ON THE WEYL SPECTRUM II

BY
Kirti K. Oberai ${ }^{1}$

Abstract

In this paper we show that if T is an isoloid operator for which Weyl's theorem holds and if $p(t)$ is a polynomial then Weyl's theorem holds for $p(T)$ if and only if $p(\omega(T))=\omega(p(T))$ where $\omega(T)$ is the Weyl spectrum of T. We also prove that if Weyl's theorem holds for T and if N is a nilpotent operator commuting with T then Weyl's theorem holds for $T+N$.

1. Preliminaries

Let X be a complex Banach space and let $\mathscr{L}(X)$ be the space of continuous linear operators on X considered with the norm topology. For $T \in \mathscr{L}(X)$ let $\sigma(T), \mathscr{P}(T)$, and $\pi_{00}(T)$ be respectively the spectrum, the resolvent set, and the isolated points of $\sigma(T)$ which are eigenvalues of finite (geometric) multiplicity. Let $\mathscr{N}(T)$ and $\mathscr{R}(T)$ respectively denote the null space and the range space of T. Let \mathfrak{F} be the class of Fredholm operators on $X(T \in \mathscr{F}$ if and only if $\mathscr{R}(T)$ is closed and the dimension of $\mathscr{N}(T)$ and the codimension of $\mathscr{R}(T)$ are both finite) and let \mathfrak{F}_{0} be the class of Fredholm operators of index 0 , i.e., those operators in \mathscr{F} for which $\operatorname{dim} \mathscr{N}(T)=\operatorname{codim} \mathscr{R}(T)$. If $\mathscr{K}(X)$ is the ideal of compact operators on X then \hat{T} will denote the image of T under the canonical mapping of $\mathscr{L}(X)$ into the quotient algebra $\mathscr{L}(X) / \mathscr{K}(X)$. Finally, let \mathscr{C} be the set of complex numbers.

Definifion 1. The Weyl spectrum $\omega(T)$ of $T \in \mathscr{L}(X)$ is defined by $\omega(T)=$ $\left\{\lambda \in \mathscr{C}: \lambda I-T \notin \mathscr{F}_{0}\right\}$.

Remark. If X is finite dimensional then $\omega(T)=\emptyset$. However, if X is infinite dimensional (and from now on we shall assume X to be so) then $\omega(T)$ is a nonempty compact subset of $\sigma(T)$ and it always contains $\sigma(\hat{T})$. Also, if $\pi_{0}(T)$ is the set of eigenvalues of finite multiplicity of T then $\sigma(T) \sim \pi_{0}(T) \subset \omega(T)$.

We say that Weyl's theorem holds for T if $\omega(T)=\sigma(T) \sim \pi_{00}(T)$.
From the above remark it follows immediately that if $\pi_{0}(T)=\emptyset$ then Weyl's theorem holds for T.

[^0]
2. Spectral mapping theorem for the Weyl spectrum

In this section we give conditions under which $f(\omega(T))=\omega(f(T))$ for a holomorphic function $f(t)$ defined in a neighborhood of spectrum of T. We may remark (see [1, Example 3.3]) that in general even for a polynomial $p(t)$, $p(\omega(T)) \neq \omega(p(T))$.

To avoid trivialities, in the sequel, whenever we consider a polynomial we shall assume that it is not a constant polynomial.

Lemma 1. Let $T \in \mathscr{L}(X)$. Then for any polynomial $p(t)$ we have $\sigma(p(T)) \sim$ $\pi_{00}(p(T)) \subset p\left(\sigma(T) \sim \pi_{00}(T)\right)$.

Proof. Let $\lambda \in \sigma(p(T)) \sim \pi_{00}(p(T))=p(\sigma(T)) \sim \pi_{00}(p(T))$.
Case I. λ is not an isolated point of $p(\sigma(T))$. In this case there exists a sequence $\left(\lambda_{n}\right)$ contained in $p(\sigma(T))$ such that $\lambda_{n} \rightarrow \lambda$. There exists a sequence $\left(\mu_{n}\right)$ in $\sigma(T)$ such that $p\left(\mu_{n}\right)=\lambda_{n} \rightarrow \lambda$. This implies that $\left(\mu_{n}\right)$ contains a convergent subsequence and we may assume that $\lim \mu_{n}=\mu_{0}$. Hence $\lambda=$ $\lim p\left(\mu_{n}\right)=p\left(\mu_{0}\right)$. Since $\mu_{0} \in \sigma(T) \sim \pi_{00}(T)$ then $\lambda \in p\left(\sigma(T) \sim \pi_{00}(T)\right)$.

