CONVERGENCE OF RADON-NIKODYM DERIVATIVES AND MARTINGALES GIVEN SIGMA LATTICES

BY

R. B. DARST

1. Introduction

For background, including examples and applications, on measure and integration with respect to a sigma lattice, we refer the reader to the basic reference [2]. Applications of sigma lattices to operator theory can be found in [1]. The Lebesgue decomposition theorem for lattices appears in [7], and the bridge between the finitely additive theory and the countably additive theory for lattices is displayed in [8]. An entree to vector valued martingale results and Orlicz spaces in the sigma algebra setting is provided by [15] and its list of references; [9] presents a closed martingale theorem for sigma lattices. Although the basic theory of Orlicz spaces can be found in [11], some relevant properties are recounted below.

The function $\Phi: R \to R$, is convex, $\Phi(-x) = \Phi(x) > 0$ if $x \neq 0$, $\Phi(0) = 0$, and Φ satisfies the Δ_2 -condition: there exists a positive number K such that $\Phi(2x) \leq K\Phi(x), x \in R$. Thus, there exists a sequence $\{K_n\}$ of positive numbers such that

$$\Phi(x + y) = \Phi(2(x + y)/2)$$

$$\leq K\Phi((x + y)/2)$$

$$\leq (K/2)(\Phi(x) + \Phi(y))$$

$$= K_2(\Phi(x) + \Phi(y))$$

and $\Phi(\sum_{j=1}^{n} x_j) \leq K_n \sum_{j=1}^{n} \Phi(x_j)$. The set of \mathscr{A} -measurable functions $f: \Omega \to R$, with $\int_{\Omega} \Phi(h) d\mu < \infty$ is denoted by $L^{\Phi} = L^{\Phi}(\Omega, \mathscr{A}, \mu)$. Section 9 of [11] describes norms which make L^{Φ} into a Banach space; we shall use the Orlicz norm. Thus [11, Theorem 9.4], if $\{g_n\}$ is a sequence in L^{Φ} , $||g_n||_{\Phi} \to 0$, if, and only if, $\int_{\Omega} \Phi(g_n) d\mu \to 0$. For example, when $1 < \alpha < \infty, \alpha^{-1} + \beta^{-1} = 1$ $\Phi(t) = t^{\alpha}/\alpha$ and $L^{\Phi} = L_{\alpha}(\Omega, \mathscr{A}, \mu)$. Then

$$\|g\|_{\Phi} = \beta^{(1/\beta)} \|g\|_{\alpha}, \quad \text{where } (\|g\|_{\alpha})^{\alpha} = \int_{\Omega} |g|^{\alpha} d\mu, 1 \le \alpha < \infty$$

Thus for $\alpha > 1$, L_{α} -convergence is a special case of L^{Φ} -convergence. Although L_1 does not fit into the Orlicz space framework, convergence in L_1 is determined by $\int |\cdot| d\mu$; and Theorem 9.4 of [11] permits us to restrict our attention to $\int_{\Omega} \Phi(\cdot) d\mu$ when considering convergence in the Orlicz space L^{Φ} . By focusing on

Received September 23, 1975.

this integral, we can give proofs of the L^{Φ} results which carry over to the L_1 case. The next paragraph explains why the proofs also establish L_1 -convergence.

The function Φ has two additional properties:

$$\lim_{t\to 0} \Phi(t)/t = 0 \text{ and } \lim_{t\to \infty} \Phi(t)/t = \infty.$$

If $\Phi(x)$ were $|x|, x \in R$, then Φ would not satisfy these two additional properties, but Φ would satisfy all of the properties mentioned in the first two sentences of the preceding paragraph; those properties suffice for verifying the properties of the integral that establish our assertions for L^{Φ} . Hence the appropriate statements of our results remain valid if we replace L^{Φ} by L_1 . Some useful consequences of those properties follow.

