
THE KERNEL OF THE LOOP SUSPENSION MAP
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DAVID KRAINES

Let X be a 1-connected H space such that the Hopf algebra H*(X; Zp) has
finite type. In this paper we characterize elements of the kernel of the loop map

a" QH(X; Z,) PH-(KX; Z,)

both in terms of restricted types of Massey products and, of more interest, in
terms of elementary stable cohomology operations. Basically the main result,
Theorem B, states that if ax 0, then either x kt(U) or x kJk,(v),
where flk is the pkth order Bockstein, t andJ are particularly simple primary
operations, k is a specific secondary cohomology operation, and u and v are
indecomposable cohomology classes of H*(X; Z). One of the applications is
a characterization of differentials in certain spectral sequences in terms of these
stable cohomology operations.

Section 1

Let H.(X) and H*(X) denote mod p singular homology and cohomology
theories for a fixed prime p. if n: PX X is the standard path space fibration
with fiber the loop space fX, then the loop suspension map is the composite
r i-*j*-:

Ha(X) J*-,--)- Hq(X, Xo) --* Hq(PX, QX) -,--2- ffI- t(QX) for q > 1.

This map was first introduced by Eilenberg and MacLane in their study of
the relation between K(zr, n) and K(z, n 1) [5]. It was generalized by Serre
[23] to arbitrary fibrations. G. W. Whitehead [29] showed that tr annihilates
decomposables of H*(X) and that Im tr PH*(QX), the submodule of
primitives in the Hopf algebra H*(QX). Thus tr extends to a homomorphism:

r QH(X) PH- (fX).

The fact that tr annihilates decomposables was generalized to the statement
a(Ul,..., u,) {0} for all Massey products [11-1. Conversely J. P. May
showed that every element of Ker a belongs to some canonically defined matric
Massey product (MMP) (see [19] or [8]).

If X is an H space, then H*(X) is a commutative Hopf algebra. Thus there
are only a few multiplicative relations in H*(X). This means that there are only
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a few MMP’s which can be defined. In fact Browder [3], Clark [4], and others
have shown that tr is a monomorphism unless q = 2 (mod p) (compare with
Theorem 2.4).
Our first major theorem combines these results to characterize the kernel of

tr in terms of Massey products for a 1-connected H space X of finite type. In
Section 2 we will define a pk-fold MMP It(u, pk) of dimension 2pkm + 2 for
U H2m+ I(X) and a 2pk-fold MMP p(p’, v, pk) of dimension 2pk(p’s 1) + 2
for v H2(X) with v’= 0. If defined, then the p-fold Massey product
(u,..., u) is a subset of It(u, p). Similarly, if defined, then the 2p-fold Massey
product (v, v’- ,..., v, v-) is a subset of It(p’, v, p). In fact, it is probable
that equality holds as subsets of QH*(X) whenever either side is defined.

THEOREM A. Let X be a 1-connected H space offinite type. Then Ker tr is
generated by MMP’s of the form It(u, pk) and It(p’, v, pk) described above and in
Definition 2.6.

This theorem is essentially a translation of the results of Clark I-4] into the
language of May [8-1, [19]. The proof and precise definitions will be given in
Section 2.

Since MMP’s are difficult to compute in general, this result at first glance does
not appear to be especially useful. Theorem B, the main result of the paper,
identifies these MMP’s with certain well-defined stable cohomology operations.

Let flk denote the pkth order Bockstein [2]. That is, fix is the usual Bockstein
associated with the sequence Zp Zp,_ Zp and flk is defined from Ker ilk-1
to H*(X)/Im ilk-1. Thus flk detects pk torsion in H*(X; Z).

In Section 3, a secondary operation , will be defined using the Adem relation

(Sq2rt-2(Sq 2r-It’’" Sq t) 0 for p 2 and r > 1).

In particular , will be defined on classes of height p" (r > 1 if p 2).

THEOREM B. Let X be a 1-connected H space offinite type and let x Ker tr.

Assume p is an oddprime (resp. p 2). Then either there is an indocomposable
class u H2m+I(x) (resp. u Hm+I(x)) such that flktU (resp. flkSqtu) for
I (pk-lm,..., m) is defined and contains x or else there is an indecomposable
class v H2s(x) of height p" (resp. v H(X) of height 2"> 2) such that
flks,(v) (resp. kSqS,(v)) for J (pk-l(p’s 1),..., p(p’s 1)) is defined
and contains x.

