THE KERNEL OF THE LOOP SUSPENSION MAP

BY
DAviD KRAINES

Let X be a 1-connected H space such that the Hopf algebra H*(X; Z,) has
finite type. In this paper we characterize elements of the kernel of the loop map

o: QHY(X; Z,) - PHY '(QX; Z,)

both in terms of restricted types of Massey products and, of more interest, in
terms of elementary stable cohomology operations. Basically the main result,
Theorem B, states that if ox = 0, then either x € B,2'(1) or x € B, 2y, (v),
where B, is the p*th order Bockstein, 2’ and 2’ are particularly simple primary
operations, V¥, is a specific secondary cohomology operation, and u and v are
indecomposable cohomology classes of H*(X; Z,). One of the applications is
a characterization of differentials in certain spectral sequences in terms of these
stable cohomology operations.

Section 1

Let H,(X) and H*(X) denote mod p singular homology and cohomology
theories for a fixed prime p. If #: PX — X is the standard path space fibration
with fiber the loop space QJX, then the loop suspension map is the composite
o = 6 g¥j*T1:

HY(X) &2 HYX, x5) = HAPX, QX) & A1 'QX) forg > 1.

This map was first introduced by Eilenberg and MacLane in their study of
the relation between K(w, n) and K(n, n — 1) [5]. It was generalized by Serre
[23] to arbitrary fibrations. G. W. Whitehead [29] showed that ¢ annihilates
decomposables of H*(X) and that Im ¢ = PH*(QX), the submodule of
primitives in the Hopf algebra H*(QX). Thus ¢ extends to a homomorphism:

o: QHYX) - PHI"1(QX).

The fact that ¢ annihilates decomposables was generalized to the statement
oluy, ..., u,y = {0} for all Massey products [11]. Conversely J. P. May
showed that every element of Ker o belongs to some canonically defined matric
Massey product (MMP) (see [19] or [8]).

If X is an H space, then H*(X) is a commutative Hopf algebra. Thus there
are only a few multiplicative relations in H*(X). This means that there are only
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a few MMP’s which can be defined. In fact Browder [3], Clark [4], and others
have shown that ¢ is a monomorphism unless ¢ = 2 (mod p) (compare with
Theorem 2.4).

Our first major theorem combines these results to characterize the kernel of
o in terms of Massey products for a 1-connected H space X of finite type. In
Section 2 we will define a p*-fold MMP u(u, p*) of dimension 2p*m + 2 for
u e H*>™*1(X) and a 2p*-fold MMP u(p", v, p*) of dimension 2p*(p"s — 1) + 2
for v € H*(X) with v*" = 0. If defined, then the p“fold Massey product
{u,...,u)is asubset of u(u, p*). Similarly, if defined, then the 2p*-fold Massey
product (v, v"" ", ..., v, v?"~1) is a subset of u(p", v, p). In fact, it is probable
that equality holds as subsets of Q H*(X) whenever either side is defined.

THEOREM A. Let X be a 1-connected H space of finite type. Then Ker o is

generated by MMP’s of the form u(u, p*) and u(p", v, p*) described above and in
Definition 2.6.

This theorem is essentially a translation of the results of Clark [4] into the
language of May [8], [19]. The proof and precise definitions will be given in
Section 2.

Since MMP’s are difficult to compute in general, this result at first glance does
not appear to be especially useful. Theorem B, the main result of the paper,
identifies these MMP’s with certain well-defined stable cohomology operations.

Let B, denote the p*th order Bockstein [2]. That is, B, is the usual Bockstein
associated with the sequence Z, — Z,. — Z, and By is defined from Ker §,_,
to H*(X)/Im B,_,. Thus B, detects p* torsion in H*(X; Z).

In Section 3, a secondary operation , will be defined using the Adem relation

PP l(gm"ls P =0
(Sq¥*"%(Sq* ™ "---8q") = Ofor p = 2 and r > 1).
In particular , will be defined on classes of height p" (r > 1if p = 2).

THEOREM B. Let X be a 1-connected H space of finite type and let x € Ker o.
Assume p is an odd prime (resp. p = 2). Then either there is an indecomposable
class ue H*™*Y(X) (resp. ue H™' (X)) such that B,P'u (resp. B.Sq'u) for
I = (p*"'m,..., m)is defined and contains x or else there is an indecomposable
class ve H*(X) of height p" (resp. ve H(X) of height 2" > 2) such that
B2’ (v) (resp. BuSq’y, () for J = (P* 7' (p's = 1),..., p(p's — 1)) is defined
and contains x.

The Milnor basis element 2,(m) dual to & differs from 2’ in the theorem by
terms of higher excess [14]. Thus 2’ may be replaced by 2,(m) and similarly
2’ may be replaced by 2, _,(p(p"s — 1)) in the statement of Theorem B.