Since $\Phi(x) \ge x\Phi(1), x \ge 1, L^{\Phi} \subset L_1$, and

$$\int_{(|h|>a)} |h| \ d\mu \le \Phi(1)^{-1} \int_{(|h|>a)} \Phi(h) \ d\mu, \quad a \ge 1.$$

Thus a sequence $\{h_k\}$ of \mathscr{A} -measurable functions is uniformly integrable in L_1 (cf. [12, II, D17]), i.e.,

$$\lim_{a\to\infty}\sup_k\int_{(|h_k|>a)}|h_k|\ d\mu=0,$$

if $\{h_k\}$ is uniformly integrable in L^{Φ} , i.e.,

$$\lim_{a\to\infty}\sup_k\int_{(|h_k|>a)}\Phi(h_k)\ d\mu=0,$$

which implies

$$\lim_{\delta\to 0} \sup_{k} \sup \left\{ \int_{E} \Phi(h_{k}) d\mu; \, \mu(E) < \delta \right\} = 0.$$

An L^{Φ} -Cauchy sequence $\{h_k\}$ is uniformly integrable in L^{Φ} , i.e.,

$$\lim_{a\to\infty}\sup_k\int_{(|h_k|>a)}\Phi(h_k)\ d\mu=0$$

An L_{α} -Cauchy sequence $\{h_k\}$ is uniformly integrable in L_{α} , i.e.,

$$\lim_{a\to\infty}\sup_k\int_{(|h_k|>a)}|h_k|^{\alpha}=0.$$

If a > 0 and $x \ge 1$, then $\Phi(xa) \ge x\Phi(a) = (\Phi(a)/a)(xa)$. Hence,

$$\int_{\Omega} |h| \ d\mu \leq \int_{(|h|>a)} |h| \ d\mu + a\mu(|h| \leq a)$$
$$\leq (a/\Phi(a)) \int_{(|h|>a)} \Phi(h) \ d\mu + a,$$

114

and (choosing a small) $\int_{\Omega} |h_n| d\mu \to 0$ if $\int_{\Omega} \Phi(h_n) d\mu \to 0$. We defer further discussion of this property to Section III, where the results of Section II will be available.

If $\alpha = 2$, conditional expectations have especially nice interpretations, namely projections on subspaces in the sub σ -algebra case and on convex cones [4], [10] in the sub σ -lattice case: If $h \in L_2$, then the derivative f of h given \mathcal{M} is the best L_2 -approximation to h by functions in $L_2(\Omega, \mathcal{M}, \mu)$. However, in contrast to the σ -algebra setting, projection on a convex cone need not be a linear operation and introducing intermediate projections may change the final result. Nevertheless, Johansen's characterization [10] implies that the Radon-Nikodym derivative is positive homogeneous and monotone on nonnegative functions (i.e., if $U, V, W \in L^{\Phi}, c \geq 0, 0 \leq V < W$, then $(cU)_{\mathcal{M}} = cu$ and $0 \leq v \leq w$, where u, v, and w are the conditional expectations of U, V, and W given \mathcal{M}). Note that since the \mathcal{M}_k 's are merely nondecreasing, \mathcal{M} can be any sub σ -lattice of \mathcal{A} . Moreover [9, Theorem 2], the derivatives f_k of an L^{Φ} function h given \mathcal{M}_k converge in L^{Φ} to the derivative f of h given \mathcal{M} , i.e., $\int_{\Omega} \Phi(f - f_k) d\mu \to 0$. In Section II, the Radon-Nikodym derivative is shown to be a continuous map of L^{Φ} onto the closed convex cone $L^{\Phi}(\Omega, \mathcal{M}, \mu)$.

II. The Radon-Nikodym derivative is a continuous map of L^{Φ} onto the closed convex cone $L^{\Phi}(\Omega, \mathcal{M}, \mu)$

To establish this result, it suffices to show that the derivative is a continuous map on L^{Φ} and then verify that $L^{\Phi}(\Omega, \mathcal{M}, \mu)$ is complete in L^{Φ} .

We begin by recalling Johansen's characterization of the Radon-Nikodym derivative and exposing some of its relevant properties.

Let $h \in L_1$, let λ be defined on \mathscr{A} by $\lambda(E) = \int_E h d\mu$, and let f denote the derivative of h given \mathscr{M} . Then (cf. [5, Theorem 1.9]) f is characterized by

(1)
$$\lambda((f > a) \cap B^c) \ge a\mu((f > a) \cap B^c), \quad B \in \mathcal{M}$$

and

(2)
$$\lambda((f \le b) \cap B) \le b\mu((f \le b) \cap B), \quad B \in \mathcal{M}.$$

Notice that the σ -additivity of μ permits (f > a) and $(f \le b)$ to be replaced by $(f \ge a)$ and (f < b). These inequalities imply that

$$\mu(|f| \ge a) = \mu(f \ge a) + \mu(f \le -a) \le a^{-1} \{\lambda(f \ge a) - \lambda(f \le -a)\}$$
$$= a^{-1} \{ \int_{(f \ge a)} h \, d\mu + \int_{(f \le -a)} -h \, d\mu \}, \quad a \ge 0,$$

so

(3)
$$\mu(|f| \ge a) \le a^{-1}|\lambda|(|f| \ge a) \text{ where } |\lambda|(E) = \int_{E} |h| \ d\mu$$

Again, $(|f| \ge a)$ can be replaced by (|f| > a) both above and in the inequality

(4)
$$\int_{(|f|\geq a)} \Phi(f) \ d\mu \leq \int_{(|f|\geq a)} \Phi(h) \ d\mu, \quad a\geq 0,$$

which follows from [9, p. 548–549] and σ -additivity. These inequalities provide a base from which to establish continuity.

