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1. Introduction

Let X denote a compact space and C(X) the function space of complex-
valued maps on X with the uniform norm. If H {fx,..., f,} is a linearly
independent finite set of functions, then H is a Haar system (of length n) on X
[10] if and only if for any choice of n distinct points xx,. x, of X,

(1) det (fi(xj)) v O.

If we let F,(X) denote the nth configuration space of X [6], i.e.,

(2) F,(X) {(Xl,..., x,) x X, x v xi for j},

then (1) gives rise to a function b: F,(X) S with the property that

(3) b(xi,,..., xi.) sgn (ix,..., i,,)d?(xx,..., x,).

In the language of equivariant maps, (3) says the following:

If Z" is the full symmetric group, then Z" acts (freely) on the configuration space
F,,(X) by permuting coordinates. E" also acts on any sphere Sk, using the usual
homomorphism E" Z2 and the free action of Z2 on Sk via the antipodal map.
Then, we see that the previous comments amount to saying that the existence
of a Haar system on X implies the existence of an equivariant map

b: F,(X) --+ S x.
Schoenberg and Yang [10] showed that if X is a finite polyhedron, then X

admits a Haar system of length n for some n > 2 if and only if X imbeds in the
plane. This result was extended to Peano continua by Overdeck [9]. In both
papers, a key result (whose proof is due to Loewner) is that S2 does not admit
a Haar system of length n > 2. The following theorem is the content of [5]:

THEOREM 1. There is no equivariant map qb Fn(Sk) -- Sk- l, n > 2, k > 2,
unless k 3, 7, and in these cases only if n 3.

This then gives a purely topological result which implies the nonexistence of
Haar systems on S2. The proof of Theorem in the special case of S2 involved
the existence of elements of finite order in the fundamental group rI(F,(S2)/E"),
namely the Dirac Braid [4]. Our first objective (Section 2) is to give an alternate
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proof of this special case which happens to work for arbitrary orientable com-
pact 2-manifolds. This is interesting because the braid groups zI(Fn(M2)/Zn)
of compact manifolds, other than the sphere and projective plane, have no
elements of finite order [6]. In Section 3 we prove the topological analogue of
the Schoenberg-Yang result for finite polyhedra of dimension >_ 2, namely:

THEOREM 2.
variant map

If X is a finite polyhedron, dim X > 2, then X admits an equi-

(4) :F.(X)Sx, n > 2,

if and only if X imbeds in the plane R2.

In Section 4, we exhibit explicit examples of equivariant maps

F3(S2) S2, F3(S7) S6,

which are the exceptional cases of Theorem 1. Finally, in Section 5 we introduce
the concept of configuration index of a space which allows a simpler reformula-
tion of results of this kind.

2. The case of two manifolds

If X is any space and F.(X) is its nth configuration space, we let B.(X) denote
the orbit space F.(X)/Z". Then, if 4: F.(X) S is an equivariant map, we
have an induced diagram

(5)
F,(X) S’

where p is an (n !)-fold covering map, q a 2-fold covering map, and is induced
by . Then (5) in turn gives rise to a commutative diagram

(6)
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As usual, factors through singular homology

r(B,,(X)) (S)
(7) / 6.

n,(,.(X))

where makes (B,(X)) abelian. Now, if Mz is any 2-manifold, we may take
n distinct points in a coordinate patch and consider the element a in (B,,(M))
determined by the path (see [7]) in Figure 1.

Figure 1. as

Just as in the R2-case studied by Artin [l-l, these elements satisfy the relations

(8) O’i(7j ajai, li- Jl > 2,

(9) aiai+a a+ aiai+ .
Furthermore, the element

U 0"10"2"’" O"n_IOn_1 0"20"1

is represented by the path 7] in Figure 2.

Figure 2. tr,tr2 tr.l_,tr._, tr2tr,

Now, we provide a simple proof of the following result.

THEOREM 2.1. If M2 is a compact orientable 2-manifold, then M2 does not
admit an equivariant map b: F,(M2) S1, n > 2.

Proof. We employ the notation introduced above. First, observe that (9)
implies that

(10) (a) #(a+x), 1,...,n-- 2,

so that

(11) (ax) (,), i= 1,...,n-- 1.
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Since the loop in Figure 2 bounds a 2-chain in the "exterior" of this loop, it
follows easily that (u) 0 in Ht(B,(X)) and hence using (7),

(12) (u) 2(n 1) (a t) 0.

