted automorphicform.

Proof. This follows from a result of Gunning [5, Section II] in the case
that F is discontinuous and the planar closure of its fundamental region is
compact. We present an elementary proof for all F.

Let N be the matrix in F such that

v(z, N) a,.(N)z" +."+ a(N)z + ao(N) where ar(N) # O.

Let

belong to F. Then

v(z, NM) v(z, M)v(Mz, N)

v(z, M) at(N)
az +

/ + aa(N
az + + ao(N)

+
v(z, M)[ar(N)(az + b) + ar_x(N)(az + b)r-(cz + d) +""

+ a,(N)(az + b)(cz + d)r-’ + ao(N)(cz + d)r]/(cz + d)’.

But NM is in F so v(z, NM) is a polynomial of degree r or less. One of three
cases occur:

(i) c 0, so that a- 0 since ad- bc O. This implies the degree of
v(z, M) is zero. u(M) is then defined as this constant polynomial divided by dr,
so that v(z, M) u(M)(Oz + d)’.

(ii) (cz + d) divides v(z, M) where c - 0. Thus v(z, M) u(M)(cz + d)"
for some u(M) independent of z.
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(iii) (cz + d)divides

ar(N)(az + b) /’" / al(N)(az + b)(cz / a)-1 / ao(N)(cz + d)

where c :/: 0, so that cz + d divides (az + b) and hence az + b. Thus die
b/a which contradicts ad- be O.

This completes the proof.

We introduce a definition of Gunning [5]. A summand of automorphy is a
function, analytic in z, which satisfies a(z, MN) a(z, N) + a(Nz, M) for all
M, Nin F and all z in D.

Suppose F c SL(2, R) is discontinuous (for nondiscontinuous F, see [9]).
We now ask what type off(z) corresponds to a given factor of automorphy of
the type in Theorem 1. For F with only translations, there is an entire non-
vanishingf(z) [-1]. For other F, log u(M)(cz + d) is well defined on D H+,
and is a summand of automorphy. If H+/F is compact, then by Lemma of
[5, Section II], there is a Cg(z) on H+ such that

g(Mz) -g(z) + log u(M)(cz + d),
so if we setf(z) exp g(z), thenf(Mz) u(M)(cz + d)rf(z). Of course for r

even, Poincar6 showed af(z), meromorphic on H +, can be constructed for any
discontinuous F. If r is odd, this is still possible for certain F [11]. For domains
of meromorphicity larger than H +, a complete classification is known [7] which
relates the three variables: domain of meromorphicity, F, and type off(z).

3. Linear fractional factors of automorphy

We return to the hypotheses F c GL(2, C) and D an open F-invariant subset
of the Riemann sphere. F(z, M) G(z, M) will mean there is a c (M) 0
independent of z such that for each M in F, F(z, M) cG(z, M). To abbre-
viate proofs using proportionality --, we adopt the convention that (z A(M))*
denotes (z A(M)) unless A(M) is infinite, in which case it denotes 1. Further,

B(M

denotes (z A(M))*/(z B(M))*. This of course is projective arithmetic.

THEOREM 2. If afactor ofautomorphy v(z, M) is

(M)z + (M)
(M) + 6(M)

for each
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then for each M F, v(z, M) is proportional (..) to one of the seven types:

()
(2) (cz + d);c 0

(3) (cz + d)-l; c 4:0

(4) (z );c 4:0

((5) z- ;c0

(6) (z zl)/(z M-lzl); zl :/: M-lz, M-1z1 oo

(7) (Z M-aZl)/(z z); z M-lzl, M-lz - oo

Proof Neithera fl 0nor7 6 0 since neither f 0nor f_=
If a(M) 7(M) 0, then (1) follows.