The proof of Theorem B will occupy most of Sections 3-5. In Section 3 the
operation Y, is studied and related to the transpotence. As a special case of
Theorem B, By,(v) is related to <v,v"~%,...,0, 0" "' < u(p", v,p). In
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Section 4, the universal example for u(p", v, p*) is constructed. This is a Postni-
kov system which is a generalization of those studied in [13] and [16]. The
study of this Postnikov system is continued using Eilenberg-Moore spectral
sequences, and the key k invariant is explicitly identified, which completes the
induction step in the definition of the universal example. In Section 5 this k
invariant class is shown to represent the stable operation of Theorem B and so
this theorem will follow immediately from the general theory of universal
examples.

As a corollary of this method, the differentials in various EMSS’s are com-
puted. In particular a claim of Moore and Smith [20] about higher Kudo
transgression elements is generalized and proved. The mod p analogue of a
collapse theorem of Munkholm [21] is proven and other partial collapse
theorems are given. The paper ends with a conjecture about the homology
analogue of this theorem and higher order Dyer Lashof operations.

Section 2

Throughout the rest of the paper, we will assume that X is a 1-connected H
space with H*(X) of finite type. Then C*(X) is an associative DGA algebra
over Z,. Let BC*(X) denote the reduced bar construction. A typical generator
will be denoted by [a, |- --| a,] as usual. BC*(X) is a bigraded coalgebra with
bidegree (—n, Y deg a;) and thus we have an associated second quadrant
Eilenberg-Moore spectral sequence (EMSS)

2.1 E, = Torgwx(Z, Z,)

converging to H*(QX) as coalgebras (see [20]). If [a, |- | @] isanr — 1
cycle, we will denote its class in E % * by the same symbol.

Since QX is an associative homotopy commutative H space, C*(QX) has the
structure of a DGA Hopf algebra over Z,, and we can form the reduced cobar

construction # C*(QX). A typical generator will be denoted by [a, |+ | a,].
There is an EMSS with
(2.2) énz ~ Cotor H#(Qx)(zp, Zp)

which converges to H*(X) as algebras [27]. We will abbreviate Tor (Z,, Z,)
and Cotor¢ (Z,, Z,) by Tor, and Cotor, respectively.
We also have a homology EMSS

E? x Tor»©® = H (X).

There are many duality relations among these spectral sequences (see [17]).
These will be used to identify differentials. The map o can be identified as the
edge homomorphism in these EMSS’s.

PROPOSITION 2.3. The homomorphism
QHYX) = Torgdy, » EZ"% PHI™1(QX)
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denoted by x — [x] and the homomorphism
QHAX) - 64971 » Cotorjplgy) ¥ PH1(QX)
denoted by
[ |16l >0 ifn> 1
o] fn=1
each correspond to the loop map.

Proof. See [20] and [17].
This result implies that Ker ¢ corresponds to the image of differentials

dr—I: E:_r’l* b d E:_ll’*.
This fact has been used by several authors (e.g., [4], [6], [19], and [20]) to
study Ker 6. The idea is that since H*(X) is a commutative Hopf algebra,
Torysy, is an easily describable commutative Hopf algebra. In particular the

indecomposables are identifiable and thus the differentials being derivations are
algebraically determined.

THEOREM 2.4. For r > 2, d.: E; "+ D% o E-U* s O unless r = p* — 1
or r = 2p* — 1. Furthermore dy._, is algebraically determined on E}* by its

action on elements yu[u] = [u |-+ | u] where ue QH*™* (X), and dyp_, is
algebraically determined by its action on elements of the form
yplo | P T = [o 0P e Lo 0P ]

where v € QH?(X) has height p". Thus ¢: QHY(X) - PH* (QX) is a mono-
morphism unless ¢ = 2mp* + 2 or q¢ = 2p*(p's — 1) + 2.

Proof. The homology analogue of this theorem is essentially Theorem 4.1
of [4] (see also [6]). For completeness and to fix notation we sketch the argu-
ment. By Borel’s structure theorem for commutative Hopf algebras, H*(X)
splits as algebras into a tensor product of monogenic algebras. The functor Tor
commutes with this splitting. Moreover as bigraded algebras we have Hopf
algebra isomorphisms

Torz,1x & E([x]), Torz ey & E([x]) ® T([x | x” )]
and
Torg,, =~ T([yD.

Thus the indecomposables of Torp.x, of filtration degrees greater than 2 are
of the form y,[y] and y,«[x | x*"~!]. Since the differentials are derivations in
E}* the first part follows from general algebra. The remainder of the theorem
follows by recalling that Ker ¢ can be identified with the image of the differentials
by Proposition 1.3.

May identifies the boundaries in E; !** in terms of matric Massey products.
We state a version of this theorem.
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THEOREM 2.5 (May). If the Massey product {u,....,u,y is defined and
contains x € QH*(X), then [x]e E;“* and [u, |- | u]e E;** live to
Eyandd_ [u || u] = [x].

