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1. Introduction

Let X denote a compact space and C(X) the function space of complex-
valued maps on X with the uniform norm. If H = {f,,..., f,} is a linearly
independent finite set of functions, then H is a Haar system (of length n) on X
[10] if and only if for any choice of n distinct points x;, . .., x, of X,

M det (fi(x;)) # O.

If we let F,(X) denote the nth configuration space of X [6], i.e.,

) F(X) = {(x1,..., x) | x; € X, x; # x; fori # j},
then (1) gives rise to a function ¢: F,(X) — S* with the property that
3 (x5 oy X)) = sg0 (I, ..., B)P(Xy, ..o, X,).

In the language of equivariant maps, (3) says the following:

If X" is the full symmetric group, then X" acts (freely) on the configuration space
F,(X) by permuting coordinates. X" also acts on any sphere S*, using the usual
homomorphism =" — Z, and the free action of Z, on S* via the antipodal map.
Then, we see that the previous comments amount to saying that the existence
of a Haar system on X implies the existence of an equivariant map

¢: F(X) > S

Schoenberg and Yang [10] showed that if X is a finite polyhedron, then X
admits a Haar system of length n for some n > 2 if and only if X imbeds in the
plane. This result was extended to Peano continua by Overdeck [9]. In both
papers, a key result (whose proof is due to Loewner) is that S? does not admit
a Haar system of length » > 2. The following theorem is the content of [5]:

THEOREM 1. There is no equivariant map ¢: F,(S*) - S* ', n > 2,k > 2,
unless k = 3,7, and in these cases only if n = 3.

This then gives a purely topological result which implies the nonexistence of
Haar systems on S2. The proof of Theorem 1 in the special case of S? involved
the existence of elements of finite order in the fundamental group n,(F,(S?)/Z"),
namely the Dirac Braid [4]. Our first objective (Section 2) is to give an alternate
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proof of this special case which happens to work for arbitrary orientable com-
pact 2-manifolds. This is interesting because the braid groups m,(F,(M?)/Z")
of compact manifolds, other than the sphere and projective plane, have no
elements of finite order [6]. In Section 3 we prove the topological analogue of
the Schoenberg-Yang result for finite polyhedra of dimension > 2, namely:

THEOREM 2. If X is a finite polyhedron, dim X > 2, then X admits an equi-
variant map

4 ¢ F(X) > S, n=>2,
if and only if X imbeds in the plane R?.
In Section 4, we exhibit explicit examples of equivariant maps
F3(SZ) - 2, Fa(S7) - 56,

which are the exceptional cases of Theorem 1. Finally, in Section 5 we introduce
the concept of configuration index of a space which allows a simpler reformula-
tion of results of this kind.

2. The case of two manifolds

If X is any space and F,(X) is its nth configuration space, we let B,(X) denote
the orbit space F,(X)/Z". Then, if ¢: F,(X) —» S' is an equivariant map, we
have an induced diagram

F(X)-2. st
® St
B(x)_ %, st

where p is an (n!)-fold covering map, g a 2-fold covering map, and ¢ is induced
by ¢. Then (5) in turn gives rise to a commutative diagram

] 0

l |

1 (F (X)) 22 7y(SY)

P# _ ‘l#
6) 1 (B, (X)) 2% m(ls')
¥ . Z,

| l

1 0
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As usual, ¢, factors through singular homology
é
11(B(X)) =% m,(S")
Q) "\ / &
H,(B,(X))

where y makes 7,(B,(X)) abelian. Now, if M? is any 2-manifold, we may take
n distinct points in a coordinate patch and consider the element o; in 7,(B,(M %))
determined by the path (see [7]) in Figure 1.

Xy Xz "t Xy Xiep CC Xy

Figure 1. g,

Just as in the R2-case studied by Artin [1], these elements satisfy the relations
(8) 0,0, = 0,0, |i —jl 22,
)] 0i0i+10; = 044+100;+1.
Furthermore, the element
U= 0403'""0,-10,—1"" 020

is represented by the path [7] in Figure 2.

Figure 2. 0103 *** Cy3_10p_1 *** 020,
Now, we provide a simple proof of the following result.

THEOREM 2.1. If M? is a compact orientable 2-manifold, then M? does not
admit an equivariant map ¢: F,(M?) - S', n > 2.

Proof. We employ the notation introduced above. First, observe that (9)
implies that

(10) $#(6i) = ‘-ﬁ#(ain), i=1,...,n—2,
so that

(ll) 6#(01) = $#(¢7i), i= 19“*9" - L
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Since the loop in Figure 2 bounds a 2-chain in the “exterior” of this loop, it
follows easily that y(u) = 0 in H,(B,(X)) and hence using (7),

(12) $4w) = 2(n — D) 4(ay) = 0.
But, notice that o, is associated with an odd permutation and using (6)
(13) $4(ay) # 0.

This implies that n,(S'), written additively, has elements of finite order which
contradicts the fact that n,(S!) = Z.

3. The case of finite polyhedra

We now make use of Theorem 2.1 when M ? is S? and Wu’s imbedding classes
to prove the following result.