Let $h \in L^{\Phi}$ and $\varepsilon > 0$; we shall find $\delta > 0$ such that if $g \in L^{\Phi}$ and

$$\int_{\Omega} \Phi(g - h) \, d\mu < \delta, \quad \text{then} \quad \int_{\Omega} \Phi(e - f) \, d\mu < \varepsilon,$$

where e and f are the derivatives of g and h given \mathcal{M} . To this end, let

$$\rho(E) = \int_E g \ d\mu \quad \text{and} \quad \lambda(E) = \int_E h \ d\mu, \quad E \in \mathscr{A};$$

and denote $\int_{\Omega} |g - h| d\mu$ by α , so $|\lambda(E) - \rho(E)| \leq \alpha$, $E \in \mathscr{A}$. Combining this inequality, (1) and (2) and their corresponding versions for ρ gives

(5)
$$\lambda((e > a) \cap B^c) \ge a\mu((e > a) \cap B^c) - \alpha$$

and

(6)
$$\lambda((e \leq b) \cap B) \leq b\mu((e \leq b) \cap B) + \alpha, B \in \mathcal{M}.$$

Combining (1) with (6) and (2) with (5) yields

(7)
$$(a-b)\mu((f>a) \cap (e \le b)) \le \alpha$$

and

(8)
$$(a-b)\mu((f \le b) \cap (e > a)) \le \alpha.$$

Now let β be a positive number and *m* be a positive integer; then set *b* and a consecutive terms of the sequence $-(m-1)\beta, \ldots, -\beta, 0, \beta, \ldots, (m-1)\beta$. Applying (7) and (8), we obtain

(9)
$$\mu(|e - f| > 2\beta) < \mu(|e| \ge m\beta) + \mu(|f| \ge m\beta) + 2(2m - 1)\alpha\beta^{-1}$$
.

Next apply (3) to (9) and let $\gamma = 2\beta$ to obtain

(10)
$$\mu(|e - f| > \gamma) < (m\beta)^{-1} \left\{ \int_{\Omega} |g| \ d\mu + \int_{\Omega} |h| \ d\mu \right\} + 4(2m - 1)\alpha\gamma^{-1}.$$

If g is near h in L^{Φ} then g is near h in L_1 , so the right side of (10) is small if m is large enough and g is sufficiently close to h to make α much smaller than $\gamma/(8m)$. Thus,

$$\begin{split} &\int_{\Omega} \Phi(e-f) \, d\mu \\ &\leq \Phi(\gamma) + K_2 \int_{(|e-f| > \gamma)} \left\{ \Phi(e) + \Phi(f) \right\} \, d\mu \\ &\leq \Phi(\gamma) + K_2 \left\{ 2\Phi(c)\mu(|e-f| > \gamma) + \int_{(|e| > c)} \Phi(e) \, d\mu + \int_{(|f| > c)} \Phi(f) \, d\mu \right\}; \end{split}$$

however,

$$\int_{(|f|>c)} \Phi(f) \ d\mu \leq \int_{(|f|>c)} \Phi(h) \ d\mu$$

and

$$\int_{(|e|>c)} \Phi(e) \, d\mu \leq \int_{(|e|>c)} \Phi(g) \, d\mu$$

$$\leq K_2 \left\{ \int_{(|e|>c)} \Phi(g-h) \, d\mu + \int_{(|e|>c)} \Phi(h) \, d\mu \right\}.$$

Finally, (3) implies that

$$\mu(|e| > c) \leq c^{-1} \int_{\Omega} |g| \ d\mu;$$

so we recall that, since $\Phi(h) \in L_1$, $\int_{(|e|>c)} \Phi(e) d\mu$ is small if c is large and g is near h in L_1 . Hence, $\int_{\Omega} \Phi(e - f) d\mu < \varepsilon$ if we choose c large, then choose γ small and, finally, choose δ wisely. Thus, the Radon-Nikodym derivative is a continuous operator on L^{Φ} . For the sake of completeness, notice that δ is independent of \mathcal{M} .

