EQUIVARIANT MAPS AND HAAR SYSTEMS

BY

EDWARD FADELL¹

1. Introduction

Let X denote a compact space and C(X) the function space of complexvalued maps on X with the uniform norm. If $H = \{f_1, \ldots, f_n\}$ is a linearly independent finite set of functions, then H is a Haar system (of length n) on X [10] if and only if for any choice of n distinct points x_1, \ldots, x_n of X,

(1)
$$\det (f_i(x_j)) \neq 0.$$

If we let $F_n(X)$ denote the *n*th configuration space of X [6], i.e.,

(2)
$$F_n(X) = \{(x_1, \ldots, x_n) \mid x_i \in X, x_i \neq x_j \text{ for } i \neq j\},\$$

then (1) gives rise to a function $\phi: F_n(X) \to S^1$ with the property that

(3)
$$\phi(x_{i_1},\ldots,x_{i_n}) = \operatorname{sgn}(i_1,\ldots,i_n)\phi(x_1,\ldots,x_n).$$

In the language of equivariant maps, (3) says the following:

If Σ^n is the full symmetric group, then Σ^n acts (freely) on the configuration space $F_n(X)$ by permuting coordinates. Σ^n also acts on any sphere S^k , using the usual homomorphism $\Sigma^n \to \mathbb{Z}_2$ and the free action of \mathbb{Z}_2 on S^k via the antipodal map. Then, we see that the previous comments amount to saying that the existence of a Haar system on X implies the existence of an equivariant map

$$\phi\colon F_n(X)\to S^1.$$

Schoenberg and Yang [10] showed that if X is a finite polyhedron, then X admits a Haar system of length n for some $n \ge 2$ if and only if X imbeds in the plane. This result was extended to Peano continua by Overdeck [9]. In both papers, a key result (whose proof is due to Loewner) is that S^2 does not admit a Haar system of length $n \ge 2$. The following theorem is the content of [5]:

THEOREM 1. There is no equivariant map $\phi: F_n(S^k) \to S^{k-1}, n \ge 2, k \ge 2$, unless k = 3, 7, and in these cases only if n = 3.

This then gives a purely topological result which implies the nonexistence of Haar systems on S^2 . The proof of Theorem 1 in the special case of S^2 involved the existence of elements of finite order in the fundamental group $\pi_1(F_n(S^2)/\Sigma^n)$, namely the Dirac Braid [4]. Our first objective (Section 2) is to give an alternate

Received September 9, 1975.

¹ This research was supported by a National Science Foundation grant.

proof of this special case which happens to work for arbitrary orientable compact 2-manifolds. This is interesting because the braid groups $\pi_1(F_n(M^2)/\Sigma^n)$ of compact manifolds, other than the sphere and projective plane, have no elements of finite order [6]. In Section 3 we prove the topological analogue of the Schoenberg-Yang result for finite polyhedra of dimension ≥ 2 , namely:

THEOREM 2. If X is a finite polyhedron, dim $X \ge 2$, then X admits an equivariant map

(4)
$$\phi: F_n(X) \to S^1, \quad n \ge 2,$$

if and only if X imbeds in the plane \mathbb{R}^2 .

In Section 4, we exhibit explicit examples of equivariant maps

$$F_3(S^2) \to S^2, \quad F_3(S^7) \to S^6,$$

which are the exceptional cases of Theorem 1. Finally, in Section 5 we introduce the concept of configuration index of a space which allows a simpler reformulation of results of this kind.

2. The case of two manifolds

If X is any space and $F_n(X)$ is its *n*th configuration space, we let $B_n(X)$ denote the orbit space $F_n(X)/\Sigma^n$. Then, if $\phi: F_n(X) \to S^1$ is an equivariant map, we have an induced diagram

(5)
$$F_{n}(X) \xrightarrow{\phi} S^{1}$$
$$p \downarrow \qquad \qquad \downarrow q$$
$$B_{n}(X) \xrightarrow{\phi} S^{1}$$

where p is an (n!)-fold covering map, q a 2-fold covering map, and $\overline{\phi}$ is induced by ϕ . Then (5) in turn gives rise to a commutative diagram

(6)

As usual, $\overline{\phi}_{\#}$ factors through singular homology

(7)
$$\begin{array}{c} \pi_1(B_n(X)) \xrightarrow{\phi_{\#}} \pi_1(S^1) \\ \gamma \swarrow & \swarrow \\ H_1(B_n(X)) \end{array}$$

where γ makes $\pi_1(B_n(X))$ abelian. Now, if M^2 is any 2-manifold, we may take *n* distinct points in a coordinate patch and consider the element σ_i in $\pi_1(B_n(M^2))$ determined by the path (see [7]) in Figure 1.