THEOREM 3.1. If X is a finite polyhedron, dim X > 2, then there exists an
equivariant map ¢: F,(X) - S* for some n > 2 if and only if X imbeds in R?.

Before we proceed to the proof, we will recall some pertinent facts. Given X,
we have a diagram

Fy(X) — 8%
(14) | |

By(X)-L. RP
where f classifies the covering map p. Then the Wu (mod 2) imbedding classes
®'(X) are given by
as) (X)) = f*(x') e H(By(X); Z,)
where x is the nonzero element of H'(RP®; Z,). For example, it is known that
in the following cases ®*(X) # 0 (see [11] and [12]):

Case 1. X = K, or K, the “Kuratowski graphs” [8],
Case2. X = S?,

Case 3. X = L, a 2-disc with a “feeler’” emanating from its center.

It is also more or less classical that a 2-complex X imbeds in S? if and only if
X fails to contain copies of K, K, or L (see [2] and [8]). Putting all these facts
together, we obtain the more or less known result:

PROPOSITION 3.2. A finite 2-complex X is imbeddable in the plane R? if and
only if ®*(X) = 0.

Proof of Theorem 3.1. First we observe that because of Theorem 2.1, we
may assume thatdim X = 2. Furthermore, since equivariant maps F,(R?) — S*
abound, we consider only the “only if” part and proceed by induction on n.
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For n = 2, the existence of an equivariant map ¢: F,(X) — S! gives rise to a
diagram

Fy(X) » S' - S
16) ! ! l

B,(X) » S! - RP®

which forces ®2(X) = 0. Thus in this case, X imbeds in the plane R%. Proceed-
ing by induction, suppose ¢: F,(X) — S! is a given equivariant map, n > 2.
Choose a point p in the interior of a 2-simplex and a small open disc neighbor-
hood N of p so that X — N remains connected, where N is the closure of N.
Then we can define an equivariant map

(17) l//(xl:“"xn—l) = ¢(x1"~', Xn—1s p)

Thus, by induction, X — N imbeds in R? = S2. Since X — N is connected, the
imbedding takes X — N into one component of S> — C, where C is the simple
closed curve corresponding to the boundary of N. Thus the imbedding extends
easily to X by mapping N to the other component of S* — C. Now, that we
have X imbedded in S? and we know that since X is not all of S? (because of
Theorem 2.1), we have X is imbedded in R2.

Remark. 1t is not difficult to see that Theorem 3.1 remains valid for finite
CW-complexes.

4. Some special cases

We consider now the exceptional cases k = 3, 7 of Theorem 1. We handle the
case k = 3 and remark that the case k = 7 follows in a completely analogous
fashion.

We are looking for an equivariant map ¢: F5(S®) — S2. Consider the maps

(18) 52 1 S0(3) L so@) - Gf ,

where Gy, represents the oriented k-planes in (n + k)-space and SO(n) the
special orthogonal group in R”. The maps a, §, and y are given explicitly as
follows.

(@) o(d) = [ey, e,], where [e,, e,] is the oriented 2-plane determined by the
first two columns of the matrix 4 € SO(4).

(b) B(A) = gg ' o A, where g is the first column of A considered as a
quaternion and g ! is right multiplication by ¢ 1.

(c) v evaluates at (0, 1, 0, 0), where SO(3) acts on 0 x R® = R*,

LemMA 4.1. The map f = ypa~': G5 , —» S? is well defined and equivariant,
where Z, acts on oriented planes by reversing orientations and on S* via the anti-
podal map.

Proof. A straightforward exercise.
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Given three distinct points (x,, Xx,, X3) on any sphere S”, they determine an
oriented nondegenerate trlangle and hence an oriented 2-plane [x,, x,, x3].
The resulting map g: F5(S") - G5 ,_, is clearly equivariant in the sense that
an odd permutation of (x, X,, x3) results in a change in orientation of
[x4, x5, x3]. Combining this remark with Lemma 4.1 which has an analogue
for the case G5 ¢ — S°, we obtain:

THEOREM 4.2. The map ¢ = g o f: F3(S¥) —» S*~1, k = 3, 7 is equivariant.

5. The configuration index

The results in [5] and in the previous section can be reformulated if one
introduces the following notion.

DEerINITION 5.1.  Given a space X and a positive integer n > 2, we define the
nth configuration index c,(X) of X as the smallest integer k such that F,(X)
admits an equivariant map (in the sense of previous sections) to the k-sphere
S* (compare [3]).

Thus, for example, ¢,(S*) = k; c5(S3) = 2.

THEOREM 5.2. If a space X is a k-dimensional locally finite complex (k < o),
then
19) c(X) < nk,
so that for such X’s, ¢,(X) is a well-defined nonnegative integer.

Proof. The proof is not difficult and we content ourselves with a sketch.
The covering map p: F,(X) — B,(X) induces a homomorphism 7,(B,(X)) —
2" which in turn induces the diagram

m1(By(X)) —— Hy(B(X))
n
Zn —_— Z2
where y makes n, abelian. Then,
n € Hom (H((B,(X)), Z,) = H'(B,(X); Z,) = [B,(X), RP~].