The Milnor basis element k(m) dual to ’ differs from in the theorem by
terms of higher excess [14]. Thus t may be replaced by tk(m) and similarly
s may be replaced by k-l(p(p’s 1)) in the statement of Theorem B.
The proof of Theorem B will occupy most of Sections 3-5. In Section 3 the

operation , is studied and related to the transpotence. As a special case of
Theorem B, /,(v) is related to (v, vpr-1,..., v, v-) It(p’, v, p). In
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Section 4, the universal example for p(p’, v, pk) is constructed. This is a Postni-
kov system which is a generalization of those studied in [13] and [16]. The
study of this Postnikov system is continued using Eilenberg-Moore spectral
sequences, and the key k invariant is explicitly identified, which completes the
induction step in the definition of the universal example. In Section 5 this k
invariant class is shown to represent the stable operation of Theorem B and so
this theorem will follow immediately from the general theory of universal
examples.
As a corollary of this method, the differentials in various EMSS’s are com-

puted. In particular a claim of Moore and Smith [20] about higher Kudo
transgression elements is generalized and proved. The mod p analogue of a
collapse theorem of Munkholm [21] is proven and other partial collapse
theorems are given. The paper ends with a conjecture about the homology
analogue of this theorem and higher order Dyer Lashof operations.

Section 2

Throughout the rest of the paper, we will assume that X is a 1-connected H
space with H*(X) of finite type. Then C*(X) is an associative DGA algebra
over Zp. Let BC*(X) denote the reduced bar construction. A typical generator
will be denoted by [-ax [... a,] as usual. BC*(X) is a bigraded coalgebra with
bidegree (-n, deg a) and thus we have an associated second quadrant
Eilenberg-Moore spectral sequence (EMSS)

(2.1) E2 , Torn,(x)(Z,, Z,)
converging to H*(fX) as coalgebras (see [20-1). If [a I"" ak] is an r 1
cycle, we will denote its class in E-k., by the same symbol.

Since fX is an associative homotopy commutative H space, C*(fX) has the
structure of a DGA Hopf algebra over Zp, and we can form the reduced cobar
construction .C*(fX). A typical generator will be denoted by [czl ]"" z,].
There is an EMSS with

(2.2) o2 m Cotor n,(nx)(Zp, Z)
which converges to H*(X) as algebras [27]. We will abbreviate Tora(Z,, Z,)
and Cotorc (Z, Z) by Tora and Cotorc respectively.
We also have a homology EMSS

E2 Totn*nx) =,, H,(X).

There are many duality relations among these spectral sequences (see [17]).
These will be used to identify differentials. The map a can be identified as the
edge homomorphism in these EMSS’s.

PROPOSITION 2.3. The homomorphism

QHq(X) .1,, 1,q pH- (nX)Toln,(x) -- E
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denoted by x -, [x] and the homomorphism
q-1QHq(X)

__ ,gq-x Cotorff;(nx) PHq- (X)

algebra isomorphisms

Torzt E(rx]),
and

Torz.t./(...) E([x]) (R) r(Exlx."-

Tor(y) F([y]).

Thus the indecomposables of Torn,(x) of filtration degrees greater than 2 are
of the form ypk[y] and ,pk[x x’- 1]. Since the differentials are derivations in
E,*’* the first part follows from general algebra. The remainder of the theorem
follows by recalling that Ker a can be identified with the image ofthe differentials
by Proposition 1.3.
May identifies the boundaries in E;-1., in terms of matric Massey products.

We state a version of this theorem.

denoted by
[1 I’"] ,] --0 /fn > 1

--[0x] /fn= 1

each correspond to the loop map.

Proof See [20] and [17].
This result implies that Ker a corresponds to the image of differentials

d,._ E75’* E,---i *.

This fact has been used by several authors (e.g., [4], [6], [19], and [20]) to
study Ker a. The idea is that since H*(X) is a commutative Hopf algebra,
Torn,x) is an easily describable commutative Hopf algebra. In particular the
indecomposables are identifiable and thus the differentials being derivations are
algebraically determined.

THEOREM 2.4. For r > 2, d,: E-(r+)’* E7 ’* is 0 unless r pk 1
or r 2p 1. Furthermore dp_ is algebraically determined on E*,’* by its
action on elements yp[u] [u [’"l u] where u QHz’+x(X), and d2-1 is
algebraically determined by its action on elements of theform

?[v Iv’-] [v v.’-Xl Iv Iv"’-]
where v QH(X) has height pr. Thus a: QHq(X) - PH-I(X) is a mono-
morphism unless q 2mp + 2 or q 2p(p’s 1) + 2.

Proof. The homology analogue of this theorem is essentially Theorem 4.1
of [4] (see also [6]). For completeness and to fix notation we sketch the argu-
ment. By Borel’s structure theorem for commutative Hopf algebras, H*(X)
splits as algebras into a tensor product of monogenic algebras. The functor Tor
commutes with this splitting. Moreover as bigraded algebras we have Hopf
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THEOREM 2.5 (May). If the Massey product (ul Uk) is defined and
contains x QH*(X), then [x] EI’* and [u 1... Uk] Ek’* live to

ER-1 and dk_ [u 1"" UR] rx].
Conversdy if Ex] and Uu I"" u] live to E_ and dk_l[ul [’’’ Uk]

then there is a related canonically defined MMP which contains x and thus
contains (u1,..., Uk) if the latter is defined.

