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1. Introduction

For background, including examples and applications, on measure and
integration with respect to a sigma lattice, we refer the reader to the basi
reference [2]. Applications of sigma lattices to operator theory can be found
in [1]. The Lebesgue decomposition theorem for lattices appears in [7], and
the bridge between the finitely additive theory and the countably additiv theory
for lattices is displayed in [8]. An entree to vector valued martingale results and
Orlicz spaces in the sigma algebra setting is provided by [15] and its list of
references; [9] presents a closed martingale theorem for sigma lattices. Although
the basic theory of Orlicz spaces can be found in [11], some relevant properties
are recounted below.
The function " R - R, is convex, (-x) (x) > 0 if x 0, (0) 0,

and satisfies the A2-condition" there exists a positive number K such that
(2x)

_
KO(x), x R. Thus, there exists a sequence (K) of positive numbers

such that

(x -t- y) (2(x + y)/2)

<_ KO((x / y)/2)

< (K/2)((x) + t(y))

K2((x) + (y))

and tb(= x) <_ K,

__
tb(x). The set of -measurable functions

f: - R, with j’u (h) dp < is denoted by L L(fl. , p). Section 9 of
[11] describes norms which make L into a Banach space; we shall use the
Orlicz norm. Thus 11, Theorem 9.4], if {g,} is a sequence in L(R), [[g,[[ 0, if,
and only if, j’u O(g,) d# --, 0. For example, when I < < , - + fl- 1
b(t) t/ and L L=(), ’, p). Then

Ilgllo =/(/a)llgll=, where (llgll) .In ]g]= dp, 1 _< < c.

Thus for > 1, L,-convergence is a special case of L*-convergence. Although
Lx does not fit into the Orlicz space framework, convergence in La is determined
by j" 1.1 dp; and Theorem 9.4 of [11] permits us to restrict our attention to
j’, (I)(-) d/ when considering convergence in the Orlicz space L. By focusing on
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this integral, we can give proofs of the L results which carry over to the L case.
The next paragraph explains why the proofs also establish Ll-convergence.
The function has two additional properties:

lim p(t)/t 0 and lim p(t)/t
tO t-oo

If (x) were Ixl, x R, then would not satisfy these two additional properties,
but would satisfy all of the properties mentioned in the first two sentences of
the preceding paragraph; those properties suffice for verifying the properties of
the integral that establish our assertions for L(R). Hence the appropriate state-
ments of our results remain valid if we replace L(R) by L1. Some useful con-
sequences of those properties follow.

Since (x) > xO(1), x > 1, L(R) c L, and

Ihi d# _< (1)-1 | O(h) d/, a _> 1.
Ihl >a) ,J( Ihl >a)

Thus a sequence {hk} of -measurable functions is uniformly integrable in L1
(cf. [12, II, D17-1), i.e.,

lim sup | Ihkl d# O,
aoo k .](ih,l >a)

if {hk} is uniformly integrable in if, i.e.,

lim sup | dP(hk) d# O,
a.-.*oo k (ihkl>a

which implies

An ff-Cauchy sequence {hk} is uniformly integrable in L(R), i.e.,

lira sup f (hk) d# O.
a-oo k (ihkl >a)

An L,-Cauchy sequence {hk} is uniformly integrable in L, i.e.,

lim sup f Ihkl O.
a k 3( Ihkl >a)

If a > 0 and x > 1, then dp(xa) > xO(a) ((a)/a)(xa). Hence,

 nlhl d# <_ Ihl d# + ala(Ihl < a)

< (a/(a))f (h) d# + a,
Ihl >a)
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and (choosing a small) J’n ihl d/ --, 0 if J’n (h,) d# -. 0. We defer further dis-
cussion of this property to Section III, where the results of Section II will be
available.