If y(M) 0 and a(M) 4: 0, then

v(z, M) (z za) where z -fl(M)/6(M)a(M).
Thus

v(z, M 2) v(z, M)v(Mz, M)

(z za)(azz +b+d
(z +

+ ,
If a- czx 0, thenc
0) and so za a/c and (4) follows. If a cz O, then one of the numerator
terms must cancel with cz + dwhere c

(a- cz). From-d/c z, (2)follows. From

-die -(b &x)/(a- cz) M-Xzx,
it follows zx M(-d/c) , a contradiction.

If a(M) 0 and y(M) 0, we note 1/v(z, M) is also a factor of automorphy,
and the above shows 1Iv(z, M) satisfies (2) or (4), so v(z, M) must satisfy (3)
or (5).
Ifa(M) 0 and 7(M) 0, then v(z, M) (z- z)/(z- zz). Ifzx zz,

(1) holds. Otherwise,

v(z, M 2) v(z, M)v(Mz, M)

-cz. + ,zOq
zJkz(a ; + (b dz)A"
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This must reduce to the quotient of two terms, each at most linear. There are
four cases. The first isa- czl a- cz2 0sothatzl z2. Herec 4- 0
for the same reason as above. The second is that neither a ezl nor a cz2
is zero, and that cancellation takes place within the square brackets, so that

CZ CZ2/I

i.e., M-lz M-1z2 and thus z z2. The third case is

22 m-lz1,
cz

from which (6) follows. The fourth is

CZ2/
and (7) follows.

Next we ask about mixing types; for instance, may F contain M and N such
that v(z, M) is of type (4) and v(z, N) is of type (5)? The answer is Theorem 3.
In preparation for the proof, two procedures are formalized.

(I) For any T in GL(2, C) a conjugate group of the group F is given by

P {rl r-Mr where M e F}.

Set T z, and (, ) v(T, M). Thus

(,) v(T, MN)

v(T, N)v(NT, M)

(, Slo(S;, )
so is a factor of automorphy on P. Suppose F is countable. T can be chosen
SO

r {, M, M- , z, M-z}

for every M in F, where the z is from Theorem 2. Elementary calculations
show if v(z, M) is of type (3), (4), or (6), then

(, ) (’ -)
where for (3) T-m, for (4) T-Mm, and for (6) r-z. If
v(z, M) is of type (2), (5), or (7), then

(,)(’--’)_
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where for (2) (x T-le, for (5) 1 T-M, and for (7) 1 T-zx
Thus (’, ) is restricted to types (1), (6), and (7), and is type (1) if and only if
v(z, M) is type (1).

(II) If

v(z, R) z R-izl
then with

we have

Similarly if

then

Sz zlv(Sz, R) S; --- R-iz( z(a cz) + (b dz)
z(a -- c-3-;i + (b

z S-lz -# 1.
z }----iz

v(z, R) (.z R-
Z Z

v(Sz, R)
S- R- Iz

./= 1.
z S-za

If v(z, R2) is of type (1), (6), or (7) of Theorem 2, and

v(z’ R) ( z R-izZ
then

( z_ Zl)z_._
which equals if and only if Rzz Z. If the latter held, R2 would have za
as a fixed point in addition to the points left fixed by R, so that R2 I.
Similarly if

v(z’R) (z z-R-lz’)=/=-z- 1,

then

v(z’R2) (z z- R-2Zl)---z
which is if and only if R2 +___/.
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THEOREM 3. Ifafactor ofautomorphy v(z, M) is

(M)z + (M)
y(M)z + 6(M )

for every M in F, then one of the followin# holds:

(1) for all M F, v(z, M) 1;

(2) for all M F, v(z, M) (cz + d) where

M

(3) for all M F, v(z, M) (cz + d)-1 where

(4)

(5)

M

there exists z C such that for all M F,

z izx
there exists z C such that for all M F,

v(z, M)
z M-lzl

Z Z

Proof Without loss of generality, F is a countable group. In Lemmas
through 5 below, it is assumed that for every L in F, v(z, L) is restricted to types
(1), (6), and (7) of Theorem 2. After Lemma 5 is the general proof of Theorem 3
except for the case that F consists solely of M such that M2 __+/, which
Lemma 6 then handles.

belong to F throughout.