Proof. The proof of this theorem can be found in the unpublished manu-
script of Peter May [19] (see also [8]). The first part is also proven in [17] as
Theorem 2.3. Since the canonically defined MMP is a somewhat esoteric
cohomology operation, the reader will lose little by considering the canonically
defined MMP containing x to be the set of all y H*(X) such that [-x-]
in E-_i *. With this convention the rest of the theorem is a triviality.

DEFINITION 2.6. Set #(U, pk) (resp. p(pr, u, pk)) to be the canonically defined
MMP corresponding to the differential

d_Eu I’" u] Ex] (resp. d2-l[v vr-X I"" ivlv-] [x]).

Theorem A is now an immediate consequence of this definition and Theorems
2.4 and 2.5.

Section 3

The Adem relation sp--l(spr-,...) 0 gives rise to a stable secondary
cohomology operation /r for r >_ 1. If x H2S(.]l") and x" 0, then ,(x) is
defined in Hq(X)/-IH*(X) where q 2sp"+1 2p + 1.
The secondary operation can be defined using a universal example (P, v, w).

Here P is the total space of the fibration

K(Z,,, 2sp" ) ’_L_, , K(Z,,, 2s)

induced by a stable k invariant 2" K(Z, 2s) K(Z, 2sp’) satisfying 2*t,
(to)" where to and t, are the appropriate fundamental classes. The class v is
n*0o) e H2(P), and w is some primitive class in Hq(P) satisfying i*w
’-la,. Lemma 3.6.4 in [1] asserts the existence of such a triple. In fact
Adams shows that p,(x) is the set of all classesf*w H(X) asf: X P ranges
over maps satisfying f*v x. Also r is additive and natural. Moreover
Theorem 3.6.2 in [11 states that any other secondary operation associated with
the Adem relation differs from , by a stable primary cohomology operation.
To see this, one shows that i*(w’ w) 0 implies that there is a primitive
y nq(K(Zt,, 2s)) such that zr*y w’ w. But such a class y can be written
as 0t for some primary stable operation 0 by the structure of PH*(K(Z,, n)).

If we assume that p 2, then the Adem relation to consider is

Sqt2"-2(Sq t2"-1... Sq t) 0 where r _> 2
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since Sq4"-2Sq2nSq" Sq’"-XSq2n-ISq" 0. Thus if x Hi(X) and
x2r= 0 for r _> 2, then ,(x) is defined in Hq(x)/Sqt2r-H*(X) for q
t2"+ I and is determined up to a stable primary operation.
Another secondary operation, the transpotcncc ,, is also defined on classes

x Hs(X) satisfying xp" 0 for r > I. If p 2 then x Hi(X) must satisfy
x" 0 for r _> 2 in order for Cr(x) to bc defined. If it is defined then

Cr(x) e pH2Sp’-2(fX)/aH*(X).
See [7] for details.
The space P above is also a universal example for $, in the following sense.

Since a(to)f 0, the looped k invariant f) is null homotopic. Thus there is a
(noncanonical) homotopy equivalence

(3.1) : fe K(Z, 2s 1) x K(Z, 2sp" 2)

such that p2(fi) - 1 and pl
_

fr. Set (p2)*(at,) e H2f-2(fP), so
(fi)*
Then r(x) can be characterized as the set of classes (ff)* e H2f-2(fX) as

f: X P ranges over maps satisfyingf*v x. See ([9] and 1-17].) A different
choice of , and thus , will not change the coset since ’ a(n*x) for
some x e H*(K(Z, 2s)) if ’ is another primitive satisfying (fi)*’ a2t.
The fact that both and , have the same universal example suggests some

kind of relation between them. In fact the main theorem of this section is the
following Peterson-Stein type formula.

THEOREM 3.2. Assume that x e H2(X) satisfies x Ofor r > 1 andp odd,
or x e Ht(X) satisfies xf 0 for r > 2 and p 2. Then the secondary oper-
ation can be chosen so that

in pH2Sp’+t-2P(X)/a#sf-IH*(X). Thus the indeterminacy consists of classes
of the form (ay)p for y H2p"- (X).

Proof. Let (P, v, w) be the universal example for St. The theorem will
follow if we prove it for x v HZs(P).

(fi)*aw spr-lat, (213P (i)*Zp.