If 2, conditional expectations have especially nice interpretations, namely
projections on subspaces in the sub a-algebra case and on convex cones [4,1,
rlo-I in the sub a-lattice case: If h L2, then the derivativefof h given ’ is the
best L2-approximation to h by functions in L2(f, ’, #). However, in contrast
to the a-algebra setting, projection on a convex cone need not be a linear oper-
ation and introducing intermediate projections may change the final result.
Nevertheless, Johansen’s characterization r lo-I implies that the Radon-Nikodym
derivative is positive homogeneous and monotone on nonnegative functions
(i.e., if U, V, WL(R),c > 0,0 < V < W, then(cU).a cuandO < v_< w,
where u, v, and w are the conditional expectations of U, V, and W given
Note that since the dd,’s are merely nondecreasing, d//can be any sub a-lattice
of a’. Moreover [9, Theorem 2], the derivatives f, of an L* function h given
.////, converge in L* to the derivativef of h given .//t’, i.e., J’n *(f- f) d/ 0.
In Section II, the Radon-Nikodym derivative is shown to be a continuous map
of L* onto the closed convex cone L*(fl, d///, #).

II. The Radon-Nikodym derivative is a continuous map
of L* onto the closed convex cone L*(fL d/, p)

To establish this result, it suffices to show that the derivative is a continuous
map on L* and then verify that L*(f, ’,/) is complete in L*.
We begin by recalling Johansen’s characterization of the Radon-Nikodym

derivative and exposing some of its relevant properties.
Let h L1, let 2 be defined on by 2(E) J’E h dp, and let f denote the

derivative of h given ’. Then (cf. 1-5, Theorem 1.9])f is characterized by

(1) 2((f > a) B0 >_ ap((f > a) Be), B .
and

(2) 2((f <_ b) c B) <_ bp((f <_ b) B), B ,At.

Notice that the a-additivity of p permits (f > a) and (f < b) to be replaced
by (f > a) and (f < b). These inequalities imply that

so

#(Ifl >- a) p(f >_ a) + p(f < -a) < a-’{A(f >_ a) 2(f < -a)}

(3) /(Ifl > a) < a -’121(Ifl >_ a) where IZI(E) f Ihl d.
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Again, (Ifl a) can be replaced by (Ifl > a) both above and in the inequality

(4) f d, <_ (h) d#, a > O,
Ifl >a) Ifl >-a)

which follows from [-9, p. 548-549] and a-additivity. These inequalities provide
a base from which to establish continuity.

Let h e L* and e > 0; we shall find 6 > 0 such that if # e L* and

fne(g t) d# < 6, then fn(e-f) d# < e,

where e andfare the derivatives ofg and h given d/. To this end, let

p(E) fe g d# and

and denote j’n Ig hi d# by , so 12(E) p(E)I _< , E e . Combining this
inequality, (1) and (2) and their corresponding versions for p gives

(5) 2((e > a) BO >_ ap((e > a)c B
and

(6) 2((e <_ b) B) <_ b#((e <_ b)c B) + , B .///l.

Combining (1) with (6) and (2) with (5) yields

(7) (a b)p((f > a)
and

(8) (a- b)p((f <_ b)

Now let fl be a positive number and m be a positive integer; then set b and a
consecutive terms of the sequence -(m 1)fl,..., -fl, 0, fl,..., (m 1)ft.
Applying (7) and (8), we obtain

(9) p(le- f[ > 2fl) < p(le[ >_ mfl) + p(lf[ _> mfl) + 2(2m 1)fl-.
Next apply (3) to (9) and let y 2fl to obtain

If is near h in L(R) then is near h in L, so the right side of (10) is small if m
is large enough and is sufficiently close to h to make e much smaller than
y/(8m). Thus,

(e f) d#

<_ dp(’) + K2 .,,-ttle-f]> {O(e) + Off)} d#

e -fl > ) + J’ll> (f)
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however,

and

(f) d#
_

ft (h) dp
Ill>c) Ill>c)

ap(e) d <_ f( (g) d#
[e[>c) [el>c

<_K2{f( (a-h)dl+f( O(h) dtz}.lel>c) lel>c)

Finally, (3) implies that

(lel > c) _< c- I1 d;

so we recall that, since (h) La, J’(lel >c) (e) d/ is small if c is large and y is
near h in L1. Hence, J’n (I)(e f) d# < e if we choose c large, then choose
small and, finally, choose 6 wisely. Thus, the Radon-Nikodym derivative is a
continuous operator on L. For the sake of completeness, notice that 6 is
independent of /.
To finish this section by showing that L(E, /, p) is complete in L, it will

be convenient to have the following notation for the truncates of a function
available.
Whenever n is a positive integer and u is a (real valued) function defined on, let u’(x) u(x), where lu(x)l < n, and u’(x) nu(x)/lu(x)l otherwise.