Conversely if [x] and [u, |+ | w,] live to E_, and dy_([u, |-+ | w] = [x]
then there is a related canonically defined MMP which contains x and thus
contains {uy, ..., uy if the latter is defined.

Proof. The proof of this theorem can be found in the unpublished manu-
script of Peter May [19] (see also [8]). The first part is also proven in [17] as
Theorem 2.3. Since the canonically defined MMP is a somewhat esoteric
cohomology operation, the reader will lose little by considering the canonically
defined MMP containing x to be the set of all y € H*(X) such that [x] = [y]
in E;';*. With this convention the rest of the theorem is a triviality.

DEFINITION 2.6.  Set u(u, p*) (resp. u(p", u, p¥)) to be the canonically defined
MMP corresponding to the differential

dygeey[u ]+ u] = [x] (resp. dypg[v [ 0771 |+ olo” " 1] = [X]).

Theorem A is now an immediate consequence of this definition and Theorems
2.4 and 2.5.

Section 3

The Adem relation 7"~ (7" ™' . . . #%) = 0 gives rise to a stable secondary
cohomology operation , for r > 1. If x e H*(X) and x?" = 0, then ,(x) is
defined in HY(X)/?" "1 H*(X) where ¢ = 2sp"*! — 2p + 1.

The secondary operation can be defined using a universal example (P, v, w).
Here P is the total space of the fibration

K(Z,, 2sp" — 1) = P - K(Z,, 25)

induced by a stable k invariant A: K(Z,, 25) - K(Z,, 2sp") satisfying 1*1, =
(15)”" where 1, and 1, are the appropriate fundamental classes. The class v is
n*(1,) € H*(P), and w is some primitive class in H(P) satisfying i*w =
P "161,. Lemma 3.6.4 in [1] asserts the existence of such a triple. In fact
Adams shows that y,(x) is the set of all classes f*w € HY(X) as f: X — P ranges
over maps satisfying f*v = x. Also y, is additive and natural. Moreover
Theorem 3.6.2 in [1] states that any other secondary operation associated with
the Adem relation differs from , by a stable primary cohomology operation.
To see this, one shows that i*(w’ — w) = 0 implies that there is a primitive
y € HY(K(Z,, 25)) such that n*y = w’ — w. But such a class y can be written
as 01 for some primary stable operation 0 by the structure of PH*(K(Z,, n)).
If we assume that p = 2, then the Adem relation to consider is

Sq'¥"%(Sq'¥"'---Sq") =0 wherer > 2
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since Sg*""2Sq%"Sq" = Sq*""1Sq?""'Sq" = 0. Thus if xe HYX) and
x* = 0 for r > 2, then Y,(x) is defined in HYX)/Sq'*" " 2H*(X) for q =
t2'*! — 1 and is determined up to a stable primary operation.

Another secondary operation, the transpotence ¢,, is also defined on classes
x € H*(X) satisfying x*" = O for r > 1. If p = 2 then x € H'(X) must satisfy
x*" = 0for r > 2 in order for ¢,(x) to be defined. If it is defined then

¢,(x) € PH*P " 2(QX)/oc H*(X).
See [7] for details.
The space P above is also a universal example for ¢, in the following sense.
Since a(1,)”" = 0, the looped k invariant Q4 is null homotopic. Thus there is a
(noncanonical) homotopy equivalence

3.1) E:QP —» K(Z,, 25 — 1) x K(Z,, 2sp" — 2)

such that p,&(Qi) ~ 1and p,& ~ Qn. Set a = (p,&)*(c*1,) € H*? ~*(QP), so
Qi)*a = o4,.

Then ¢,(x) can be characterized as the set of classes (Qf)*« € H*?" ~%(QX) as
f: X — P ranges over maps satisfying f*v = x. See ([9] and [17].) A different
choice of &, and thus o, will not change the coset ¢, since « — o’ = o(n*x) for
some x € H*(K(Z,, 25)) if «’ is another primitive satisfying (Qi)*a’ = o2

The fact that both , and ¢, have the same universal example suggests some
kind of relation between them. In fact the main theorem of this section is the
following Peterson-Stein type formula.

THEOREM 3.2. Assume that x € H*(X) satisfies x*" = O for r > 1 and p odd,
or x € H'(X) satisfies x* = 0 for r > 2 and p = 2. Then the secondary oper-
ation s, can be chosen so that

oy (x) = [¢.(0)]

in PH>P "' =2(QX)[cP* ~ H*(X). Thus the indeterminacy consists of classes
of the form (cy)? for y € H*?P"~1(X).

Proof. Let (P, v, w) be the universal example for ,. The theorem will
follow if we prove it for x = v € H*(P).