The homotopy equivalence induces an algebra isomorphism

(3.3) H*(fP) .. H*(K(Zp, 2s 1)) (R) H*(K(Z,, 2sp" 2))

and thus an exact sequence

QH- X(K(Zp, 2s 1)) --, QH- 1(riP) QH- l(K(Zp, 2sp" 1)),

where q 1 2sp"+ 2p. Since e aw is primitive, by Milnor-Moore it
is either indecomposable or the pth power of a primitive. Since a is an iso-
morphism in dimension 2sp" 2, in the latter case e aw is of the form
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(ay)p for some y QH2sp’- l(p) and thus in the indeterminacy subgroup. In the
former case (fi)*(a aw) 0 implies that aP aw (fzt)*az for some

z PHq(K(Z, 2s)) ~ PHq- (KZ, 2s 1)).

In this case replace the original universal example by (P, v, w + (fn)*z) and
the theorem will follow. Note that the class (fn)*z corresponds to a stable
primary cohomology operation.

Remark 3.4. Spanier [25] has constructed a very general theory for higher
order operations. In this theory r(x) corresponds to a Toda type bracket
(s.-1, sp.-1,..., , x) and br(x) corresponds to the bracket

(r, -,...,, x)
(see [25, p. 522]). Then

r(’, ’,..., ", x) (a", ’,..., ’, x)

((r, ’,..., ’, x))"

modulo some indeterminacy. Thus a careful reading of Spanier’s paper will
yield a proof of Theorem 3.2 without using universal examples.
The main theorem of [-9] implies that the splitting (3.3) holds as Hopfalgebras.

Thus the EMSS ,2 Cotorn.(np) = H*(P) has a fairly easy form. In fact
H*(P) can be completely described as a Hopf algebra over the Steenrod algebra.
We need only the following:

THEOREM 3.6. In the EMSS above:

(1) dq 0 unless q p" 1, and d,._,[] [av [... trv] [trv]"
determines that differential, where dp,(v).

(2) [P] represents ,(v) in H*(P).

represems ff(v) modulo primitives of the form n*z in H*(P).

Proof. The first result uses Theorem 2.2 of [17]. The second is immediate
from Theorem 3.2. The last result is a consequence of the proof of Lemma 2
of [9].
Note that O,(v) is a special case of the stable operation mentioned in

Theorem B. By the techniques of [11], the restricted 2p-fold Massey product
(v, v"- x, v,..., vp"- ) may be defined in H*(P). Furthermore a complicated
cochain argument together with some techniques from [17] can be used to
prove that

(v,..., v’-) -,(v) in H’-)+Z(P)/r-H*(P).
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We will settle for a much easier statement which implies that P is the universal
example for p(p’, v, p).

THEOREM 3.7. If x nEs(s) has hei#ht p’, then p(p’, x, p) is defined and
contains cfl,(x) for some nonzero constant c.

Proof. By the theory of universal examples it suffices to prove this for
X P and x v. By Theorems 2.4 and 2.5, we must show that d,z 0 for
r < 2p 1 and d2p_12 [fllr(V)] where z 7p[vlvp’-l] in E2p’*. But
this result has been proved in the appendix of [24].
By [7-1, the element Iv vP’-1-1 represents the transpotence in H*(fP). Thus

the divided power coalgebra generated by the transpotence is truncated at
height p in H*(fP).

Section 4

In [-13] and [16] a k-stage Postnikov system Ek was constructed for each k.
Ek turns out to be the universal example for the MMP p(u, pk). In this section
we construct the universal example for p(p’, v, pk) by splicing Ek onto the two-
stage system P of Section 3.
For simplicity of notation we will assume that p > 2. The results are similar

for p 2. We first record the main properties of Ek, the universal example for
(u, p).

K(Z,, 2m + 1)

satisfying:

(1) j*r.*, fla’",’
(2) trx*, 0;

THEOREM 4.1. For k >_ 0 there is a k + 1 stage Postnikov system

K (Zp, 2mpk + 1) Ek

Igk-

Ek-1-----* K(Zp, 2mpk + 2)

Eo --- K(Z,, 2rap + 2)

(3) Ek is at least a (2p 4)-fold loop of an H space.

Here and ’ represent appropriate fundamental classes.

Proof. See [16-].
We now describe the Postnikov decomposition for the universal example for

p(p’, v, p).



THE KERNEL OF THE LOOP SUSPENSION MAP 99

THEOREM 4.2. For k, r, and s positive integers and m sp 1, there is a
k + stage Postnikov system

K(Z,,2mpk- + 1) Pk

P_ K(Zv,2mp- + 2)

K(Zv, 2m + 1)

K(Z,, 2s)

jl Pt K(Z, 2mp + 2)

Po .___o K (Zv, 2p’s)

satisfying"

() , r j.*,2?t mp’ ’it, for > 0
(2) a* 0;
(3) Pk is at least a (2p 4)-fold loop of an H space.