Case II. λ is an isolated point of $\sigma(p(T))$ so that either λ is not an eigenvalue of $p(T)$ or it is an eigenvalue of infinite multiplicity. Let $p(T)-\lambda I=$ $a_{0}\left(T-\mu_{1} I\right) \cdots\left(T-\mu_{n} I\right)$.

If λ is not an eigenvalue of $p(T)$ then none of μ_{1}, \ldots, μ_{n} can be an eigenvalue of T and of course, at least one of μ_{1}, \ldots, μ_{n} is in $\sigma(T)$. Therefore,

$$
\lambda \in p\left(\sigma(T) \sim \pi_{00}(T)\right)
$$

If λ is an eigenvalue of $p(T)$ of infinite multiplicity then at least one of μ_{1}, \ldots, μ_{n}, say μ_{1}, is an eigenvalue of T of infinite multiplicity. Then $\mu_{1} \in \sigma(T) \sim$ $\pi_{00}(T)$ and $p\left(\mu_{1}\right)=\lambda$ so that $\lambda \in p\left(\sigma(T) \sim \pi_{00}(T)\right)$.

Definition 2. An operator T is called isoloid if isolated points of $\sigma(T)$ are eigenvalues of T.

Proposition 1. Let $T \in \mathscr{L}(X)$ be isoloid. Then for any polynomial $p(t)$ we have $p\left(\sigma(T) \sim \pi_{00}(T)\right)=\sigma(p(T)) \sim \pi_{00}(p(T))$.

Proof. In the presence of Lemma 1 we need only to show that $p(\sigma(T) \sim$ $\left.\pi_{00}(T)\right) \subset \sigma(p(T)) \sim \pi_{00}(p(T))$.

Let $\lambda \in p\left(\sigma(T) \sim \pi_{00}(T)\right)$. Since $p(\sigma(T))=\sigma(p(T))$ then $\lambda \in \sigma(p(T))$. If possible let $\lambda \in \pi_{00}(p(T))$ so that in particular, λ is an isolated point of $\sigma(p(T))$. Let

$$
\begin{equation*}
p(T)-\lambda I=a_{0}\left(T-\mu_{1} I\right) \cdots\left(T-\mu_{n} I\right) \tag{1}
\end{equation*}
$$

The relation (1) shows that if any of μ_{1}, \ldots, μ_{n} is in $\sigma(T)$ then it must be an isolated point of $\sigma(T)$ and hence an eigenvalue (since T is isoloid). Since λ is
an eigenvalue of finite multiplicity any such μ must also be an eigenvalue of finite multiplicity and hence belongs to $\pi_{00}(T)$. This contradicts the fact that $\lambda \in p\left(\sigma(T) \sim \pi_{00}(T)\right)$. Therefore, $\lambda \notin \pi_{00}(p(T))$ and

$$
p\left(\sigma(T) \sim \pi_{00}(T)\right) \subset \sigma(p(T)) \sim \pi_{00}(p(T))
$$

Theorem 1. Let T be an isoloid operator and let Weyl's theorem hold for T. Then for any polynomial $p(t)$ Weyl's theorem holds for $p(T)$ if and only if $p(\omega(T))=\omega(p(T))$.

Proof. From Proposition $1 p\left(\sigma(T) \sim \pi_{00}(T)\right)=\sigma(p(T)) \sim \pi_{00}(p(T))$. If Weyl's theorem holds for T then $\omega(T)=\sigma(T) \sim \pi_{00}(T)$ so that

$$
p(\omega(T))=p\left(\sigma(T) \sim \pi_{00}(T)\right)=\sigma(p(T)) \sim \pi_{00}(p(T))
$$

The theorem follows immediately from this relationship.
Example 1. We give an example to show that both Proposition 1 and Theorem 1 may fail if T is not assumed to be isoloid.