To finish this section by showing that $L^{\Phi}(\Omega, \mathcal{M}, \mu)$ is complete in L^{Φ} , it will be convenient to have the following notation for the truncates of a function available.

Whenever *n* is a positive integer and *u* is a (real valued) function defined on Ω , let $u^n(x) = u(x)$, where $|u(x)| \le n$, and $u^n(x) = nu(x)/|u(x)|$ otherwise.

LEMMA 1. The set of \mathcal{M} -measurable functions in L^{Φ} is complete in L^{Φ} .

Proof. Let $h \in L^{\Phi}$ and (cf. [8, Theorem 2]) let h_k be a sequence of \mathcal{M} -measurable functions converging to h in L^{Φ} . Remembering that h is \mathcal{M} -measurable if h^n is \mathcal{M} -measurable for all positive integers n, we fix n and let ϕ_n denote the Radon-Nikodym derivative of h^n given \mathcal{M} . Since ϕ_n is \mathcal{M} -measurable, it suffices to show that $\phi_n = h^n$. Thus we fix n and notice that several functions to be encountered have values in [-n, n]; for example (cf. [9]) $\phi_n = \phi_n^n$, so it suffices to show that $\phi_n = h^n$ in L_2 . To this end, remember that $h_k^n \in L_2(\Omega, \mathcal{M}, \mu)$ and that taking derivatives does not increase L_2 -distance, so $\|\phi_n - h_k^n\| \leq \|h^n - h_k^n\|$. Thus,

$$\begin{aligned} \|\phi_n - h^n\| &\leq \|\phi_n - h_k^n\| + \|h_k^n - h^n\| \\ &\leq 2\|h^n - h_k^n\| \\ &\leq 2(2n\|h^n - h_k^n\|_1)^{1/2}, \end{aligned}$$

which goes to zero as $k \to \infty$ if $\int_{\Omega} \Phi(h^n - h_k^n) d\mu \to 0$ as $k \to \infty$. However,

$$|h^n - h_k^n| \le |h - h_k|,$$

so $\int_{\Omega} \Phi(h^n - h_k^n) d\mu \leq \int_{\Omega} \Phi(h - h_k) d\mu \to 0$ as $k \to \infty$ and we are done.

R. B. DARST

III. Two other properties of L^{Φ} -Cauchy sequences

Suppose that $\{h_k\}$ is a Cauchy sequence in L^{Φ} such that h_k is \mathcal{M}_k -measurable. Since L^{Φ} is complete, Lemma 1 shows that there exists a \mathcal{M} -measurable function h such that $h_k \to h$ in L^{Φ} . For $g \in L^{\Phi}$, denote the derivative of g given \mathcal{M}_k by $(g)_k$; notice that $(h_k)_k = h_k$. Let $u_k = (h)_k$; then for j > k,

$$\int_{\Omega} \Phi((h_j)_k - h_k) d\mu \leq K_2 \left\{ \int_{\Omega} \Phi((h_j)_k - u_k) d\mu + \int_{\Omega} \Phi(u_k - h_k) d\mu \right\},\$$

which is small if k is large enough because of the continuity of the derivative at h. But, $\int_{\Omega} \Phi(g) d\mu$ small implies that $\int_{\Omega} |g| d\mu$ is small; and $\mu(|g| > \varepsilon) \le \varepsilon^{-1} \int_{\Omega} |g| d\mu$. Thus, $\{h_k\}$ satisfies

(**)
$$\limsup_{m} \sup_{n>m} \mu(|(h_n)_m - h_m| > \varepsilon) = 0, \quad \varepsilon > 0.$$

Since $|h_j^n - h_k^n| \le |h_j - h_k|$ for $n \ge 1$, $\int_{\Omega} \Phi(h_j^n - h_k^n) d\mu \le \int_{\Omega} \Phi(h_j - h_k) d\mu;$

so the sequence $\{h_j^n\}_{j=1}$ is Cauchy in L^{Φ} and h_k^n is \mathcal{M}_k -measurable. Thus, $\{h_j\}$ satisfies

(*)
$$\lim_{k} \sup_{j>k} \mu(|(h_{j}^{n})_{k} - h_{k}^{n}| > \varepsilon) = 0, \quad n = 1, 2, \ldots.$$

Thus, uniform integrability in L^{Φ} , (*) and (**) are necessary conditions in order that a sequence $\{h_k\}$ of \mathcal{M}_k -measurable functions converge in L^{Φ} to a \mathcal{M} -measurable function. In the next section we shall verify that uniform integrability in L^{Φ} and (*) are sufficient conditions; hence, in the presence of uniform integrability, (*) \Rightarrow (**). But first we conclude this section with two examples. The first example is a very simple example to motivate the second, which shows that (*) and (**) arise naturally in the σ -lattice setting. In each example, f_k denotes the derivative of g given \mathcal{M}_k .