Furthermore P1 P is the universal example for Or and there are (2p 4)-fold
loops ofH maps

f,: E P/I for O, 1,...,k 1

such that

The proof of Theorem 4.2 follows the proof in [16] of Theorem 4.1 closely.
We proceed by induction on k. P1 P was described in Section 3 and has the
required properties. Assume Pk- exists and 2k-1 is defined as a 2p 4 loop
of an H map. Then Pk is induced by 2k-1 and satisfies (3). We must construct

2k to be a 2p 4 loop of an H map satisfying conditions (1) and (2).
Since tr(2t) 0 for < k 1, the fibrations fP+ -o fP split on the

space level. Thus there is a homotopy equivalence

(4.3) :fek K(Zv, 2s- 1) x K(Zv,2m) x x K(Zv, 2mpk-X).

This splitting together with the techniques and some results of [16] can be
used to compute the differentials in the EMSS

Or2 Cotorn.(nv) H*(P).

Actually the Hopf algebra structure of H*(Pk) can be computed. As the results
are complicated to state (compare with Theorem 5.3 of [16]) and not needed in
what follows, they will be omitted.

Using the Hopf algebra structure of H*(OP,), we will proceed to identify an
element +j=vk [7 7j] in the EMSS g2" This element will represent the k
invariant 2k of Pk/ 1, essentially completing the induction step in Theorem 5.2.
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Moreover this element will be seen to represent p(p’, v, pk), at least up to a non-
zero constant. In the next section, figvk-’m’’’tvm,(v) will be computed in
the EMSS and shown to be represented by - [Yi Yj] (compare with Theorem
3.6). This will complete the proof of Theorem B.

THEOREM 4.5. Let r/, (Xo,... k-X in H*(PR) be the images of the funda-
mental classes under the splitting (4.3). Then the Hopfalgebra tTenerated by these
classes is isomorphic to E[r/] (R) Ak_ where Ak_ is a truncated bipolynomial
Hopf algebra. That is, Ak- is isomorphic to Zv[o, 1,..., k-] as algebras
and so generates a divided power coalgebra truncated at height pk with

o Ak-, satisfying yvr ,Jbr r 0,..., k 1.

Proof. As with the universal example P of the previous section,

H*(OP) H*(K(Zv, 2s- 1))(R) H*(fE)

as Hopfalgebras. That is, the twisted H structure induced by the first k invariant
cannot be detected in any primary way (see [9]). The theorem now follows
immediately from a similar result on H*(fE) (see Section 1 of [16]).
The Hopf algebra A_x was constructed in [15]. It will be used in the next

section.
The element Zi+j-.pk [?i[)j] in 22q’-2 represents an indecomposable in

Hq(Pk) for q 2pk(ps 1) + 2. By Milnor-Moore, PHq(Pk) is isomorphic
to QHq(Pk) since p does not divide q. Thus we can make the following definition.

DEFINITION 4.6. Let p PHq(PR) be the unique primitive represented by
the element ,i+j=p [Yi j] in the EMSS

2 Cotorn,(n) " H*(PR).

PROPOSITION 4.7. lff Ek_ Pk is the map of Theorem 4.2, then

f*(p) H*(E_ 1)

represents the next k invariant

tCt" Ek_ K(Zv, 2mp+ + 2).

Proof. In the spectral sequence Cotorn,(ne_,) H*(E_,), the element
which lived to represent rc was

i+j=pk

where ff*o H2m+l(fEk-) is the lowest dimensional cohomology class.
Since (ff)*" H*(fPR)-- H*(gEk-) is an epimorphism, the proposition is
immediate by naturality.

THEOREM 4.8. The k invariant 2k" Pk "> K(Zv, 2mpk + 2) can be chosen to
be a (2p 4)-foM loop ofan H map such that (2k)*t pZ in PH(Pk). Further-
more, 2kA is homotopic to lk_ Ek_ K(Zp, 2mpk + 2) as (2p- 4)-fold
loops of an H map.
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Proof. By the induction hypothesis there is an H space P such that
2v-4p;,

_
Pk. By Theorem 6.1 of [16-1, it follows that

tr2v-4, pHq+2v-,(p) pHq(pk)

is an isomorphism. Let 2’: P --. K(Zv, q + 2p 4) be an H map representing
(a2v-4-1)-1/t. Define P+1 to be the H space fiber space over P induced by

2p-4p+ and 2k --2P-42’.. It follows from2’. Finally define Pk+l
Proposition 6.2 and Section 6 of [16] that 2f is homotopic to x,_ where
t)2v-4x’ x. The theorem follows by looping.
The induction step in the proof of Theorem 4.2 is now essentially complete.