Define T_{1} and T_{2} on l_{2} by

$$
T_{1}\left(x_{1}, x_{2}, \ldots\right)=\left(x_{1}, 0, x_{2} / 2, x_{3} / 2, \ldots\right)
$$

and

$$
T_{2}\left(x_{1}, x_{2}, \ldots\right)=\left(0, x_{1} / 2, x_{2} / 3, x_{3} / 4, \ldots\right)
$$

Let T be defined on $X=l_{2} \oplus l_{2}$ by $T=T_{1} \oplus\left(T_{2}-I\right)$. Then

$$
\sigma(T)=\{1\} \cup\{z:|z| \leq 1 / 2\} \cup\{-1\}, \quad \pi_{00}(T)=\{1\}
$$

and

$$
\omega(T)=\{z:|z| \leq 1 / 2\} \cup\{-1\}
$$

Thus Weyl's theorem holds for T.
Let $p(t)=t^{2}$. It is easy to verify that

$$
\sigma(p(T))=\{z:|z| \leq 1 / 4\} \cup\{1\}, \quad \pi_{00}(p(T))=\{1\}
$$

and

$$
\omega(p(T))=\{z:|z| \leq 1 / 4\} \cup\{1\}
$$

Thus $1 \in p\left(\sigma(T) \sim \pi_{00}(T)\right)$ but $1 \notin \sigma(p(T)) \sim \pi_{00}(p(T))$. Also, $\omega(p(T))=$ $p(\omega(T))$ but Weyl's theorem does not hold for $p(T)$.

For the proof of the next theorem we need the concept of limit of a sequence of compact subsets of the complex plane. For this we refer to [7].

Theorem 2. Let $T \in \mathscr{L}(X)$ be such that for any polynomial $p(t)$ then $p(\omega(T))=\omega(p(T))$. Then if $f(t)$ is a holomorphic function defined in a neighborhood of $\sigma(T)$ then $f(\omega(T))=\omega(f(T))$.

Proof. Let $\left(p_{n}(t)\right)$ be a sequence of polynomials converging uniformly in a neighborhood of $\sigma(T)$ to $f(t)$ so that $p_{n}(T) \rightarrow f(T)$. Since $f(T)$ commutes with each $p_{n}(T)$ by [7, Theorem 2] we have

$$
\omega(f(T))=\lim \omega\left(p_{n}(T)\right)=\lim p_{n}(\omega(T))=f(\omega(T))
$$

For the definitions of spectral operators (in the sense of Dunford) and the related concepts we refer to [2, Chapter XV].

Corollary 1. Let T be a spectral operator of finite type, in particular let T be a normal operator on a Hilbert space. Then for any holomorphic function $f(t)$ defined on a neighborhood of $\sigma(T)$ we have $\omega(f(T))=f(\omega(T))$.

Proof. For any polynomial $p(t), p(T)$ is a spectral operator of finite type. Hence, $p(T)$ is isoloid and Weyl's theorem holds for $p(T)$ [7, Theorem 4]. By Theorem 1, $p(\omega(T))=\omega(p(T))$. The result now follows from Theorem 2.

3. Two perturbations theorems

In this section we prove the conjecture made in [7] and give one more result on the same lines.

Lemma 2. Let $T \in \mathscr{L}(X)$ and let N be a quasinilpotent operator commuting with T. Then $\omega(T+N)=\omega(T)$.

Proof. It is enough to show that if $0 \notin \omega(T)$ then $0 \notin \omega(T+N)$.
Let $0 \notin \omega(T)$ so that $0 \notin \sigma(\widehat{T})$. For all $\lambda \in \mathscr{C}$ we have $\sigma\left((T+\lambda N)^{\wedge}\right)=\sigma(\widehat{T})$. Hence $0 \notin \sigma\left((T+\lambda N)^{\wedge}\right)$ for all $\lambda \in \mathscr{C}$.

Thus for all $\lambda \in \mathscr{C}, T+\lambda N$ is a Fredholm operator and in particular has closed range and has an index. By [4, Theorem V.1.8], $T+\lambda N$ has the same index for all $\lambda \in \mathscr{C}$. (This is not explicitly stated in the theorem quoted. However it follows immediately from the theorem and the fact that the index stays stable in a neighborhood of a Fredholm operator.) Since T is a Fredholm operator of index 0 then $T+N \in \mathscr{F}_{0}$ so that $0 \notin \omega(T+N)$.

Corollary 2. Let T be a spectral operator and let S be its scalar part. Then $\omega(T)=\omega(S)$. Also, if $\sigma(T)$ does not have isolated points then Weyl's theorem holds for T.