Example 1. Let $\Omega = \{1, 2, 3\}$; let \mathcal{M}_1 be comprised of the empty set, \emptyset , and Ω , let $\mathcal{M}_2 = \mathcal{M}_1 \cup \{1\}$ and let $\mathcal{M}_3 = \mathcal{M}_2 \cup \{1, 2\}$. A function f on Ω is determined by three numbers, $c_j = f(j), j \in \Omega$. The \mathcal{M}_1 -measurable functions are constant functions, f is \mathcal{M}_2 -measurable if $c_1 \ge c_2 = c_3$, and f is \mathcal{M}_3 measurable if $c_1 \ge c_2 \ge c_3$. Let g be defined on Ω by g(1) = 2, g(2) = 4, g(3) = 1. and let μ be the additive function defined on the subsets of Ω by $\mu(1) = \mu(2) = 1/4, \mu(3) = 1/2$. Then $f_1 \equiv c$ is obtained by minimizing

$$\int_{\Omega} |g - f|^2 d\mu = 4^{-1}(2 - c)^2 + 4^{-1}(4 - c)^2 + 2^{-1}(1 - c)^2,$$

i.e., finding c so that $4^{-1}(2 - c) + 4^{-1}(4 - c) + 2^{-1}(1 - c) = 0$, c = 2. To find f_2 , first minimize

$$4^{-1}(4-c)^2 + 2^{-1}(1-c)^2$$

and find $c_2 = c_3 = 2$, then let $c_1 = 2$. (Notice that $f_2 = f_1$ in this example.) To determine f_3 , solve $4^{-1}(2 - c) + 4^{-1}(4 - c) = 0$ and find $c_1 = c_2 = 3$, then let $c_3 = 1$. Finally, to compute $(f_3)_2$, minimize $4^{-1}(3 - c)^2 + 2^{-1}(1 - c)^2$ to find $c_2 = c_3 = 5/3$ and then notice that $c_1 = 3$.

Example 2. Let Ω be the set of positive integers and, for each $k \in \Omega$, let \mathcal{M}_k be comprised of \emptyset , Ω , and the sets $\{1, 2, \ldots, n\}$, n < k. Let μ be the sigma additive function defined on the subsets of Ω by $\mu(2n - 1) = \mu(2n) = 2^{-(n+1)}$. Let g be defined on Ω by $g(2n - 1) = 1/4^n$ and $g(2n) = 2/4^n$. We shall show that for each positive integer k, f_{2k} and f_{2k+1} behave like the functions in Example 1. To this end, first determine f_{2k+1} as follows. Look at the first 2k integers in pairs and find that the best possible choices are $c_{2n-1} = c_{2n} = (3/2)4^{-n}$, $n \leq k$. The tail equation to be solved for a minimum is

$$T_{2k+1}(c) = \sum_{n>k} 2^{-(n+1)}(4^{-n} - c) + 2^{-(n+1)}((2/4^n) - c) = 0.$$

Thus, $c_{2k+j} = c = (3/14)4^{-k}$, $j \in \Omega$. Turning now to f_{2k} , solve

$$T_{2k}(c) = 2^{-(k+1)}((2/4^k) - c) + T_{2k+1}(c) = 0$$

to find $c = (17/21)4^{-k}$; hence, $c_{2n-1} = c_{2n} = (3/2)4^{-n}$, n < k, $c_{2k-1} = 4^{-k}$, $c_{2k} = c_{2k+j} = (17/21)4^{-k}$, $j \in \Omega$. Finally, to compute $(f_{2k+1})_{2k}$, solve

$$2^{-(k+1)}(\{(3/2)4^{-n}\} - c) + 2^{-k}(\{(3/14)4^{-n}\} - c) = 0$$

to find $c = (9/14)4^{-n}$. Thus, $c_{2n-1} = c_{2n} = (3/2)4^{-n}$, n < k, $c_{2k-1} = (3/2)4^{-k}$, $c_{2k} = c_{2k+j} = (9/14)4^{-n}$, $j \in \Omega$.