The fact that j*2*t _flm"-’t, follows from the similar result in Theorem
4.1 and the fact that 2f is homotopic to x.
By Theorems 2.5 and 2.6, the following will establish that p(p’, v, pk) does

indeed live in H*(Pk) and that p is a representative of this Massey product.

THEOREM 4.9. In the EMSS

E2 Torm(v) H*(fPk)

the elements [p] EI’* and z yv[v v-1] E2v’* both live to

Ezra_ and dzv-z civil for some nonzero constant c.

Proof. For k 1, this is Theorem 3.7. Since p arises from an element of
filtration 2 in g,, ap 0 by the description of the edge homomorphism (2.3).
Thus [pa] is in the image of d, for some r. By [7], Iv v"-a] represents a
transpotence element which we may assume to be a0. Thus z, the p-fold
divided power of $, represents ?vo which is 0 in H*(P). However z_, the
p-a-fold divided power of , represents yv o a-x which is not zero in
H*(P). Thus z must survive to E2v_ and no further. A check of the rele-
vant dimensions will show that z must indeed kill [7].
The theorem implies that (P, v, ,) is the universal example for p(p’, v, p)

[22]. Similarly the space E-x of Theorem 4.1 is the universal example for
V(u, p). Thus by Theorem A we have the following reformulation of the
kernel of a.

COROLLARY 4.10. Assume that trx 0 for x QHq(X). Then either there
is a map g: X - Ek- for some m and k, such that p(g*u, pk) is defined and con-
tains x, or there is a map h: X PkJbr some s, r, and k such that p(p’, h’v, pk)
is defined and contains x.

Section 5

In the EMSS g, = H*(Pk), the element [8] represents ,(v) by Theorem 3.6.
Thus [g] represents -"."v",(v) with m p’s 1. We know that
if x Ker a, then x p(u, pk) or x p(p’, v, pk). Also, p 2,. represents
p(p’, v, pk). Assume that x p(p", v, pk). To prove Theorem B, we must show
that flk is defined on the element of H*(Pk) represented by [g] and that

p]
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We must first get an appropriate characterization of higher order Bocksteins.
If n > m let p" Zp, - Zpm and r/" Zp,, Zp, be the standard nontrivial maps
and also the induced maps on cochains and cohomology. The following
proposition is immediate from definitions (see for example [2]).

PROPOSITION 5.1. Let w Hn(X; Zp). Then kW is defined in Hn+ I(X; Zp)/
Im fig_ if and only if there is a cochain co Cn(X; Zpk+l) such that 6co =- 0
(mod pk) and pco C"(X; Zp) represents w. In this case flkW is represented by a
cocycle e Cn+I(X; Zp)satisfying 1 600 Cn+I(X; Zpk+i).

For our application of Theorem 5.1, we consider WC*(fP; R) as the co-
chain complex for H*(Pk; R). As noted in Theorem 4.5, there is a subHopf
algebra Ak.- in H*(Pk; Zp). Ak- was constructed in [15] as the rood p
reduction of a bicommutative Hopf algebra B Bk-1 defined over Zt), the
subring of rationals with denominators prime to p.
The following facts from [15] will be used to evaluate the higher order

Bockstein. As an algebra B is isomorphic to a polynomial algebra over Zp) on
generators Xo,..., Xk-1. The module of primitives of B is generated by the
Witt polynomials

(5.2) W Xg’ +...+p-lX_ +pX fori 0,...,k- 1.

Set ao 1, al Xo Wo, and inductively define a, for n < p by

a,, (a,,-1Wo + an-,Wx +"" + a,,_,W)/n for pi < n < p+t.

Theorem 3 in [15] implies that an is indeed a polynomial in B, that is the coeffici-
ents do lie in Z). Furthermore by Lemma 2 of [15] we have that

(5.3) Aa, a. (R) a,_
i=0

where A is the coproduct. Thus the divided powers Yo in Ak- are the mod p
reductions of the elements a.
By Lemma 4 in [15], there is an algebra isomorphism

B Zt,)[Xo,..., Xk-1] Zt,)[al, a,,..., at,-,].
By (5.2) and (5.3) and the fact that the Witt polynomials are primitive we have
the following result.

PROPOSITION 5.4. ff’k Wk pk, is defined in B Bk_ and

I a(modp), 2I -p ] ai(R)a
i+j=pk

where Ax Ax- x(R) 1 l (R) x.

We would like to construct O0k e iC*(’)Pk" Zpt+l) of Proposition 5.1 to be
the polynomial [lk] with the fundamental cocycles substituted in place of the
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a,’s. Unfortunately this argument must be followed with extreme care, since
the cocycle product is not commutative. Also even though there is a class
x /-/2mpr(Pk; Zt, ) such that px , this class is not even a pth power.
Thus the map B- H*(Pk; Z) does not lift to a map B
If we restrict to a suitable subalgebra of B, we can get this important lifting.