Proof. $\quad T=S+N$ where N is a quasinilpotent operator commuting with T. Hence $\omega(T)=\omega(S)$.

If $\sigma(T)$ does not have isolated points then $\sigma(S)(=\sigma(T))$ does not have isolated points. Since Weyl's theorem holds for S [7, Theorem 4],

$$
\omega(T)=\omega(S)=\sigma(S)=\sigma(T)\left(=\sigma(T) \sim \pi_{00}(T)\right)
$$

Hence, Weyl's theorem holds for T.

The next theorem proves the conjecture made in [7].
Theorem 3. Let $T \in \mathscr{L}(X)$ and let N be a nilpotent operator commuting with T. If Weyl's theorem holds for T then it also holds for $T+N$.

Proof. We show that $\pi_{00}(T+N)=\pi_{00}(T)$.
Let $0 \in \pi_{00}(T)$ so that $\mathscr{N}(T)$ is finite dimensional. Let $(T+N) x=0$ for some $x \neq 0$. Then $T x=-N x$. Since N commutes with T it follows that for every positive integer

$$
\begin{equation*}
T^{m} x=(-1)^{m} N^{m} x \tag{2}
\end{equation*}
$$

Let n be the smallest positive integer such that $N^{n}=0$. The relation (2) shows that for some r with $1 \leq r \leq n, T^{r} x=0$ and then $T^{r-1} x \in \mathscr{N}(T)$. Thus

$$
\mathscr{N}(T+N) \subset \mathscr{N}\left(T^{n-1}\right)
$$

Therefore, $\mathscr{N}(T+N)$ is finite dimensional. Also if for some $x(\neq 0) T x=0$ then $(T+N)^{n} x=0$ so that 0 is an eigenvalue of $T+N$. Again since $\sigma(T+N)=\sigma(T)$ it follows that $0 \in \pi_{00}(T+N)$.

By symmetry $0 \in \pi_{00}(T+N)$ implies $0 \in \pi_{00}(T)$. Thus we have

$$
\begin{aligned}
\omega(T+N) & =\omega(T) \quad(\text { by Lemma } 2) \\
& \left.=\sigma(T) \sim \pi_{00}(T) \quad \text { (since Weyl's theorem holds for } T\right) \\
& =\sigma(T+N) \sim \pi_{00}(T+N)
\end{aligned}
$$

Therefore, Weyl's theorem holds for $T+N$.
Example 2. Let $X=l_{2}$ and let T and N in $\mathscr{L}(X)$ be defined by

$$
T\left(x_{1}, x_{2}, x_{3}, \ldots\right)=\left(0, x_{1} / 2, x_{2} / 3, \ldots\right)
$$

and

$$
N\left(x_{1}, x_{2}, x_{3}, \ldots\right)=\left(0,-x_{1} / 2,0,0, \ldots\right)
$$

Since the point spectrum of T is empty then Weyl's theorem holds for T. Also N is a nilpotent operator. Since

$$
0 \in \pi_{00}(T+N) \cap \omega(T+N)
$$

then Weyl's theorem does not hold for $T+N$.
This example shows that Theorem 3 may fail if N is not assumed to commute with T. It also shows that if Weyl's theorem holds for T and F is a finite rank operator (i.e., $\mathscr{R}(T)$ is finite dimensional) then Weyl's theorem may not hold for $T+F$. The next theorem gives some conditions under which Weyl's theorem would hold for $T+F$ when it holds for T.

Recall that if λ is an isolated point of $\sigma(T)$ and P is the projection associated with λ then the dimension of P is called the algebraic multiplicity of λ. If dimension of P is finite and not zero then λ must be an eigenvalue of T. By $\pi_{0 A}(T)$
we denote the set of isolated eigenvalues of T of finite algebraic multiplicity. It is well known that $\pi_{0 A}(T) \subset \pi_{00}(T)$. For the details we refer to [6, III.6.5].

Theorem 4. Let Weyl's theorem hold for T and let F be a finite rank operator. Let $\pi_{00}(T)=\pi_{0 A}(T)$ and let $\pi_{00}(T+F)=\pi_{0 A}(T+F)$. Then Weyl's theorem holds for $T+F$.

Remark. By [3, Theorem 4.2] the hypothesis $\pi_{00}(T)=\pi_{0 A}(T)$ is satisfied if $\lambda \in \pi_{00}(T)$ implies $\lambda I-T$ is normally solvable.