Thus, while $\{f_k\}$ is a sequence of nonnegative functions bounded by 1, for each positive integer N there exist n > m > N with $\mu(|f_n)_m - f_m| > 0) > 0$. This latter phenomenon does not occur in the σ -algebra setting. Nevertheless, the sequence $\{f_k\}$ is called a martingale in the σ -lattice literature. For the sake of completeness, notice that $\{f_j\}$ is Cauchy in L^{Φ} and in L_{α} , $1 \le \alpha < \infty$; and $f_j = f_j^1$, $j \ge 1$.

IV. Uniform integrability in L^{Φ} and condition (*) are sufficient for a sequence $\{h_k\}$ of \mathcal{M}_k -measurable functions to converge in L^{Φ} to a \mathcal{M} -measurable function

To verify this assertion, notice that

$$\int_{\Omega} \Phi(h_j - h_k) \ d\mu = \int_{\Omega} \Phi(\{h_j - h_j^n\} + \{h_j^n - h_k^n\} + \{h_k^n - h_k\}) \ d\mu$$

$$\leq K_3(A_{j,n} + B_{j,k,n} + A_{k,n}),$$

where

$$A_{j,n} = \int_{[|h_j| \ge n]} \Phi(h_j) \, d\mu, \quad j = 1, 2, \ldots,$$

and

$$B_{j,k,n} = \int_{\Omega} \Phi(h_j^n - h_k^n) d\mu$$

$$\leq \Phi(2n)\mu([|h_j^n - h_k^n| > \delta]) + \Phi(\delta)\mu(\Omega), \quad \delta > 0.$$

Uniform integrability of the sequence $\{\Phi(h_k)\}$ implies that $\lim_n \sup_j A_{j,n} = 0$, $\lim_{\delta \to 0} \Phi(\delta) = 0$ and L^{Φ} is complete [11]; so we conclude that there is an \mathscr{A} -measurable function h such that $h_k \to h$ in L^{Φ} if

$$\lim_{m} \sup_{j,k>m} \mu([|h_{j}^{n} - h_{k}^{n}| > \delta]) = 0, \quad \delta > 0, n = 1, 2, \dots$$

Since Lemma 1 implies that *h* is \mathscr{M} -measurable, L^{Φ} -convergence is established by showing convergence in probability as follows. Notice that Johansen's construction for the Radon-Nikodym derivative in [10] implies that $|(h_j^n)_k| \leq n$, $j \geq k, n = 1, 2, \ldots$ Then fix *n* and denote h_j^n by $g_j, j = 1, 2, \ldots$ Thus $|g_j| \leq n$ and it suffices to show that $\{g_j\}$ converges in probability by showing that it converges in L_2 .

To this latter end, suppose on the contrary that $\{g_k\}$ does not converge in L_2 . Then there exists $\beta > 0$ such that whenever $g \in L_2$ and p is a positive integer $||g_k - g||^2 = \int_{\Omega} |g_k - g|^2 d\mu > 3\beta$ for some k > p. Thus, there exists a subsequence $\{g_{k_j}\}$ such that upon relabeling g_{k_j} as g_j , we have $||g_{j+1} - g_j||^2 > 3\beta$ and $\mu(|(g_j)_k - g_k|^2 > \varepsilon) < \delta, j > k = 1, 2, \ldots$, where ε and δ remain to be chosen. To this end, we set j = k + 1 and refer to [4, Corollary 2.1] and [10, Theorem 5] to obtain

(i)
$$\|g_{k+1} - g_1\|^2 = \|g_j - g_1\|^2 \ge \|g_j - (g_j)_k\|^2 + \|(g_j)_k - g_1\|^2$$
$$= \|(g_j - g_k) + (g_k - (g_j)_k)\|^2$$
$$+ \|((g_j)_k - g_k) + (g_k - g_1)\|^2.$$

Next we remember that if u, v, and $w \in L_2$ with u = v + w, then

(ii)
$$||u||^2 \ge (||v|| - ||w||)^2 \ge ||v||^2 - 2||v|| ||w||$$

Moreover, since $|g_i| \le n$ and $|(g_j)_k| \le n$,

 $||g_j - g_k||^2 \le 4n^2$ and $||g_k - (g_j)_k||^2 \le \varepsilon + 4n^2\delta = (\beta/4n)^2$, since we now let $\varepsilon = \beta^2 2^{-5} n^{-2}$ and $\delta = \beta^2 2^{-7} n^{-4}$. Thus,

$$4n^{2} \geq \|g_{k+1} - g_{1}\|^{2} \geq \|g_{k+1} - g_{k}\|^{2} - \beta + \|g_{k} - g_{1}\|^{2} - \beta$$

> $\beta + \|g_{k} - g_{1}\|^{2}$
> $(k + 2)\beta \rightarrow \infty$

which is a contradiction.