DEFINITION 5.5. Let C be a commutative algebra over a ring of characteristic
0. Every element of C will be said to have type 1, and, inductively, if x and y
have type n, then xp + py will have type n + 1. The elements of type n form a
subalgebra C(,) of C.

THEOREM 5.6 (Thomas 1-28]). There are primary cohomoloyy operations, the
Pontrjagin pth powers

which satisfy

(xy) (x)(y),

and

1 1(/p)x’ yP-’ + 3(y)3(x + y)= 3(x) + rl
i=lp

p(x) x e H*(X; Zp.).

The algebra map B H*(Pk; Z) extends in a natural way to algebra maps

B(.)--. H*(fPk; Z,.)
using these Pontrjagin powers.

THEOREM 5.7. Let p C - H*(X; Z) be an algebra map. Then qb induces
algebra maps dp,: C(,)- H*(X; Z.) by Cx qb and, inductively, ,(x)
3,. x and dp,(px) rl,-l(x) for x C(n-). Furthermore if h: X’ - X is a
continuous function and g: C - C’ and ’: C’ - H*(X’; Z) are algebra maps
such that h*p dp’g, then for all n,

h*. ,g.: C.) - H*(X’; Z.).

Proofi It is only necessary to check that . is well defined. The only non-
trivial part of this is the following.

4,.(x + y)"= + y)

l(Pi) x"yP-’+ (y)+ E -,

n (,=o (;)
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COROLLARY 5.8. The following diayram commutes:

"" H*(fPk; Zv.)B(n

(B (R) B)t,) H*(QPk Pk; Zp.)
By (5.2) and (5.3), k has type k + 1. Moreover by Proposition 5.4,

ff/k _pk ai (R) aj in (B (R) B)(k).
i+j=p

Thus bk+ lk is defined in H*(fPk; Zp,,+,) and

rn * ck + lk q cai x caj inH*(Pk x Pk Zvk+’)"
i+j=p

Choose a cocycle representative co C*(Pk" Zpk+,) Of k+ l/k In the bi-
complex C*(fPk; Zv,+ ,), [co-[ is a do cocycle with do class {[co]} [bk+l if’k]"
Thus with respect to the total differential 6 do + d 1,

b[co] [m*bk+,] r/I-Pal.
By Proposition 5.4, p[co] [ag] in C*(fPk; Zp) since ao is the mod p
reduction of a. The conditions of Theorem 5.1 are now satisfied and so
flk[O{’] is indeed defined and represented by -pa. As we have noted in the
beginning of this section, the proof of Theorem B is at last complete.

Section 6

Moore and Smith studied the EMSS E2 Torn,(x)=:, H*(t2X) for 1-
connected H spaces in considerable detail. They characterized dp_ in terms of
f19 and stated that a similar characterization exists for dp_ (see [20] and [24]).
Theorem B together with Proposition 2.3 and Theorem 2.4 combines to give

the following generalization of the statement of Moore and Smith.

THEOREM 6.1. If u H2m+ 1()[) and yp[u] Epk’* is an s cycle for s <
pk 1, then flkk(m)u flkp-’"’’" mU is defined and equals cdp_
for some c # 0 in Zp. Ifv H2"(X) has height p and ifyp[v vp-] E2p’*

is an s cycle for s < 2pk 1, then flkk_(p"+s p)k,(V) flkp-’’’"
Pk,(V) is defined Jbr m ps 1 and equals cd2p_ p[v vp-] for some
c # OinZv.

This gives us a nice collapse theorem for EMSS’s (compare with [21]).

COROLLARY 6.2. Assume that H*(X) is a free commutative algebra over

Z and that u 0 for all indecomposable u H2+I(x) (Sq"u 0 for
U Hm+ I(X)/fp 2). Thel1 E2 Eo so Torn,tx)(Z, Zp) H*(fX).

Proof. The hypothesis implies that H*(X) is a tensor product ofa polynomial
algebra on even dimensional generators and an exterior algebra on odd dimen-
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sional generators ifp :/: 2. Ifp 2 then H*(X) is a polynomial algebra. Thus
no operation r can be nontrivial in H*(X). The corollary is now immediate
since the hypothesis insures that all differentials vanish by Theorem 6.1.

L. Smith has proven that if X fY where is an H space and if H*(X) is
primitively generated then it is free commutative [24].

Since each differential is related to Bocksteins, we can get some relation be-
tween higher torsion in X and higher differentials.

COROLLARY 6.3. Assume that dpk_ or d2,k- is nontrivial in E2
, Torn,(x) =

H*(fX). Then there is a class x Hq(x; Z)for q 2 (mod 2pk) which 9ener-
ates a cyclic group of order pk.

