
ON THE GE,, OF A RING

BY

SUSAN C. GELLER

This paper is concerned with a subgroup of the general linear group, namely
the one generated by diagonal and elementary matrices and called GE(n, R).
A ring for which GL(n, R) GE(n, R) is called a GE,-ring. It will be proved
(Theorem 1) that a large class of rings is not GE2.

Let R be an associative ring with unit and let GL(n, R) be the group of all
invertible n x n matrices over R. Let E(n, R) be the subgroup of GL(n, R)
generated by Eij(r) where Eij(r) (aij) such that aiz 1, ai r, and akl 0
otherwise. Let GE(n, R) be the subgroup of GL(n, R) generated by the group of
invertible diagonal matrices and E(n, R). Cohn I-l] introduced this group in
order to simplify his study of GL(n, R). He called a ring for which GL(n, R)
GE(n, R) a GE,,-ring. He then restricted his attention to n 2.
Determining whether or not a ring is GE,, or even GE2, is a very difficult

problem. Samuel suggested that the ring

R[x, y]/(x2 + y2 + 1) S

might be k-stage Euclidean. This would imply that S is GE2. Murthy also
wondered if this ring were GE2 as it would be an example of a non-Euclidean
GE2-principal ideal domain. Note that S has an ascending filtration given by
S, {[g]: a minimal degree representative for [g] has degree < n}. Hence
it has an associated graded ring T where T, S,,/S,_ 1.

Let R* denote the group of units of a ring R. For k a field, Cohn [-1, p. 21,
p. 24] defines a k-ring with degree function to be a ring R such that k is a subring
of R, k* R*, and there exists a map d: R -. Z such that:

(1) d(a) oo if and only if a 0;
(2) d(a) 0 if and only ifa E R*;
(3) d(a b) < max (d(a), d(b));
(4) d(ab) d(a) + d(b).

The total degree of a polynomial in k[xl,..., x,] is an example of such a
degree function.

THEOREM 1. Let S be a k-ring with an ascending filtration and let T be its
associatedgraded ring such that T is an integral domain and To k. Then S has
a degree function d. Moreover, if S is commutative and dimk T1 > 1, then S is
not a GE2-ring.
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Proof. Define dby d(0) -oo, and d(a) min{n:aS,} for a - 0.
By Proposition 2.2 of [3, p. 71], this d is a degree function.
Cohn [1, p. 386] proved that if R is a k-ring with degree function which is

also a GEz-ring, then of any two elements of the same degree which form a
regular row (i.e., generate the unit ideal), each is R-dependent on the other. In
this case R-dependence means that given p, q S of the same degree which gen-
erate the unit ideal, then p is R-dependent on q if there exists a S such that
d(p- aq) < d(p) and d(a) + d(q) < d(p), (See [2, p. 333] for a general
discussion of R-dependence.) Clearly this last condition implies d(a)<_ O,
i.e.,ak.

If dimk TI > 1, then there exists 2, y T1 which are linearly independent
over k. Let x, y be lifts of 2, y. Since S is commutative, (1 xy)(1 + xy +
(--xZ)y2, and hence + xy, y2 generate the unit ideal. Since T is a graded
integral domain, .y, y2 T2" Thus d(xy) d(y2) 2. If + xy were R-
dependent on y2, there would exist a k such that

d(1 + xy + ay2) d(1 + (x + ay)y) < 2.

But d(x + ay) for all a by the linear independence of x and y. Hence
d(1 + (x + ay)y) 2 for all a. Thus S is not GE2.
Note that all that was needed from the assumption that S is commutative is

the existence of x, y S with 2, y T1 linearly independent over k such that
+ xy, y2 generate the ring as an ideal. This can be shown in the case where T

is commutative, k is central in S, and dimk T1 2.
Let R k[x,..., x,], k a field, n > 2; let f R be of degree r > 2 and let

f, be its r-th homogeneous part. Let S R/(f) and T R/(fr). Then S has
an ascending filtration given by St im R, where R is the set of polynomials
of degree < i, i.e., [hi e St if and only if a minimal degree representative g of
[hi has degree < i.

PROPOSITION 2. T is the associated 9faded ring of S.