A similar result for L_2 where (*) is replaced by (**) is established in the next section.

120

V. Uniform integrability in L_2 and condition (**) are sufficient for a sequence $\{h_k\}$ of \mathcal{M}_k -measurable functions to converge in L_2 to a \mathcal{M} -measurable function

To establish convergence, suppose on the contrary that $\{h_k\}$ does not converge in L_2 . Then there exists $\beta > 0$ such that whenever $g \in L_2$ and p is a positive integer $||h_k - g||^2 = \int_{\Omega} |h_k - g|^2 d\mu > 3\beta$ for some k > p. Thus, there exists a subsequence $\{h_k\}$ such that upon relabeling h_k , as g_j , we have

$$||g_{j+1} - g_j||^2 > 3\beta$$
 and $\mu(|(g_j)_k - g_k|^2 > \varepsilon) < \delta, \quad j > k = 1, 2, ...,$

where ε and δ remain to be chosen. Since a uniformly integrable sequence is bounded in L_2 , we can assume that $||g_i|| \le C$, $i \ge 1$. For the moment, also suppose that $4C||g_k - (g_j)_k|| < \beta$. Then we can apply inequalities (i) and (ii) in the preceding section and thereby obtain the contradiction

$$\begin{aligned} 4C^2 &\geq \|g_{k+1} - g_1\|^2 \geq \|g_{k+1} - g_k\|^2 - \beta + \|g_k - g_1\|^2 - \beta \\ &> \beta + \|g_k - g_1\|^2 \\ &> (k+2)\beta \to \infty. \end{aligned}$$

Since L_2 is complete and $L_2(\Omega, \mathcal{M}, \mu)$ is closed in L_2 , the theorem is established by verifying that $\lim_k \sup_{j>k} ||g_k - (g_j)_k|| = 0$ in the sequel.

We begin the aforementioned verification by recalling the list of ten properties of the Radon-Nikodym derivative exposed in Section II; then we observe

(11)
$$\sup_{j} \|h_{j} - h_{j}^{n}\|_{1} \leq \sup_{j} \|h_{j} - h_{j}^{n}\| \leq \sup_{j} \left\{ \int_{(|h_{j}| > n)} |h_{j}|^{2} d\mu \right\}^{1/2} = \alpha_{n},$$

where $\alpha_n \to 0$ as $n \to \infty$.

Let $\rho > 0$, let $\beta = 1/2$, and let *m* satisfy the inequality $(4C)/m < \rho/2$. Next let *n* satisfy the inequality $4(2m - 1)\alpha_n < \rho/2$. Then recall that the derivative $(h^n)_{\mathcal{M}}$ of h^n given \mathcal{M} satisfies $\|(h^n)_{\mathcal{M}}\|_{\infty} \leq n$, which implies

(12)
$$(|f| > n + 1) \subset (|(h^n)_{\mathscr{M}} - f| > 1).$$

Thus, we apply (10), (11), and (12) with $h = g_j, g = h^n$, and $\mathcal{M} = \mathcal{M}_k$ to obtain

(13)
$$\sup_{j,k} \mu(|(g_j)_k| > n+1) < \rho.$$

Let v > 0. Then choose ρ so small that applying (4) with $h = g_j$ and $\mathcal{M} = \mathcal{M}_k$ yields

(14)
$$\int_{(|(g_j)_k|>n+1)} |(g_j)_k|^2 d\mu \leq \int_{(|(g_j)_k|>n+1)} |g_j|^2 d\mu < \nu, \ j, k \geq 1,$$

because of uniform integrability.