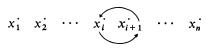


Figure 1. σ_i

Just as in the \mathbb{R}^2 -case studied by Artin [1], these elements satisfy the relations

(8) $\sigma_i \sigma_j = \sigma_j \sigma_i, \quad |i - j| \ge 2,$

(9) $\sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}.$

Furthermore, the element

$$u = \sigma_1 \sigma_2 \cdots \sigma_{n-1} \sigma_{n-1} \cdots \sigma_2 \sigma_1$$

is represented by the path [7] in Figure 2.

Figure 2. $\sigma_1 \sigma_2 \cdots \sigma_{n-1} \sigma_{n-1} \cdots \sigma_2 \sigma_1$

Now, we provide a simple proof of the following result.

THEOREM 2.1. If M^2 is a compact orientable 2-manifold, then M^2 does not admit an equivariant map $\phi: F_n(M^2) \to S^1, n \ge 2$.

Proof. We employ the notation introduced above. First, observe that (9) implies that

(10)
$$\overline{\phi}_{\#}(\sigma_i) = \overline{\phi}_{\#}(\sigma_{i+1}), \quad i = 1, \ldots, n-2,$$

so that

(11)
$$\overline{\phi}_{\#}(\sigma_1) = \overline{\phi}_{\#}(\sigma_i), \quad i = 1, \ldots, n-1.$$

Since the loop in Figure 2 bounds a 2-chain in the "exterior" of this loop, it follows easily that $\gamma(u) = 0$ in $H_1(B_n(X))$ and hence using (7),

(12)
$$\bar{\phi}_{\#}(u) = 2(n-1)\bar{\phi}_{\#}(\sigma_1) = 0.$$

But, notice that σ_1 is associated with an odd permutation and using (6)

(13)
$$\overline{\phi}_{\#}(\sigma_1) \neq 0.$$

This implies that $\pi_1(S^1)$, written additively, has elements of finite order which contradicts the fact that $\pi_1(S^1) = \mathbb{Z}$.

3. The case of finite polyhedra

We now make use of Theorem 2.1 when M^2 is S^2 and Wu's imbedding classes to prove the following result.

THEOREM 3.1. If X is a finite polyhedron, dim $X \ge 2$, then there exists an equivariant map $\phi: F_n(X) \to S^1$ for some $n \ge 2$ if and only if X imbeds in \mathbb{R}^2 .

Before we proceed to the proof, we will recall some pertinent facts. Given X, we have a diagram

(14)
$$\begin{array}{ccc} F_2(X) \longrightarrow S^{\infty} \\ p \\ B_2(X) \xrightarrow{f} \mathbf{R} P^{\alpha} \end{array}$$

where f classifies the covering map p. Then the $Wu \pmod{2}$ imbedding classes $\Phi^i(X)$ are given by

(15)
$$\Phi^{i}(X) = f^{*}(x^{i}) \in H^{i}(B_{2}(X); \mathbb{Z}_{2})$$

where x is the nonzero element of $H^1(\mathbb{R}P^{\infty}; \mathbb{Z}_2)$. For example, it is known that in the following cases $\Phi^2(X) \neq 0$ (see [11] and [12]):

Case 1.
$$X = K_1$$
 or K_2 the "Kuratowski graphs" [8],
Case 2. $X = S^2$,
Case 3. $X = L$, a 2-disc with a "feeler" emanating from its center

It is also more or less classical that a 2-complex X imbeds in S^2 if and only if X fails to contain copies of K_1 , K_2 , or L (see [2] and [8]). Putting all these facts together, we obtain the more or less known result:

PROPOSITION 3.2. A finite 2-complex X is imbeddable in the plane \mathbb{R}^2 if and only if $\Phi^2(X) = 0$.

Proof of Theorem 3.1. First we observe that because of Theorem 2.1, we may assume that dim X = 2. Furthermore, since equivariant maps $F_n(\mathbf{R}^2) \to S^1$ abound, we consider only the "only if" part and proceed by induction on n.