Proof. R is a graded ring with the usual grading given by the total degree.
It is easily shown that there is a surjective homomorphism of graded rings 0
from R gr (R) to gr (S). If h R is homogeneous of degree n, then O(h)
Eh] + Sn-1 in S,/S,_I. Thus it suffices to show that (J)= ker 0. In S,
EL] I-f1] where f f, + f and degree fl < r. Thus O(f,) 0. Suppose
O(h) O, h homogeneous of degree n. Then O(h) 0 implies that [hi S,_ 1,

i.e., there exists a p k with degree p < n, such that h p + .qf, .q R.
Taking the nth homogeneous parts of each side gives h gsfr where s + r n
and gs is homogeneous of degree s. Thus h (f,) and ker 0 (f,).

COROLLARY 3. Let R, f, f, be as in Proposition 2. If f, is irreducible, then
R/(f) is not GE2. In particular, R[x, y]/(x2 + y2 + 1) is not GE2.

Proof. Since f, is irreducible, T is an integral domain. Note that R](f) is
commutative and the result follows from Theorem 1.
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George Cooke (University of Maryland) observed another degree function
for S k[xl,..., xn]/(f) which can be written as

where a is a polynomial in xl,..., x,_ 1. He defined d(p) deg N(p), where
p 6 S and N: S - kExl,..., xn-1-1 is the norm. For a specific ring one must
check that S* k* and that

d(p q) <_ max (d(p), d(q)).

The other properties follow easily and the proof proceeds as in Theorem 1.
This shows, for example, that S k[x, y, z]/(x + yJ + z2), where i, j, 2 are
pairwise relatively prime, is not GE2. This ring is not covered by Theorem 1.
It is currently not known for whatf this d is a degree function.
By I-4, p. 33-1, R[x, y]/(y3 x2) is not GE2. Since k[x, y]/(y3) is GE2, the

implication "R/(fr) is GE2 implies R/(f) is GE2" does not hold. However it
seems likely to the author that the implication "R/(f) is GE2 implies R/(];) is

GE2" holds.

PROPOSITION 4. /f R AIx1,..., xn], A a commutative ring, n >_ 3,
f (xi)for some i, then R/(f) is not GE2.

Proof. Without loss of generality assume that 3. Then 1.2 and 2 are
nonzero elements of R/(f). Since there is a natural surjection R/(f) - R/(x3), if

(lq-xlx2 L_2 xx2/

were elementary over R/(f), it would be over R/(x3)
and hence over k[xl, x2, x,,..., xn] where k is a field which is a homomorphic
image of A, contradiction [1, p. 386].

Note that a GE2-ring may be contained in a non-GE2 ring (e.g., Z
Z Ix/----g]) and a non-GE2 ring may be contained in a GE2 ring (e.g.,
R[x, y]/(x2 + y2 + l) C[x, y]/(x2 + y2 + 1)).
Although many rings are not GE2, it is possible to construct new GEn-rings

from known ones.

DEFINITION. A row (al,. an) is called unimodular if its elements generate
the ring as an ideal.

Note that for a commutative ring to be a GE2 ring, it suffices to show that any
unimodular row of length 2 can be reduced to (1, 0) by transvections (i.e., by
elementary operations).

PROPOSITION 5. Let R be a commutative ring and let I be an ideal contained
in J(R), the Jacobian radical. If qb: GL(n, R) - GL(n, R/I) is the canonical
map, then

dp(GE(n, R)) GE(n, R/I) and dp-1(GE(n, R/I)) GE(n, R).
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In particular R is GE, if and only if R/I is GE,.

Proof. Clearly O(E(n, R)) E(n, R/I)and d?(GE(n, R)) dp(GE(n, R/I)).
LetR/l*. Let u be a lift of /T and u’ be a lift of fi-1. Thenuu’ + v,
v L Since I

_
J(R), + v R*. Hence u(u’(1 + v)-1) and u e R*.

Thus if D diag (1,..., ,), then

diag (u1,..., u,) GL(n, R).

So c(GE(n, R)) GE(n, R/I). Suppose O(A) GE(n, R/I). By the above,
there exists B GE(n, R) such that qS(A) O(B). Thus b(AB-1) and
AB-1 (cj) wherecijIfori -jandcii + uii, ui e L ButtoneR*so

AB-1 diag (c11,..., c,,)X, X E(n, R).

Thus A diag (c11,. c,,)XB GE(n, R).

COROLLARY 6. (a) R/(f) is GE, ., R/(f’) is GE,.
(b) R/(f) is GE, implies inj lim R/(fr) is GE,.

Proof. Since (f)
_

J(R/(fr)), (a) follows from Proposition 5. There is a
homomorphism qS" inj lim R/(f’) R/(f). Since

ker (R/(f) R/(f))
_

J(R/(f’)), r > 2,

ker tk - J (inj lim R/(f’)). Thus (b) follows from Proposition 5.
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