Qi)*ow = e P a1, = (a%,)? = (Qi)*aP.
The homotopy equivalence ¢ induces an algebra isomorphism
3.3) H*QP) ~ H¥(K(Z,, 2s — 1)) @ H¥K(Z,, 2sp" — 2))
and thus an exact sequence
QH Y (K(Z,, 2s — 1)) > QH""'(QP) -» QH* " Y (K(Z,, 2sp" — 1)),
where ¢ — 1 = 2sp"*! — 2p. Since a? — ow is primitive, by Milnor-Moore it

is either indecomposable or the pth power of a primitive. Since ¢ is an iso-
morphism in dimension 2sp" — 2, in the latter case a”? — ow is of the form



THE KERNEL OF THE LOOP SUSPENSION MAP 97

(oy)? for some y € QH?*?"~!(P) and thus in the indeterminacy subgroup. In the
former case (Qi)*(«? — ow) = 0 implies that «® — ow = (Qn)*oz for some

z € PHY(K(Z,, 25)) —— PH'"'(KZ,, 25 — 1)).

In this case replace the original universal example by (P, v, w + (Qr)*z) and
the theorem will follow. Note that the class (Qn)*z corresponds to a stable
primary cohomology operation.

Remark 3.4. Spanier [25] has constructed a very general theory for higher
order operations. In this theory y,(x) corresponds to a Toda type bracket
KPP, pp L, P, x) and ¢,(x) corresponds to the bracket

(o, PP, P x)
(see [25, p. 522]). Then

KPP, P, x> =P, P,..., P, x>
= PYe, P,..., P, x>
= (<a’ ‘@"‘ AR ] g., x>)p

modulo some indeterminacy. Thus a careful reading of Spanier’s paper will
yield a proof of Theorem 3.2 without using universal examples.

The main theorem of [9] implies that the splitting (3.3) holds as Hopf algebras.
Thus the EMSS &, ~ Cotorysqpy = H*(P) has a fairly easy form. In fact
H*(P) can be completely described as a Hopf algebra over the Steenrod algebra.
We need only the following:

THEOREM 3.6. In the EMSS above:

(1) d,=0 unless q=p" — 1, and d,_,[a] = [ov]|--+| ov] = [ov]”
determines that differential, where o € ¢,(v).
(2) [oP] represents Y (v) in H*(P).

3) 1y (’.’ ) [ 1]

p =1 \i
represents B\, (v) modulo primitives of the form n*z in H*(P).

Proof. The first result uses Theorem 2.2 of [17]. The second is immediate
from Theorem 3.2. The last result is a consequence of the proof of Lemma 2
of [9].

Note that By, (v) is a special case of the stable operation mentioned in
Theorem B. By the techniques of [11], the restricted 2p-fold Massey product
(o, v v,. .., 0P ") may be defined in H*(P). Furthermore a complicated
cochain argument together with some techniques from [17] can be used to
prove that

v, ..., 0" = =By, (v) in HPCPTDTA(P) PPV HH(P).
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We will settle for a much easier statement which implies that P is the universal
example for u(p', v, p).

THEOREM 3.7. If x € H*(X) has height p', then u(p', x, p) is defined and
contains cfy,(x) for some nonzero constant c.

Proof. By the theory of universal examples it suffices to prove this for
X = P and x = v. By Theorems 2.4 and 2.5, we must show that d,z = 0 for
r<2p—1andd,,_z = c[pyY,(v)] where z = y,[v|v"”" '] in E;*7* But
this result has been proved in the appendix of [24].

By [7], the element [v | v”"~!] represents the transpotence in H*(QP). Thus
the divided power coalgebra generated by the transpotence is truncated at
height p in H*(QP).

Section 4

In [13] and [16] a k-stage Postnikov system E, was constructed for each k.
E, turns out to be the universal example for the MMP u(u, p*). In this section
we construct the universal example for u(p", v, p*) by splicing E, onto the two-
stage system P of Section 3.

For simplicity of notation we will assume that p > 2. The results are similar
for p = 2. We first record the main properties of E,, the universal example for
w(u, p).

THEOREM 4.1. For k > O there is a k + 1 stage Postnikov system

K(Z,, 2mp* + 1) 2 E,

n

E,_ == K(Z,, 2mp* + 2)

|

K(Z,2m +1) = E, —>K(Z,,2mp + 2)
satisfying :
(1) j*x*1 = —pPr™y’;
2) ox*1 = 0;

(3) E,is at least a 2p — 4)-fold loop of an H space.
Here 1 and ' represent appropriate fundamental classes.

Proof. See [16].
We now describe the Postnikov decomposition for the universal example for
W', v, p.
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THEOREM 4.2. For k, r, and s positive integers and m = sp" — 1, there is a
k + 1 stage Postnikov system

K(Z, 2mp*~' + 1) -2 P,

Ak=1

P X K(Z,, 2mp*™! + 2)

K(@Z,2m +1) 2% P 24 K(Z,2mp +2)

Ao

K(Z,, 2s) = P, — K(Z,, 2p"s)
satisfying :
) A =47, 0 = =P, for i > 0;
() ol*1 = 0;

(3) P, isat least a 2p — 4)-fold loop of an H space.