LEMMA 1. The set of /l-measurable functions in L is complete in L.
Proof. Let h L and (cf. [8, Theorem 2]) let hk be a sequence of

measurable functions converging to h in L*. Remembering that h is Cg-measur-
able if h is g-measurable for all positive integers n, we fix n and let bn denote
the Radon-Nikodym derivative of h given ///. Since tp, is /-measurable, it
suffices to show that bn h". Thus we fix n and notice that several functions
to be encountered have values in [-n, hi; for example (cf. [9]) b bn, so it
suffices to show that p, h in L2. To this end, remember that h, L2(, ///, #)
and that taking derivatives does not increase L2-distance, so II,- hZ[[ <
lib hZll. Thus,

(Dn h" -< n h?,ll / h, hn

< 211 h h?,
_< 2(2nllhn- hllx) x/z,

which goes to zero as k c if J’n dP(hn h,) d# 0 as k c. However,

Ih h?,l < Ih hl,

so J’n @(h" h,) d# < J’n @(h hk) d# 0 as k oo and we are done.
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III. Two other properties of L-Cauchy sequences

Suppose that {hk} is a Cauchy sequence in L(R) such that hk is ’k-measurable.
Since L* is complete, Lemma 1 shows that there exists a ,//’-measurable function
h such that hk --} h in L*. For g L*, denote the derivative of g given /’k by
(g)k; notice that (hk)k hk. Let Uk (h)k; then for j > k,

which is small if k is large enough because of the continuity of the derivative at
h. But, j’n (g)dp small implies that j’n [g[ d# is small; and (ll > 0 <
-z .f 171 d. Thus, {hk) satisfies

(**) lim sup/([(h,)m hm[ > e) 0, e > 0.
"

Since Ih7 hT, < Ih hkl for n > 1,

(h’- hT,) d <_ f,(h.- h,) d;

so the sequence {h.)= is Cauchy in L and h, is ’-measurable. Thus, {h}
satisfies

(,) lim sup/(l(h)- h,l > e)= 0, n 1, 2,
k j>k

Thus, uniform integrability in L*, (,) and (**) are necessary conditions in
order that a sequence (hk) of ’k-measurable functions converge in L to a
’-measurable function. In the next section we shall verify that uniform
integrability in L* and (,) are sufficient conditions; hence, in the presence of
uniform integrability, (,) (**). But first we conclude this section with two
examples. The first example is a very simple example to motivate the second,
which shows that (,) and (**) arise naturally in the g-lattice setting. In each
example, fk denotes the derivative of g given ’k.

Example 1. Let Q {1, 2, 3); let #/g’l be comprised of the empty set, 0,
and f, let ’2 ’1 w { 1 } and let -/#3 #2 w {1, 2}. A functionf on Q is
determined by three numbers, cj f(j), j f. The ./t/i-measurable functions
are constant functions, f is ’2-measurable if cl > c2 ca, and f is ’a-
measurable if cl > c2 > ca. Let g be defined on f by g(1) 2, g(2) 4,
g(3) 1. and let/ be the additive function defined on the subsets of Q by
p(1) p(2) 1/4,/(3) 1/2. Then fl c is obtained by minimizing

lg

-fl2 d/ 4-1(2 c)2 -- 4-1(4 12)2 - 2-(1 c)2,

i.e., finding c so that 4-1(2 c) + 4-1(4 c) + 2-1(1 c) 0, c 2. To
find f2, first minimize

4-1(4 c)2 + 2-1(1 c)2
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and find 2 3 2, then let cl 2. (Notice that f2 ] in this example.)
To determineJ, solve 4-1(2 c) + 4-1(4 c) 0 and find cl c2 3,
then let ca 1. Finally, to compute (f3)2, minimize 4-1(3 c)2 + 2-1(1 c)2
to find c2 Ca 5/3 and then notice that cl 3.