LEMMA 1. If

v(z, M) ( z z’ )z M --z 1

and

and o(z,N) (.z z z2 )-N-Iz
1,

2

then either z z2 or both M2 "k-I and N2 +I.

Proof
v(z, MN) v(z, N)v(Nz, M)

Z N-2iz2 N M- iz
z_z 

z NZiz N----]zxe
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-1Z orN 1z2 z.by procedure (I). But MN e F, so either z2 N 1M N-
Thus if zl - z2, then z2 N-M-lz1. By procedure (II),

z M-Zz1
so unless M2 _+. L we may repeat the above argument with M2 in place ofM

-2Z1"to conclude that if zl z2, thenz2 N 1M Thus if bothM2 4: /I

and z z2 then MNz2 equals both z and M-lz1, so that zx M-lz
which violates the supposition that v(z, M) is not proportional to one. There-
fore zl z2 implies M2 + I. An interchange of M with N yields" z2 z
implies N2

___
I.

LEMMA 2. If

v(z,M),.(.z-M-azl)l and v(z,N) Iz-N-az2)lZ Z Z Z2

then either zx zz or both M +_-I and N +_L

Proof The reciprocal of a factor of automorphy is a factor of automorphy,
so Lemma may be applied to 1Iv.
LEMMA 3. If

)z VI-_-z 1. 1 and v(z, N) -z ---Z2z2 l.

then either M2 +__ I or N2 -+-I. IfM2 + I, it is immediate that

v(z’ M) (z M- ’w)
so that Lemma 2 is applicable. IfN2 + I, then

v(z’N) ( z w2 ) l where w2N--w2

SO that Lemma is applicable.

Proof Suppose neither M2 -+’I nor N2 L
By the consistency condition,

)(z’MN) V(z’N))(Nz’M) (z z2 z --z ]-IZ1N
so either Z2 N-1Z1 or Z2 M-1Z1 We may use procedure (II) to justify
repetition of this process with N replaced by N2. So either z2 N-Ez or
z2 M-lz. If z2 5/= M-zl, then z2 N-Iz1 and z2 N-2zl, which
implies N-lz2 z2, a violation ofthe hypothesis v(z, N)
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By procedure (II), we are justified in the repetition of both steps in the above
argument with Mreplaced by M2. Thus also z2 M-2zl, so that zl M-lza,
again a violation of hypotheses. The original assumption was thus false.

LEMMA 4. /f

v(z’ M) (" z- z- ) and v(z’ N)M-z
then either (i) N fixes wl M-z and M2 __+ I, or (if) Nz z. In the
former case

v(z’M) (’z M-Iw1) 5
w1-- and v(z,N) (Z w1-- I.

In the latter case

v(z,M) (z -z ZMZ_z) 1 and v(z,N) (Z z-z’_N_iz) 1.

Proof Since v(z, NM) is assumed to be of type (1), (6), or (7) of Theorem 2,
we know it is proportional to either

z (NM)- Iz: or
Z z2

for some z. One of these must match

v(z’ NM) v(z’ M)v(Mz’ N) (" z- Zl )M--z1
If the first matches, z zz and M- zl M-N- zz so z N- zz. Thus

zl N-z, the second of the allowed conclusions. If the second matches,
1Z1"z M 1N z2andz2 M zl, soz M-N M Lemma3may

be applied to the pair M and NM to conclude either M2 +_ I or (NM)2

+_I. If M +__I, then M-Zl MZl N-1M-zl so that N leaves w
fixed where w M- lzl, the first of the allowed conclusions. If (NM)2 ___/,
then (M-N- )2 L so that

M-Xzx (M-XN-X)2M-z M-N-(M-1N-1M-zl) M-1N-iza
and thus z Nz, again the second conclusion.