Furthermore P, = P is the universal example for \, and there are 2p — 4)-fold
loops of H maps

fiiE;> Py fori=0,1,...,k -1
such that nf; = f;_ 7.

The proof of Theorem 4.2 follows the proof in [16] of Theorem 4.1 closely.
We proceed by induction on k. P; = P was described in Section 3 and has the
required properties. Assume P, _, exists and A,_, is defined as a 2p — 4 loop
of an H map. Then P, is induced by 4,_, and satisfies (3). We must construct
A, to be a 2p — 4 loop of an H map satisfying conditions (1) and (2).

Since a(4f1) = 0 for i < k — 1, the fibrations QP;,, — QP; split on the
space level. Thus there is a homotopy equivalence

@.3) &:QP, > K(Z,, 25 — 1) x K(Z,,2m) x =+ x K(Z,, 2mp*™").

This splitting together with the techniques and some results of [16] can be
used to compute the differentials in the EMSS

ébz ~ COtOI’H*(QPk) = H*(Pk).

Actually the Hopf algebra structure of H*(P,) can be computed. As the results
are complicated to state (compare with Theorem 5.3 of [16]) and not needed in
what follows, they will be omitted.

Using the Hopf algebra structure of H*(QP,), we will proceed to identify an
element 3, ;- [y: | 7;] in the EMSS &,. This element will represent the k
invariant A, of P, ,, essentially completing the induction step in Theorem 5.2.
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Moreover this element will be seen to represent u(p", v, p*), at least up to a non-
zero constant. In the next section, 27~ '™ - 2Py (v) will be computed in
the EMSS and shown to be represented by —3 [7; | y;] (compare with Theorem
3.6). This will complete the proof of Theorem B.

THEOREM 4.5. Let 1, 0, . .., 04—, in H*(QP,) be the images of the funda-
mental classes under the splitting (4.3). Then the Hopf algebra generated by these
classes is isomorphic to E[n] ® A,_, where A,_, is a truncated bipolynomial
Hopf algebra. That is, Ay_, is isomorphic to Z [ao, &y, ..., ] as algebras
and o, generates a divided power coalgebra truncated at height p* with Y =
Y% € Ay—1, satisfying y, = «, forr = 0,..., k — 1.

Proof. As with the universal example P of the previous section,
H*QP,) ~ H¥K(Z,, 2s — 1)) ® H*QE,)

as Hopf algebras. That is, the twisted H structure induced by the first k invariant
cannot be detected in any primary way (see [9]). The theorem now follows
immediately from a similar result on H*(QE,) (see Section 1 of [16]).

The Hopf algebra A4,_; was constructed in [15]. It will be used in the next
section.

The element X, ;_ [7; ] y;] in 3%~ 2 represents an indecomposable in
HY(P,) for ¢ = 2p(p"s — 1) + 2. By Milnor-Moore, PH(P,) is isomorphic
to QHY(P,) since p does not divide g. Thus we can make the following definition.

DEFINITION 4.6.  Let ua € PH(P,) be the unique primitive represented by
the element 3", ;- « [; | y;] in the EMSS
&, & Cotorysqp,) = H*(Py).
ProposITION 4.7.  If f: E,_, — Py is the map of Theorem 4.2, then
S*(uo) € H*(Ey - 1)
represents the next k invariant
kit Eymy = K(Z,, 2mp**! + 2).

Proof. In the spectral sequence Cotoryugqg,_,) = H*(E,-,), the element
which lived to represent k; was
2z [ ¥ | 7,0 %]
i+ j=pk
where Qf*a, € H*"*1(QE,_,) is the lowest dimensional cohomology class.
Since (Qf)*: H*(QP,) » H*(QE,_,) is an epimorphism, the proposition is
immediate by naturality.

THEOREM 4.8. The k invariant A: P, - K(Z,, 2mp* + 2) can be chosen to
be a 2p — 4)-fold loop of an H map such that (A)*1 = po in PHY(P,). Further-
more, Lfi is homotopic to Ky_y: Ey_y = K(Z,, 2mp* + 2) as 2p — 4)-fold
loops of an H map.
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Proof. By the induction hypothesis there is an H space P, such that
Q?*?~4p; ~ P,. By Theorem 6.1 of [16], it follows that

o2P=4: PHI*2P~4(P) - PHA(P,)

is an isomorphism. Let A": P, = K(Z,, ¢ + 2p — 4) be an H map representing
(6?74 Y 14, Define P}, , to be the H space fiber space over P, induced by
J’. Finally define P, = Q?*7*P/,, and 4, = Q**7%)". It follows from
Proposition 6.2 and Section 6 of [16] that A, f; is homotopic to x;_, where
Q?P~4%K’ = k. The theorem follows by looping.

The induction step in the proof of Theorem 4.2 is now essentially complete.
The fact that j*A*1 = —BP™" "1’ follows from the similar result in Theorem
4.1 and the fact that Af is homotopic to k.