Example 2. Let be the set of positive integers and, for each k , let agk
be comprised of 0, fl, and the sets {1, 2,..., n), n < k. Let be the sigma
additive function defined on the subsets of by g(2n 1) g(2n) 2 -"+*).
Let y be defined on by y(2n 1) 1/4 and g(2n) 2/4. We shall show
that for each positive integer k, f2k and f2k+l behave like the functions in
Example 1. To this end, first determine f2k+ as follows. Look at the first 2k
integers in pairs and find that the best possible choices are c2,-, c2,
(3/2)4 -", n k. The tail equation to be solved for a minimum is

T2k + (c) 2-{"+ )(4-" c) + 2-{"+ a)((2/4") c) 0.
n>k

Thus, c2+ c (3/14)4 -t, j . Turning now tof, solve

Ta(c) 2-{+*)((2/4) c) + Tz+,(c) 0

to find e (17/21)4-t" hence, ca, ca, (3/2)4-", n < k, ez-, 4-*

cat ez+s (17/21)4-, j . Finally, to compute (.f+,)a, solve

2-{+x)({(3/2)4-"} c) + 2-({(3/14)4-"} e) 0

to find e (9/14)4-" Thus, oz,- oz, (3/2)4-", n < k, ea (3/2)4-c ea+s (9/14)4-", j e .
Thus, while {} is a sequence of nonnegative functions bounded by 1, for

each positive integer N there exist n > m > N with (])m -f=] > 0) > 0.
This latter phenomenon does not occur in the -algebra setting. Nevertheless,
the sequence {} is called a martingale in the -lattice literature. For the sake
of completeness, notice that {} is Cauchy in L and in L=, 1 < m; and
=f,j 1.

IV. Uniform integrability in L and condition (.) are sufficient
for a sequence {hk} of (k-measurable functions to converge

in L to a /d-measurable function

To verify this assertion, notice that

;ta (h- ha)dg ;ta ({h- h} + {h- h,} + {h,- h})d#

<_ K3(Aj,. + Bj, k,n + Ak, n),

where

As," [ tI)(hs) d#, j 1, 2,...,
dIh,l >hi
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and

B,, j (h h) d

< q)(2n)#([Ih hT,[ > 6]) + q)(6)/(f), 6 > 0.

Uniform integrability of the sequence {I)(ha)} implies that limn supj d,, 0,
lim_.o 0(6) 0 and L* is complete [11]; so we conclude that there is an
z’-measurable function h such that ha --, h in L* if

lim sup p([lh- h,l > 6-])-- 0, 6 > 0, n 1,2,
j,k>m

Since Lemma 1 implies that h is ’-measurable, L*-convergence is established
by showing convergence in probability as follows. Notice that Johansen’s
construction for the Radon-Nikodym derivative in [10] implies that I(h)l < r/,
j > k, n 1, 2, Then fix n and denote h by y, j 1, 2, Thus
lyl < n and it suffices to show that {y} converges in probability by showing
that it converges in L2.
To this latter end, suppose on the contrary that {y} does not converge in L2.

Then there exists fl > 0 such that whenever y .La and p is a positive integer
[]gk gl] 2 J’n [gk (j[2 d/z > 3fl for some k > p. Thus, there exists a
subsequence {gk} such that upon relabeling gb as g, we have []g+ g[[2 >
3fl and/z(l(g1)k gk] 2 > e) < 6, j > k 1, 2,..., where e and 6 remain to
be chosen. To this end, we set j k + 1 and refer to [4, Corollary 2.1] and
[10, Theorem 5] to obtain

IIg,,/x- ,qll 2-- Ilg.- gall 2> IIg- (g./),]]2 + II(g),,- gxll 2

/ II((g) g)/ (g gO[I 2.