Choose a map ¢: B,(X) — RP® corresponding to n under the above identifica-
tions. Since m;(RP®, RP™) = 0 for i < m, we may deform ¢ into RP™ as
long as nk < m. There is no difficulty lifting ¢: B,(X) — RP™ to obtain

F (X))~ sm

Lo,

B,(X) - rp"

and one checks easily that ¢ is equivariant.
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In terms this configuration index we can summarize results as follows:

0 forn=2k+1
st =
@ a5 {1 for n = 2k.

® (S =k k=1

n_ |k fork #1,3,7
© S {k ~1 fork=1,3,7.
(d) c¢,(M*) > k, for any k-manifold, k > 3,n > 4.
(€) c,(M?) = 2 for any compact orientable 2-manifold,
(f) c3(M?) = 2 for any compact orientable 2-manifold.
(® ¢, (X) = 1forsomen > 2implies X imbeds in R?, whenever X is a finite
complex of dim > 2.

Remarks. (a) and (b) are simple exercises. (c) and (d) follow from [5].
(e) and (f) are consequences of imbedding M? <= S3. (g) is Theorem 3.1.

6. An open question

Theorem 3.1 contains a glaring omission, namely the case where X is a
1-complex. There is no difficulty in one direction namely: If X is a 1-complex
which imbeds in R, then there exist equivariant maps ¢: F,(X) — S* for every
n > 2. This follows because it is easy to construct equivariant maps F,(R?) —
S! for every n > 2. For example, think of R? as complex numbers and use the
Haar system 1, z,..., z" 1. As stated, the converse requires embedding X in
R? under the assumption that an equivariant map ¢: F,(X) — S* exists for
some n > 2. If n = 2, there is no problem since this case forces the Wu in-
variant ®*(X) = 0 and X cannot contain the Kuratowski graphs K, and K,.
The difficulty then is isolated as follows.

Question 6.1. 1f n > 2 and there is an equivariant map ¢: F,(X) — S?,
does this force ®*(X) = 0 when X is a 1-complex?

There is an alternative way of looking at this question and that is to consider
the diagram
Fn(X)\
p l /A

B,(X) q

where A4,(X) is the orbit space of the action of the alternating group 4, < X"
and q is the associated 2-fold cover. Then, we have a classifying map

A(X)— 8%

L

B,(X)-I~ RP*

(X)
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and we define generalized mod 2 Wu classes by setting
®,(X) = fi(') € H'(B(X); Z%)

where u is the nonzero element of H!(RP®; Z,).
Problem 6.2. Relate ®}(X) and ®L(X) = ®'(X).

More specifically, a solution to the following problem will allow us to extend
Theorem 3.1 to include 1-complexes.

Problem 6.3. If Kis one of the two Kuratowski graphs, show that ®%(K) # 0
for every n > 2.

Added in Proof. A detailed proof of the result, used in Proposition 3.2, that
a 2-complex X embeds in S? if, and only if, X fails to contain X, K,, or L may
be found in S. Marde8i¢ and J. Segal, On polyhedra embeddable in the 2-sphere,
Glasnik Matematicki, vol. 1 (21), (1966), pp. 167-175.

BIBLIOGRAPHY

. E. ARTIN, Theory of braids, Ann. Math., vol. 48 (1947), pp. 101-126.
. S. CLAYTOR, Peanian continua not imbeddable in a spherical surface, Ann. Math., vol. 38
(1937), pp. 631-646.
3. P. E. Conner AND E. E. FLoYD, Fixed point free involutions and equivariant maps II, Trans.
Amer. Math. Soc., vol. 105 (1962), pp. 222-228.
4. E. FApeLL, Homotopy groups of configuration spaces and the string problem of Dirac,
Duke Math. J., vol. 29 (1962), pp. 231-242.

N =

5. , Equivariant maps on configuration spaces of spheres, Amer. J. Math., vol. 97 (1975),
pp. 699-706.

6. E. FADELL AND L. NEUWIRTH, Configuration spaces, Math. Scand., vol. 10 (1962), pp.
111-118.

7. E. FADELL AND J. VAN BUSKIRK, The braid groups of E* and S*, Duke Math, J., vol. 29
(1962), pp. 243-258.
8. C. KURATOWSKI, Sur le probléme des courbes gauches en Topologie, Fund. Math., vol. 15
(1930), pp. 271-283.
9. J. M. OVERDECK, On the non-existence of complex Haar systems, Bull. Amer. Math. Soc.,
vol. 77 (1971), pp. 737-740.
10. L J. SCHOENBERG AND C. T. YANG, On the unicity problems of best approximation, Ann,
Mat. Pura. Appl., vol. 54 (1961), pp. 1-12.
11. BrIAN UMMEL, Imbedding classes and n-minimal complexes, Proc. Amer. Math. Soc., vol.
38 (1973), pp. 201-206.
12. W. T. Wu, A4 theory of imbedding, immersion and isotopy of polytopes in a euclidean space,
Science Press, Peking, 1965, Math. Reviews, vol. 35, no. 6146.

UNIVERSITY OF WISCONSIN
MADISON, WISCONSIN