LEMMA 5. If

v(z’ M) (z M-z)z
and v(z, N) 1,

then either

(i, v(z,M,( z-w1 )z M:w v andv(z,N)
z- N:iw

1

where wl m-za,
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or

Proof. The method of proof of Lemma 2 is applied to Lemma 4.

Proof of Theorem 3. Pick a fixed

in F such that M2 4: + I and v(z, M) (not proportional to 1). This may
not be possible, which ease is handled by Lemma 6. Let

belong to F. Reference to procedure (I), before Theorem 3, shows T can be
chosen so that for every L in , (, L) is one of the three types (1), (6), or (7)
of Theorem 2. An application of Lemmas through 5 yields a complex 1 such
that either

(.,).. - 1 and (,N) -or

(,/) -1{’ and (,/) ]/-11

If v(z, M) is of type (3), (4), or (6), the former must hold so

v(z, M) (, )
(T-z, T-MT)

(. T- z )

and likewise

( z_ )..v(z, N)
z N

The basic point is that N is arbitrary in F. If TI o, this becomes the third
of the five possibilities in the statement of Theorem 3" v(z, N) (yz + 6)-1
for all N. If TI - , we set zl TI, and have the fourth possibility.
Similarly, if v(z, M) is of type (2), (5), or (7) of Theorem 2, then the second or
fifth possibilities of Theorem 3 are fulfilled. So the theorem is proved unless
M2 I for all M such that v(z, M) 1.
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LEMMA 6. If M2-- +_I for every M in F such that v(z, M). 1, then
Theorem 3 remains valid.

Proof Let T be as above. M 2 Iif and only if 2 _[_ I. O(Z, M)
if and only if (, 2) 1. Suppose 9(, ) 1, and (, N) 1. Since

z 4-/, (, 2) can be expressed as both

)1
and

where w /r’1. Likewise since 2 At L ((, ]) can be expressed as both

where w2 J(2. Now

e(,) e(, )(, ) . _
)\ ----,

So either l z or z -1 -1 The last can be written /-12-a(x. That is, either the numerators or the denominators must match.
Let {(i} be the set of matrices in such that ((, Oi) 1. Thus

Either (i ’ for all i, or -1( (-1(1 for all i. If this failed to be true, we
could take one matrix with a deviant numerator in its factor of automorphy
(and therefore a nondeviant denominator), and another matrix with the devi-
ancy reversed. These two would then have with neither numerators nor
denominators matched, which is contrary to the result immediately above.

If ’ ’ for all i, then the already familiar method for translating results
about ((, ) to results about v(z, M), previous to Lemma 6, yields two possi-
bilities. If T(x , then for all

in r with v(z, M) 1, necessarily v(z, M) (cz + d)-. If T(1 , then
there is a complex z, namely za T(, so that for all M in F with v(z, M) 1,
necessarily

v(z, M) z M=z
Similarly, ifF for all i, then since L each 8((, ,)
can also be written



FACTORS OF AUTOMORPHY 665

where wi Q-1i O-11. All denominators are identical, and either for all

in F with v(z, M) l, necessarily v(z, M) (cz + d), or there is a complex
z so that for all M in F with v(z, M) 1, necessarily

v(z, M) z M-z
Z Z

The following four statements complete the proof of Lemma 6.
(a) If for all

in F such that v(z, M) we have v(z, M) (cz + d)-, and if

is in F and v(z, N) 1, then 0, so that v(z, N) (yz + 6)-, and the
third possibility in Theorem 3 follows.

(b) If for all M in F such that v(z, M) we have

z M-z
and if N belongs to F and v(z, N) 1, then N-z z so that

v(z, N) ( z- z’ )z- N=z
and the fourth possibility in Theorem 3 follows.

(c) If in (a), (cz + d) replaces (cz + d)-, then still y 0 and (Vz + )
replaces (Vz + fi)-. The second possibility of Theorem 3 follows.