By Theorems 2.5 and 2.6, the following will establish that u(p", v, p*) does
indeed live in H*(P,) and that uo is a representative of this Massey product.

THEOREM 4.9. In the EMSS
E, = Torgup,,) = H*(QP)

the elements [po] e E;V* and z, = yu[v | v"*"*] € E3** both live to
E,p_y and dyp_yz; = c[pa] for some nonzero constant c.

Proof. For k = 1, this is Theorem 3.7. Since uo arises from an element of
filtration 2 in &,, ouax = 0 by the description of the edge homomorphism (2.3).
Thus [uo] is in the image of d, for some r. By [7], ¢ = [v | v*"~'] represents a
transpotence element which we may assume to be «,. Thus z, the p*-fold
divided power of ¢, represents y,«x, which is 0 in H*(QP,). However z,_,, the
p~1-fold divided power of ¢, represents y,x+109 = o4_; Which is not zero in
H*(QP,). Thus z, must survive to E,_; and no further. A check of the rele-
vant dimensions will show that z, must indeed kill [ua].

The theorem implies that (P, v, uax) is the universal example for u(p", v, p*)
[22]. Similarly the space E,_; of Theorem 4.1 is the universal example for

u(u, p*). Thus by Theorem A we have the following reformulation of the
kernel of o.

COROLLARY 4.10. Assume that ox = 0 for x € QHYX). Then either there
isamap g: X — E,_, for some m and k, such that u(g*u, p*) is defined and con-
tains x, or there is a map h: X — P, for some s, r, and k such that u(p", h*v, p*)
is defined and contains x.

Section 5

In the EMSS &, => H*(P,), the element [«§] represents y/,(v) by Theorem 3.6.
Thus [«5“] represents 27*7'™ ... PP™) () with m = p's — 1. We know that
if x € Ker o, then x € u(u, p*) or x € u(p", v, p*). Also, po € &>** represents
u(p’, v, p¥). Assume that x € u(p", v, p*). To prove Theorem B, we must show
that B, is defined on the element of H*(P,) represented by [«5] and that
Bilog] = —pa.
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We must first get an appropriate characterization of higher order Bocksteins.
Ifn > mletp: Z,n » Zmand n: Z,m — Z,» be the standard nontrivial maps
and also the induced maps on cochains and cohomology. The following
proposition is immediate from definitions (see for example [2]).

PROPOSITION 5.1. Let we H"(X; Z,). Then Bw is defined in H**'(X; Z,)/
Im B,_, if and only if there is a cochain w € C"(X; Zy+1) such that éw = 0
(mod p*) and pw € C"(X; Z,) represents w. In this case pw is represented by a
cocycle & € C"* (X Z,) satisfying né = dw € C** (X5 Zs1).

For our application of Theorem 5.1, we consider ZC*(QP,; R) as the co-
chain complex for H*(P,; R). As noted in Theorem 4.5, there is a subHopf
algebra 4,_, in H¥(QP,; Z,). A,-, was constructed in [15] as the mod p
reduction of a bicommutative Hopf algebra B = B,_, defined over Z,, the
subring of rationals with denominators prime to p.

The following facts from [15] will be used to evaluate the higher order
Bockstein. As an algebra B is isomorphic to a polynomial algebra over Z,, on
generators Xg, ..., X;_,;. The module of primitives of B is generated by the
Witt polynomials

(52 W,=X5 + -+ p7'XP, +pX; fori=0,...,k— 1.
Seta, = 1,a, = X, = W,, and inductively define a, for n < p* by
a, = (@ Wo + ay_,Wy + -+ + a,_,W)/n forp' <n < p'*l

Theorem 3 in [15] implies that a, is indeed a polynomial in B, that is the coeffici-
ents do lie in Z,. Furthermore by Lemma 2 of [15] we have that

(5.3) Aa” = zn: al ® a,,_i
i=0

where A is the coproduct. Thus the divided powers y,a, in 4, are the mod p
reductions of the elements a;.
By Lemma 4 in [15], there is an algebra isomorphism
B = Z(p)[XO’ vy Xk“l] x Z(p)[al, ap, R apk-l].
By (5.2) and (5.3) and the fact that the Witt polynomials are primitive we have
the following result.

PROPOSITION 5.4. W, = W, — p*a, is defined in B = B,_, and

W, = af*(mod p), AW, = -p* ¥ a4, ® q;

i+ j=pk

where Ax = Ax —x®1 —-1Q x.

We would like to construct w, € F C*(QP,; Z,«+1) of Proposition 5.1 to be
the polynomial [W,] with the fundamental cocycles substituted in place of the
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a,’s. Unfortunately this argument must be followed with extreme care, since
the cocycle product is not commutative. Also even though there is a class
x € H*™(QP,; Z,) such that px = af, this class is not even a pth power.
Thus the map B — H*(QP,; Z,) does not lift to a map B —» H*(QP,; Z,.).
If we restrict to a suitable subalgebra of B, we can get this important lifting.