This result is an immediate consequence of Theorem 6.1 and the fact that
nontrivial classes in lm flk can be pulled back to classes of order pk in H*(X; Z)
[2].
The results of Section 7 imply that if the MMP l(u, pk) is defined, then so is

the higher order cohomology operation flk,k(m)ll. The converse is not true.
To see this one can construct the universal example B for flkk(m)u. It is not
hard to check that

rcq(B) Zp if q 2m +

Z,-I if q 2mpk +

0 otherwise.

However, if u e H2m+I(B) is the generator, (u)P=--flmu : O. Thus
p(u, pk) is not defined if k > 1.
Note that Crk(m)tl (crU)pu and k(alt)pk 0 in H*(fB)/Im k-1 by

Theorem 5.4 in [2]. Thus crx 0 modulo Im fig_ where x represents the next
k invariant of B. This, of course, does not imply that x Ker or.

This suggests that in(u, pk) is a proper subset of flkk(m)tl. In the next section
we conjecture the precise relationship between the Massey products in the
cohomology of H spaces and higher order Bocksteins.
Loop operations, the higher order analogues of a, have been defined and

studied in [12]. The primary loop operation (u)n is cru and the secondary loop
operation (u, v) is defined in H*(fX) if u.v 0 in H*(X). Furthermore if
the Massey product (u,..., Uk) is defined and contains 0 in H*(X), then the
loop operation (ua,..., Uk)ta is defined in H*(fiX). In the notation of Section
2,/(u, 1) au and kt(pr, v, 1)n (v, vP"-x)n ,(v). This combined with
Theorem 9 of [12] gives the following.

THEOREM 6.4. If p(u, pk) is defined in H*(X), then p(u, i)n is defined in
H*(fX) and contains the ith divided power Virtu for < pk. If p(p", V, pk) is

defined in H*(X), then l(p, v, i)for < pk is defined in H*(fX) and contains
id?(v) where dp(v) is the transpotence.
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Section 7

Canonically defined n-fold matric Massey products have as indeterminacy
the union of all m-fold MMP’s of appropriate dimension for m < n. Thtfs it
would appear that p(u, pk) would be a much larger subset than (u,..., u)
(pk-fold). In [11] it was shown how to define restricted Massey products
which in general are proper subsets of (u,..., u) (n-fold).

If x.y 0, then it is sometimes possible to define a proper subset (x, y)"
of the 2n-fold product (x, y,..., x, y). It is easy to show that if (u)pk is
defined, then so is p(u, pk) and the former is a subset of the latter. A similar
relation holds for (v, vP-l)" and p(pr, v, pk).

Actually it appears that the converse is true in 1-connected H spaces modulo
decomposables, that is 2-fold MMP’s.

Conjecture 7.1. If p(u, pk) is defined in H*(X), then (u)p" is defined and
(u) c -kE-’m...mu. If p(pr, v, pk) is defined, then (v, vp"-I)p is
defined and is a subset of -kEk-lm...Em,(v) for m p’s- 1 and
v e H2s(X). Moreover (u)pk and (v, v’"-1) are additive higher order operations
of one variable, and operations of these two types generate Ker a as a Zp
module.

Theorems A and B do not have immediate extensions to coefficient rings other
than Z,. For example with rational coefficients, a is an isomorphism in each
dimension. With Zk coefficients the Pontrjagin powers are in the kernel of a.
In general the situation can be quite complicated, as Theorem C in [18]
illustrates.

In the two-stage Postnikov system (P, v, w) considered in Section 3, the
transpotence element b, lives in H2sp-2(P). By [17-] in the dual homology
EMSS

E2 g Tor"*(ae(Zp, Ze) H.(P)

we have that dP-[a ]... a] I-b] for appropriate classes a and b in H.(P).
By [-19] the p’-fold homology Massey product, or at least the associated canon-
ically defined MMP, is defined and contains b. Kochman has shown that the
p-fold homology Massey product is always defined in H.(X), if X is a three-fold
loop space, and equals -flQa where Q is the Dyer-Lashof operation. Thus if
r 1, then b -flQa H2sl_2(P) [10].

Conjecture 7.2. There is a higher order Dyer-Lashof operation

(flQ’-",..., flQ, a>
defined in H.(P) which contains b.

In support of this conjecture note that flQ"flQ" 0 by the homology Adem
relations. However the analogy with cohomology operations is not as good as
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one might hope. It can easily be shown that QPSQSa 0 in H,(fP) and so we
cannot hope for the homology analogue of Theorem B, namely fl2QpSQSa
cannot be equal to (a,..., a) (p2 times).

It is probable that a Dyer-Lashof analogue of , can be defined in the
Postnikov system Ek of Section 4.
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