Proof. As in [6, IV.6.2] we define the multiplicity function $\tilde{v}(\lambda, T)$ for T by

$$
\tilde{v}(\lambda, T)= \begin{cases}0 & \text { if } \lambda \in \mathscr{P}(T) \\ \operatorname{dim} P & \text { if } \lambda \text { is an isolated point of } \sigma(T) \\ \infty & \text { in all other cases. }\end{cases}
$$

Let $\Delta=\mathscr{P}(T) \cup \pi_{0 A}(T)$.
The first Weinstein-Aronszajn formula [6, Theorem IV.6.2] gives

$$
\begin{equation*}
\tilde{v}(\lambda, T+F)=\tilde{v}(\lambda, T)+v(\lambda, \omega), \quad \lambda \in \Delta \tag{*}
\end{equation*}
$$

where $v(\lambda, \omega)$ is a finite integer valued function. (For the details of the definition of $v(\lambda, \omega)$ refer to [6, IV.6.2]. The only property of $v(\lambda, \omega)$ that we shall use is that it is finite integer valued function and so we do not include details of its definition.)

Let $\lambda \in \pi_{00}(T) \cup \mathscr{P}(T)=\pi_{0 A}(T) \cup \mathscr{P}(T)$. Then $(*)$ shows that $\tilde{v}(\lambda, T+F)$ is finite and hence

$$
\lambda \in \pi_{0 A}(T+F) \cup \mathscr{P}(T+F)=\pi_{00}(T+F) \cup \mathscr{P}(T+F)
$$

Hence

$$
\pi_{00}(T) \cup \mathscr{P}(T) \subset \pi_{00}(T+F) \cup \mathscr{P}(T+F)
$$

Similarly

$$
\pi_{00}(T+F) \cup \mathscr{P}(T+F) \subset \pi_{00}(T) \cup \mathscr{P}(T)
$$

Thus

$$
\pi_{00}(T) \cup \mathscr{P}(T)=\pi_{00}(T+F) \cup \mathscr{P}(T+F)
$$

so that

$$
\sigma(T) \sim \pi_{00}(T)=\sigma(T+F) \sim \pi_{00}(T+F)
$$

The theorem now follows from the fact that $\omega(T+F)=\omega(T)$.
We conclude this paper by mentioning a few questions that we have not been able to answer.

1. Does there exist a Toeplitz operator T such that Weyl's theorem does not hold for T^{2} ? We know (see, e.g. [5, Problem 195]) that T^{2} is not Toeplitz unless T is analytic or coanalytic.

We may add that Example 3.3 in [1] along with Theorem 1 may be used to show that there exists a Toeplitz operator T and a polynomial $p(t)$ such that Weyl's theorem does not hold for $p(T)$. Note that a Toeplitz operator is isoloid.
2. Does there exist a hyponormal operator T such that Weyl's theorem does not hold for T^{2} ? Note that T^{2} may not be hyponormal if T is hyponormal [5, Problem 164].
3. If Weyl's theorem holds for T and F is a finite rank operator commuting with T then does Weyl's theorem hold for $T+F$?

We may remark that if F is required to be a compact operator then Weyl's theorem may not hold for $T+F$ if it holds for T. A simple example is to take $T=0$ and F to be adjoint of the operator T_{2} given in Example 1.

References

1. S. K. Berberian, The Weyl spectrum of an operator, Indiana Univ. Math. J., vol. 20 (1970), pp. 529-544.
2. N. Dunford and J. T. Schwartz, Linear operators, part III, Wiley, New York, 1971.
3. I. C. Gohberg and M. G. Krein, The basic propositions on defect numbers, root numbers and indices of linear operators, Trans. Amer. Math. Soc. (2), vol. 13 (1964), pp. 185-264.
4. S. Goldberg, Unbounded linear operators, McGraw Hill, New York, 1966.
5. P. R. Halmos, A Hilbert space problem book, Van Nostrand, Princeton, 1967.
6. T. Kato, Perturbation theory for linear operators, Springer Verlag, Berlin, 1966.
7. K. K. Oberai, On the Weyl spectrum, Illinois J. Math., vol. 18 (1974), pp. 208-212.

[^0]: Received September 15, 1975.
 ${ }^{1}$ This research was partially supported by an N.R.C. grant.