DEFINITION 5.5. Let C be a commutative algebra over a ring of characteristic
0. Every element of C will be said to have type 1, and, inductively, if x and y
have type n, then x? + py will have type n + 1. The elements of type n form a
subalgebra C, of C.

THEOREM 5.6 (Thomas [28]). There are primary cohomology operations, the
Pontrjagin pth powers

PB: H*(X; Z,) »> H*™(X; Zps1)
which satisfy

p—1
By = BEORG), B+ ) =B +1 %

and

(”) Xyt 4 B(y)

i

-

PB(x) = xP € H¥(X; Z,).
The algebra map B — H*(QP,; Z,) extends in a natural way to algebra maps
B,y —» H*QP,; Z,)
using these Pontrjagin powers.

THEOREM 5.7. Let ¢: C - H*(X; Z,) be an algebra map. Then ¢ induces
algebra maps ¢,: Cyy = H*(X; Z,») by ¢, = ¢ and, inductively, ¢, (x*) =
Po,-1x and ¢,(px) = n@,-(x) for x € Cy,_yy. Furthermore if h: X' - X isa
continuous function and g: C — C' and ¢': C' - H*(X'; Z,) are algebra maps
such that h*¢ = ¢'g, then for all n,

h*¢n = ¢r,ngn: C(n) - H*(X,; Zp")'

Proof. Tt is only necessary to check that ¢, is well defined. The only non-
trivial part of this is the following.

$u(x + y)F = B(x + y)

= 8 + X (f’) x ey ()

= (") + b ( (f’) x‘y"-f) + 8.0

-(8))
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CoOROLLARY 5.8. The following diagram commutes:

B, -2  H*QP,; Z,)
An m*
(B ® B)y) 2 H*QP, x QP,; Z,,)
By (5.2) and (5.3), W, has type k + 1. Moreover by Proposition 5.4,
AW, = —-p* Y a;®a; in(B® B)y,.
i+j=pk
Thus ¢, W, is defined in H*(QP;; Z+1) and

m*¢ . W, = —q ,~+,Z=,,k da; x pa; in HXQP, x QP,; Z 1)

Choose a cocycle representative @ € C*(QP;; Z,x+1) of ¢, W,. In the bi-

complex FC*QP,; Z 1), [w] is a d® cocycle with d° class {[w]} = [P+, Wi].
Thus with respect to the total differential 5 = d°® + 4!,

olw] = [m*¢k+1Wk] = nl—po].

By Proposition 5.4, p[w] = [a8] in FC*QP,; Z,) since o, is the mod p
reduction of a,. The conditions of Theorem 5.1 are now satisfied and so
B8] is indeed defined and represented by —ua. As we have noted in the
beginning of this section, the proof of Theorem B is at last complete.

Section 6

Moore and Smith studied the EMSS E, x Tory«x, = H*(QX) for 1-
connected H spaces in considerable detail. They characterized d,_, in terms of
B2 and stated that a similar characterization exists for d._, (see [20] and [24]).

Theorem B together with Proposition 2.3 and Theorem 2.4 combines to give
the following generalization of the statement of Moore and Smith.

THEOREM 6.1. If ue H*™ ' (X) and y,[u] € E;""* is an s cycle for s <
P — 1, then BP(mu = B PP '™ - P™ is defined and equals cdyc_y[u]
for some ¢ # 0inZ,. Ifve H*(X) has height p" and if yu[v | v*"~'] € E;2P%*
is an s cycle for s < 2p* — 1, then BP._(p"*'s — pW,(v) = BPP '™ -
PP™Y,(v) is defined for m = p's — 1 and equals cd, ey [v | V7"~ '] for some
c#0inZ,

This gives us a nice collapse theorem for EMSS’s (compare with [21]).

COROLLARY 6.2. Assume that H*(X) is a free commutative algebra over
Z, and that P™u = O for all indecomposable u € H*"*'(X) (Sq™u = 0 for
ue Hm+1(X) ”p = 2). Then E2 = Ew, N TOer(x)(Zp, Zp ~ H*(QX).

Proof. The hypothesis implies that H*(X) is a tensor product of a polynomial
algebra on even dimensional generators and an exterior algebra on odd dimen-
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sional generators if p # 2. If p = 2 then H*(X) is a polynomial algebra. Thus
no operation ¥, can be nontrivial in H*(X). The corollary is now immediate
since the hypothesis insures that all differentials vanish by Theorem 6.1.

L. Smith has proven that if X = QY where Y is an H space and if H*(X) is
primitively generated then it is free commutative [24].

Since each differential is related to Bocksteins, we can get some relation be-
tween higher torsion in X and higher differentials.

COROLLARY 6.3.  Assume that d._, or d, 1 is nontrivial in E; = Tory.x, =
H*(QX). Then there is a class x € HU(X; Z) for ¢ = 2 (mod 2p*) which gener-
ates a cyclic group of order p*.