Returning to our basic task, let $G(j, k, \varepsilon) = (|g_k - (g_j)_k| > \varepsilon)$ and notice that

(15)
$$\|g_{k} - (g_{j})_{k}\|^{2} \leq \varepsilon^{2} + \int_{G(j,k,\varepsilon)} |g_{k} - (g_{j})_{k}|^{2} d\mu$$
$$\leq \varepsilon^{2} + 4 \int_{G(j,k,\varepsilon)} (|g_{k}|^{2} + |(g_{j})_{k}|^{2}) d\mu$$
$$< \varepsilon^{2} + 4\{2\nu + 2(n+1)^{2}\mu(G(j,k,\varepsilon))\} \text{ by (14).}$$

Condition (**) permits us to choose k_0 such that if $j \ge k \ge k_0$, then $\mu(G(j, k, \varepsilon)) < \delta$, where δ satisfies the equation $(n + 1)^2 \delta < v$. Hence $\|g_k - (g_j)_k\|^2 < \varepsilon^2 + 16v$ if $j \ge k \ge k_0$. Since ε and v were arbitrary, we are done.

Perhaps a further remark about (*) and (**) is in order. If $\{\mathcal{M}_k\}$ is a nondecreasing sequence of σ -algebras and $\{f_k\}$ is a sequence of \mathcal{M}_k -measurable functions which is uniformly integrable in L_1 , then [3], [13], and [14] imply that (*) and (**) are equivalent. We have shown that (*) implies (**) when the \mathcal{M}_k 's are σ -lattices and $\{f_k\}$ is uniformly integrable in L^{Φ} . When $L_2 \subset L^{\Phi}$ one can easily continue the argument in Section V to assert that (**) implies (*), so they are equivalent conditions for uniformly L^{Φ} -integrable sequences in this case. However, a verification of this latter implication in the general case (e.g., if $L^{\Phi} = L_1$) seems to involve a very tedious computation.

In conclusion we remark that [6] and [8] permit extensions of these results to sub-lattices of \mathscr{A} . For example, the approximation properties established in [8] imply that if the \mathscr{M}_k 's are merely sub-lattices of \mathscr{A} with $\mathscr{M}_i \subset \mathscr{M}_{i+1}, i \geq 1$, then a uniformly integrable sequence $\{h_k\}$ of \mathscr{M}_k -measurable functions is Cauchy in the pre-Hilbert space L_2 if, and only if, it satisfies condition (**).

REFERENCES

- 1. WILLIAM ARVESON, Operator algebras and invariant subspaces, Ann. of Math., vol. 100 (1974), pp. 433–532.
- 2. R. E. BARLOW, D. J. BARTHOLOMEW, J. M. BREMNER, AND H. D. BRUNK, Statistical inference under order restrictions, Wiley, New York, 1972.
- 3. L. H. BLAKE, A generalization of martingales and two consequent convergence theorems, Pacific J. Math., vol. 35 (1970), pp. 279–283.
- H. D. BRUNK, Conditional expectation given a σ-lattice and applications, Ann. Math. Stat., vol. 36 (1965), pp. 1339–1350.
- H. D. BRUNK AND S. JOHANSEN, A generalized Radon-Nikodym derivative, Pacific J. Math., vol. 35 (1970), pp. 585–617.
- R. B. DARST, The Lebesgue decomposition, Radon-Nikodym derivative, conditional expectation and martingale convergence for lattices of sets, Pacific J. Math., vol. 35 (1970), pp. 581-600.
- The Lebesgue decomposition for lattices of projection operators, Advances in Math., vol. 17 (1975), pp. 30-33.
- R. B. DARST AND G. A. DEBOTH, Two approximation properties and a Radon-Nikodym derivative for lattices of sets, Indiana Univ. Math. J., vol. 21 (1971), pp. 355–362.

- 9. ——, Norm convergence of martingales of Radon-Nikodym derivatives given a σ-lattice, Pacific J. Math., vol. 40 (1972), pp. 547-552.
- 10. S. JOHANSEN, The descriptive approach to the derivative of a set function with respect to a σ -lattice, Pacific J. Math., vol. 21 (1967), pp. 49–58.
- 11. M. A. KRASNOSEL'SKII AND YA. B. RUTICKII, Convex functions and Orlicz spaces (translation), P. Noordhoff, Groningen, 1961.
- 12. P. A. MEYER, Probability and potentials, Blaisdell, Waltham, Mass., 1966.
- 13. A. G. MUCCI, Limits for martingale-like sequences, Pacific J. Math., vol. 48 (1973), pp. 197-202.
- 14. R. SUBRAMANIAN, On a generalization of martingales due to Blake, Pacific J. Math., vol. 48 (1973), pp. 275–278.
- 15. J. J. UHL, JR., Applications of Radon-Nikodym theorems to martingale convergence, Trans. Amer. Math. Soc., vol. 145 (1969), pp. 271–285.

COLORADO STATE UNIVERSITY FORT COLLINS, COLORADO