But, notice that at is associated with an odd permutation and using (6)

(13) (at) # 0.

This implies that zrt(St), written additively, has elements of finite order which
contradicts the fact that zrt(S t) Z.

3. The case of finite polyhedra

We now make use of Theorem 2.1 when M2 is S2 and Wu’s imbedding classes
to prove the following result.

THEOREM 3.1. If X is a finite polyhedron, dim X > 2, then there exists an
equivariant map F,(X) - S for some n > 2 if and only if X imbeds in R2.

Before we proceed to the proof, we will recall some pertinent facts. Given X,
we have a diagram

(14)
F2(X) S

B2(X) Rp

where f classifies the covering map p. Then the Wu (mod 2) imbedding classes
*i(X) are given by

(15) *(X) f*(x) e H(B2(X); Z2)

where x is the nonzero element of Ht(RP; Z2). For example, it is known that
in the following cases 2(X) - 0 (see I11] and [12]):

Case 1.
Case 2.
Case 3.

X Kt or K2 the "Kuratowski graphs" [8],
X S2,
X L, a 2-disc with a "feeler" emanating from its center.

It is also more or less classical that a 2-complex X imbeds in S2 if and only if
X fails to contain copies of Kt, K2, or L (see [2] and [8]). Putting all these facts
together, we obtain the more or less known result:

PROPOSITION 3.2.
only if 2(X) 0.

A finite 2-complex X is imbeddable in the plane R2 if and

Proof of Theorem 3.1. First we observe that because of Theorem 2.1, we
may assume that dim X 2. Furthermore, since equivariant maps F,(R2) S
abound, we consider only the "only if" part and proceed by induction on n.
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For n 2, the existence of an equivariant map " F2(X) --, S gives rise to a
diagram

F2(X) S --* S
(16) $ $

B2(X) S _., Rp

which forces 2(X) 0. Thus in this case, X imbeds in the plane R2. Proceed-
ing by induction, suppose if" F,(X) - S is a given equivariant map, n > 2.
Choose a point p in-the interior of a 2-simplex and a small open disc neighbor-
hood N of p so that X . remains connected, where is the closure of N.
Then we can define an equivariant map

(17) O(x,. x,_l) d(xl,. xn-1, P).

Thus, by induction, X N imbeds in R2 S2. Since X

_
is connected, the

imbedding takes X N into one component of S2 C, where C is the simple
closed curve corresponding to the boundary of N. Thus the imbedding extends
easily to X by mapping N to the other component of S2 C. Now, that we
have X imbedded in S2 and we know that since X is not all of S2 (because of
Theorem 2.1), we have X is imbedded in R2.

Remark. It is not difficult to see that Theorem 3.1 remains valid for finite
CW-complexes.

4. Some special cases

We consider now the exceptional cases k 3, 7 ofTheorem 1. We handle the
case k 3 and remark that the case k 7 follows in a completely analogous
fashion.
We are looking for an equivariant map " Fa(Sa) - S2. Consider the maps

(18) S2 so(a) S0(4) G2+,2
where Ga+,, represents the oriented k-planes in (n + k)-space and SO(n) the
special orthogonal group in R". The maps , fl, and y are given explicitly as
follows.

(a) (A) [el, e2], where [el, e2] is the oriented 2-plane determined by the
first two columns of the matrix A SO(4).

(b) fl(A) q A, where q is the first column of A considered as a
quaternion and q is right multiplication by q-t.

(c) y evaluates at (0, 1, 0, 0), where SO(3) acts on 0 x R3

_
R4.

LEMMA 4.1. The map f yfl- G2+, 2 --4 S2 dS well defined and equivariant,
where Z2 acts on oriented planes by reversing orientations and on S2 via the anti-
podal map.

Proof. A straightforward exercise.



EQUIVARIANT MAPS AND HAAR SYSTEMS 81

Given three distinct points (xl, x2, X3) on any sphere S", they determine an
oriented nondegenerate triangle and hence an oriented 2-plane Ix1, x2, xa].
The resulting map g" F3(S") - G2+,,_ is clearly equivariant in the sense that
an odd permutation of (xx, x2, x3) results in a change in orientation of
[xx, x2, x3]. Combining this remark with Lemma 4.1 which has an analogue
for the case G2+, 6 $6, we obtain"

THEOREM 4.2. The map dp g f: F3(Sk) - Sk- 1, k 3, 7 is equivariant.