Next we remember that if u, v, and w L2 with u v + w, then

(ii) Iiull 2 > (llvll Ilwll) 2 > Ilvll 2 211vii Ilwll.
Moreover, since lyzl < n and I(gj)l < n,

Ily y[I 2 -< 4n2 and IIg (y)[[2 < + 4n26 (fl/4n)2,
since we now let e f122-5n-2 and 6 fl22-7n-’. Thus,

4n2 -- II,q,+x gall 2 > Ilgk+x gkll 2 fl / Ilgk gall 2 fl
> fl / IIg g1112

> (k + 2)fl oo

which is a contradiction.
A similar result for Lz where (.) is replaced by (**) is established in the next

section.
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V. Uniform integrability in L2 and condition (**) are sufficient
for a sequence {hk} of (/k-measurable functions to converge

in L2 to a #-measurable function

To establish convergence, suppose on the contrary that {hk) does not converge
in L2. Then there exists fl > 0 such that whenever g 6 L2 and p is a positive
integer IIG 112 $s Ihk 12 d > 3fl for some k > p. Thus, there exists
a subsequence {hk) such that upon relabeling hkj as .qj, We have

II+x vll 2 > 3fl and /.t([(gj)k gkl 2 > 8) < 6, j > k 1, 2,...,

where e and 3 remain to be chosen. Since a uniformly integrable sequence is
bounded in L2, we can assume that IIll <- C, _> 1. For the moment, also
suppose that 4CIIgk (gj)kll < ft. Then we can apply inequalities (i) and (ii)
in the preceding section and thereby obtain the contradiction

4c2 >- I1/ -xll 2 >- I!/ -112 -/ / I1- ,112

>/ / IIg g

> (k + 2)/ -Since L2 is complete and L2( ,/) is closed in L2, th theorem is established
by verifying that lirak supjk [Igk (Y)k[] 0 in the sequel.
We begin the aforementioned verification by recalling the list of ten properties

of the Radon-Nikodym derivative exposed in Section II; then we observe

sup Iih- hll _< sup IIh-
(11)

< sup h12 d/ =,,
J Ihjl >n)

where n 0 as n
Let p > 0, let fl 1/2, and let m satisfy the inequality (4C)/m < p/2. Next

let n satisfy the inequality 4(2m 1) < p[2. Then recall that the derivative
(h) of h given ’ satisfies Ii(h)lloo < n, which implies

(12) (Ifl > n + 1) (l(h") -fl > 1).

Thus, we apply (10), (11), and (12) with h gj, h", and d/ dt’ to obtain

(13) sup (i(a)kl > n + 1) < p.
j,k

Let v > 0. Then choose/9 so small that applying (4) with h th and t’
yields

(14) f, I(gj)kl2dla < ( ,g12d# < v, j,k >_ l,
I(g.i)kl>n+ ) I(g),l >n+ 1)

because of uniform integrability.
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Returning to our basic task, let G(j, k, e) ([g (g)kl > e) and notice
that

(15) < 2 ..[_ 4

IOk (O./)ki 2 d,u

(Io12 + I(o)i 2) d

< e2 + 4{2v + 2(n + 1)2p(G(j, k, e))} by (14).

Condition (**) permits us to choose ko such that if j >_ k >_ ko, then
p(G(j, k, e)) < 6, where 6 satisfies the equation (n + 1)2c < V. Hence
[Ig (gj)kl[ 2 < 82 --I- 16v ifj > k > ko. Since e. and v were arbitrary, we are
done.

Perhaps a further remark about (,) and (**) is in order. If {//} is a non-
decreasing sequence of a-algebras and {.fk} is a sequence of .gk-measurable
functions which is uniformly integrable in L, then [3], [13], and [14] imply
that (,) and (**) are equivalent. We have shown that (,) implies (**) when the
.gg’s are tr-lattices and {fk} is uniformly integrable in L*. When L2 = L* one
can easily continue the argument in Section V to assert that (**) implies (,), so
they are equivalent conditions for uniformly L*-integrable sequences in this case.
However, a verification of this latter implication in the general case (e.g., if
L(R) L) seems to involve a very tedious computation.

In conclusion we remark that [6i and [81 permit extensions of these results to
sub-lattices of sO. For example, the approximation properties established in [8]
imply that if the ///k’S are merely sub-lattices of with g = .///+ , > 1,
then a uniformly integrable sequence {hk} of /k-measurable functions is Cauchy
in the pre-Hilbert space L2 if, and only if, it satisfies condition (**).
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