(d) If in (b),

(z M -_1 z replaces
Z Zl

then still zl N- lzl and

(’z N-lzl)replaceszzl-
Z I"z- N=izl

The fifth possibility for Theorem 3 follows.
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For the proof of these, T is chosen as above to produce only (, L) of type
(1), (6), or (7) of Theorem 2. In (a) or (b), P is restricted to the case that all
numerators are the same for the (, (i) above. Thus

SO

But R is in f’, so

e(, R)

ThusR-l T- NT1. If TI ov we are in case (a), and
becomes Ta NTx N. Thus 0 and (a) is proved. IfT
we are in case (b), and since z T, the equation N- implies

T-z (T- NT)- T- xz T-N-
so that z N-azx and (b) is proved.

If we reciprocate (a) and (b), we arrive at (c) and (d) respectively.

TEOREM 4. Iff(Mz) v(z, M)f(z) where for every M in F, v(z, M) is a
linear fractional transformation in z with coefficients dependin9 on

then one of the following holds.
(1) f(Mz) f(z) for every M in F;
(2) f(Mz) (cz + d)f(Mz) for every M in F;
(3) f(Mz) (cz + d)- af(Mz) for every M in F;
(4) there is a comp&x number z such that 9(z) f(z)(z zx), then

9(Mz) (cz + d)-9(z) for every M in F;

(5) there is a comp&x number z such that 9(z) f(z)/(z z), then

9(Mz) (cz + d)9(z) for every M in F.

Proof The first three possibilities follow from the first three possibilities of
Theorem 3.
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Suppose in Theorem 3, the fourth holds. If 9(z) f(z)(z z1), then

g(Mz) f(Mz)(Mz

)f(z)
az / b

Z,z M-- z + d

(cz + d)_f(z) ( z-z )* (z M- zl)*
z M---z

(cz + d)-If(z)(z-

(cz + el)-(z).
This is (4) above.

Similarly (5) follows from the fifth possibility in Theorem 5.

Suppose F c SL(2, R) is discontinuous. A natural question is what kind of
f(z) corresponds with a given linear fractional factor of automorphy on F. In
the first two cases of Theorem 4, this has already been answered by the informa-
tion in the last paragraph of the section on polynomial factors of automorphy.
In the third, fourth, and fifth cases, we apply this information to If(z), 1/9(z),
and 9(z) respectively.
A result in [-7] states that if r + or 0, and if for F SL(2, R), h(z) is an

unrestricted automorphic form of degree r, meromorphic on the whole complex
plane, then either F is finite, or F consists solely of translations, or h(z) has one
of the few following forms"

(a) h(z) A(z- zl)r; zl real, F consists of parabolic and hyperbolic
matrices, both with Mz zl.

(b) h(z) A(z zl)r; zl nonreal, F consists of elliptic matrices such that
mz z1.

(c) h(z) A(z zlY; zl real, s an integer, F consists of hyperbolic matrices
such that Mzl z and Moe

(d) h(z) A(z z)"/(z Z2)b; a, b positive integers, r a b, zl and

z2 real, and F consists of hyperbolic matrices such that Mzl zl and Mz2
Z2

(e) h(z) A(z zl)a/(z Zz)b; a, b positive integers, r a b, za z2
not real, and F consists of elliptic matrices such that Mz zl and Mz2

(f) h(z) A; if r 0, F is arbitrary; if r 4: 0, F consists of parabolics and
hyperbolics, both with Moe
Thus if a factor of automorphy on F c SL(2, R) is always linear fractional

for anf(z) which is meromorphic on the whole plane, then unless F is finite or
contains only translations, either f(z),f(z)(z zl), or f(z)/(z z) is one of
the types (a) through (f). Further, if F is discontinuous, then except for the
trivial case (h(z) A, r 0, F arbitrary), the above combines nicely with
Theorems 2F and 2H of Chapter I in [10] to show that as a transformation
group, F must be cyclic.
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