This result is an immediate consequence of Theorem 6.1 and the fact that
nontrivial classes in Im S, can be pulled back to classes of order p* in H*(X; Z)
[2].

The results of Section 7 imply that if the MMP pu(u, p*) is defined, then so is
the higher order cohomology operation f,2,(m)u. The converse is not true.
To see this one can construct the universal example B for 5,2, (m)u. It is not
hard to check that

n(B) = Z, ifg=2m+1
= Zp-1 ifg =2mp* + 1
=0 otherwise.

However, if ue H?™*!(B) is the generator, <ud? = —pP™u # 0. Thus
u(u, p*) is not defined if & > 1.

Note that ¢2,(m)u = (ou)’ and B (ou)” = 0 in H*(QB)/Im f,_, by
Theorem 5.4 in [2]. Thus ox = 0 modulo Im S, _, where x represents the next
k invariant of B. This, of course, does not imply that x € Ker o.

This suggests that u(u, p*) is a proper subset of B, 2, (m)u. In the next section
we conjecture the precise relationship between the Massey products in the
cohomology of H spaces and higher order Bocksteins.

Loop operations, the higher order analogues of o, have been defined and
studied in [12]. The primary loop operation {u)q is ou and the secondary loop
operation {u, v)g is defined in H*(QX) if u-v = 0 in H*(X). Furthermore if
the Massey product (u,, ..., 4, is defined and contains 0 in H*(X), then the
loop operation {uy, ..., U, q is defined in H*(QX). In the notation of Section
2, u(u, g = ou and u(p’, v, 1) = <v, V" 135 = ¢,(v). This combined with
Theorem 9 of [12] gives the following.

THEOREM 6.4. If u(u, p*) is defined in H*(X), then u(u,i)q is defined in
H*(QX) and contains the ith divided power y,ou for i < p*. If u(p', v, p*) is
defined in H*(X), then u(p", v, i)q for i < p* is defined in H*(QX) and contains
v:0,(v) where ¢,(v) is the transpotence.
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Section 7

Canonically defined n-fold matric Massey products have as indeterminacy
the union of all m-fold MMP’s of appropriate dimension for m < n. Thus it
would appear that u(u, p*) would be a much larger subset than <u,..., u)
(p*-fold). In [11] it was shown how to define restricted Massey products {u)"
which in general are proper subsets of {u, ..., u) (n-fold).

If x -y = 0, then it is sometimes possible to define a proper subset {x, y>"
of the 2n-fold product {x, y,..., x, y>. It is easy to show that if {u)?* is
defined, then so is u(u, p*) and the former is a subset of the latter. A similar
relation holds for (v, v*"~1)?* and u(p", v, p*).

Actually it appears that the converse is true in 1-connected H spaces modulo
decomposables, that is 2-fold MMP’s.

Conjecture 7.1.  If p(u, p*) is defined in H*(X), then (udP" is defined and
P <= =B PP Py If u(p', v, p¥) is defined, then (v, vP"T1)P* is
defined and is a subset of — B, PP~ '™.-.-PP™) () for m = p's — 1 and
v € H*(X). Moreover {u)?* and {v, v»"~'> are additive higher order operations
of one variable, and operations of these two types generate Ker o as a Z,
module.

Theorems A and B do not have immediate extensions to coefficient rings other
than Z,. For example with rational coefficients, ¢ is an isomorphism in each
dimension. With Z,. coefficients the Pontrjagin powers are in the kernel of o.
In general the situation can be quite complicated, as Theorem C in [18]
illustrates.

In the two-stage Postnikov system (P, v, w) considered in Section 3, the
transpotence element ¢, lives in H>*"~2(QP). By [17] in the dual homology
EMSS

E? » Tot"®@P)(Z | Z ) = H,(P)

we have that d” " '[a | - - - | a] = [b] for appropriate classes a and b in H,(QP).
By [19] the p"-fold homology Massey product, or at least the associated canon-
ically defined MMP, is defined and contains 5. Kochman has shown that the
p-fold homology Massey product is always defined in H,(X), if X is a three-fold
loop space, and equals — fQ%a where Q is the Dyer-Lashof operation. Thus if
r = 1,then b = —pQ’a € H,,,_,(QP) [10].

Conjecture 7.2. There is a higher order Dyer-Lashof operation

BQFTY, ..., Q% @)

defined in H,(QP) which contains b.
In support of this conjecture note that fQ?*Q* = 0 by the homology Adem
relations. However the analogy with cohomology operations is not as good as
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one might hope. It can easily be shown that QQ°a = 0 in H,(QP) and so we
cannot hope for the homology analogue of Theorem B, namely B,Q"Q’a
cannot be equal to <a,..., @) (p? times).

It is probable that a Dyer-Lashof analogue of y, can be defined in the
Postnikov system E, of Section 4.
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