5. The configuration index

The results in [5-1 and in the previous section can be reformulated if one
introduces the following notion.

DEFINITION 5.1. Given a space X and a positive integer n _> 2, we define the
nth configuration index c,(X) of X as the smallest integer k such that F,(X)
admits an equivariant map (in the sense of previous sections) to the k-sphere
Sk (compare [3]).
Thus, for example, c2(Sk) k; c3(S3) 2.

THEOREM 5.2.
then

If a space X is a k-dimensional locallyfinite complex (k < ),

(19) c.(X) < nk,

so that for such X’s, c,(X) is a well-defined nonnegative integer.

Proof. The proof is not difficult and we content ourselves with a sketch.
The covering map p: F,(X) B,(X) induces a homomorphism nx(B,(X))
E" which in turn induces the diagram

u(B.(X)) H(B.(X))

)",n )’" Z2
where makes zl abelian. Then,

r/c Hom (H,(B.(X)), Z2) HI(Bn(X); Z2) - [Bn(X), RP].
Choose a map : B.(X) -, RP corresponding to r/under the above identifica-
tions. Since (RP, RPm) 0 for _< m, we may deform into RP as
long as nk <_ m. There is no difficulty lifting : B.(X) --+ RPm to obtain

F.(X) ----, S

B.(X) RP

and one checks easily that qb is equivariant.
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In terms this configuration index we can summarize results as follows"

(a) cn(St)= 0 for n=2k+ 1
forn 2k.

(b) c2(Sk) k, k > 1.

(c) ca(Sk)=k_ forkq: 1,3,7
1 fork 1,3,7.

(d) cn(Mk) > k, for any k-manifold, k > 3, n > 4.
(e) c2(M2) 2 for any compact orientable 2-manifold,
(f) c3(M2) 2 for any compact orientable 2-manifold.
(g) cn(X) 1 for some n > 2 implies X irlabeds in R2, whenever X is a finite

complex of dim > 2.

Remarks. (a) and (b) are simple exercises. (c) and (d) follow from [5].
(e) and (f) are consequences of imbedding M2 c S3. (g) is Theorem 3.1.

6. An open question

Theorem 3.1 contains a glaring omission, namely the case where X is a
1-complex. There is no difficulty in one direction namely" If X is a 1-complex
which imbeds in R2, then there exist equivariant maps b" Fn(X) S for every
n > 2. This follows because it is easy to construct equivariant maps Fn(R2)
S for every n > 2. For example, think of R2 as complex numbers and use the
Haar system 1, z,..., zn- t. As stated, the converse requires embedding X in
R2 under the assumption that an equivariant map b" Fn(X) S exists for
some n > 2. If n 2, there is no problem since this case forces the Wu in-
variant 2(X) 0 and X cannot contain the Kuratowski graphs Kt and K2.
The difficulty then is isolated as follows.

Question 6.1. If n > 2 and there is an equivariant map b" Fn(X) St,
does this force O2(X) 0 when X is a 1-complex?

There is an alternative way of looking at this question and that is to consider
the diagram

F.(X)

p ""An(X)
q

where An(X) is the orbit space of the action of the alternating group A.
and q is the associated 2-fold cover. Then, we have a classifying map

S

B.(X) RP
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and we define generalized mod 2 Wu classes by setting

obj.(X) f*.(u’) H’(B.(X); Z2)
where u is the nonzero element of HI(RP; Z2).

Problem 6.2. Relate q)o(X) and q)(X) tI)(X).

More specifically, a solution to the following problem will allow us to extend
Theorem 3.1 to include 1-complexes.

Problem 6.3.
for every n >_ 2.

IfKis one of the two Kuratowski graphs, show that O2(K) # 0

Added in Proof. A detailed proof of the result, used in Proposition 3.2, that
a 2-complex X embeds in S2 if, and only if, X fails to contain KI, K2, or L may
be found in S. Mardei6 and J. Segal, On polyhedra embeddable in the 2-sphere,
Glasnik Matemati.ki, vol. (21), (1966), pp. 167-175.
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