For n = 2, the existence of an equivariant map $\phi: F_2(X) \to S^1$ gives rise to a diagram

(16)
$$F_{2}(X) \rightarrow S^{1} \rightarrow S^{\infty}$$
$$\downarrow \qquad \downarrow \qquad \downarrow$$
$$B_{2}(X) \rightarrow S^{1} \rightarrow \mathbb{R}P^{\infty}$$

which forces $\Phi^2(X) = 0$. Thus in this case, X imbeds in the plane \mathbb{R}^2 . Proceeding by induction, suppose $\phi: F_n(X) \to S^1$ is a given equivariant map, n > 2. Choose a point p in the interior of a 2-simplex and a small open disc neighborhood N of p so that $X - \overline{N}$ remains connected, where \overline{N} is the closure of N. Then we can define an equivariant map

(17)
$$\psi(x_1,\ldots,x_{n-1}) = \phi(x_1,\ldots,x_{n-1},p).$$

Thus, by induction, X - N imbeds in $\mathbb{R}^2 \subset S^2$. Since $X - \overline{N}$ is connected, the imbedding takes $X - \overline{N}$ into one component of $S^2 - C$, where C is the simple closed curve corresponding to the boundary of N. Thus the imbedding extends easily to X by mapping N to the other component of $S^2 - C$. Now, that we have X imbedded in S^2 and we know that since X is not all of S^2 (because of Theorem 2.1), we have X is imbedded in \mathbb{R}^2 .

Remark. It is not difficult to see that Theorem 3.1 remains valid for finite CW-complexes.

4. Some special cases

We consider now the exceptional cases k = 3, 7 of Theorem 1. We handle the case k = 3 and remark that the case k = 7 follows in a completely analogous fashion.

We are looking for an equivariant map $\phi: F_3(S^3) \to S^2$. Consider the maps

(18)
$$S^2 \xleftarrow{\gamma} SO(3) \xleftarrow{\beta} SO(4) \xrightarrow{\alpha} G_{2,2}^+$$

where $G_{k,n}^+$ represents the oriented k-planes in (n + k)-space and SO(n) the special orthogonal group in \mathbb{R}^n . The maps α , β , and γ are given explicitly as follows.

(a) $\alpha(A) = [e_1, e_2]$, where $[e_1, e_2]$ is the oriented 2-plane determined by the first two columns of the matrix $A \in SO(4)$.

(b) $\beta(A) = q_R^{-1} \circ A$, where q is the first column of A considered as a quaternion and q_R^{-1} is right multiplication by q^{-1} .

(c) γ evaluates at (0, 1, 0, 0), where SO(3) acts on $0 \times \mathbb{R}^3 \subseteq \mathbb{R}^4$.

LEMMA 4.1. The map $f = \gamma \beta \alpha^{-1} \colon G_{2,2}^+ \to S^2$ is well defined and equivariant, where \mathbb{Z}_2 acts on oriented planes by reversing orientations and on S^2 via the antipodal map.

Proof. A straightforward exercise.

Given three distinct points (x_1, x_2, x_3) on any sphere S^n , they determine an oriented nondegenerate triangle and hence an oriented 2-plane $[x_1, x_2, x_3]$. The resulting map $g: F_3(S^n) \to G_{2,n-1}^+$ is clearly equivariant in the sense that an odd permutation of (x_1, x_2, x_3) results in a change in orientation of $[x_1, x_2, x_3]$. Combining this remark with Lemma 4.1 which has an analogue for the case $G_{2,6}^+ \to S^6$, we obtain:

THEOREM 4.2. The map $\phi = g \circ f$: $F_3(S^k) \to S^{k-1}$, k = 3, 7 is equivariant.

5. The configuration index

The results in [5] and in the previous section can be reformulated if one introduces the following notion.

DEFINITION 5.1. Given a space X and a positive integer $n \ge 2$, we define the *nth configuration index* $c_n(X)$ of X as the smallest integer k such that $F_n(X)$ admits an equivariant map (in the sense of previous sections) to the k-sphere S^k (compare [3]).

Thus, for example, $c_2(S^k) = k$; $c_3(S^3) = 2$.

THEOREM 5.2. If a space X is a k-dimensional locally finite complex $(k < \infty)$, then

(19)
$$c_n(X) \le nk,$$

so that for such X's, $c_n(X)$ is a well-defined nonnegative integer.

Proof. The proof is not difficult and we content ourselves with a sketch. The covering map $p: F_n(X) \to B_n(X)$ induces a homomorphism $\pi_1(B_n(X)) \to \Sigma^n$ which in turn induces the diagram

$$\begin{array}{cccc} \pi_1(B_n(X)) \xrightarrow{\gamma} H_1(B_n(X)) \\ \downarrow & & \downarrow^{\eta} \\ \Sigma^n & \longrightarrow & \mathbf{Z}_2 \end{array}$$

where γ makes π_1 abelian. Then,

$$\eta \in \text{Hom}(H_1(B_n(X)), \mathbb{Z}_2) \cong H^1(B_n(X); \mathbb{Z}_2) \cong [B_n(X), \mathbb{R}P^{\infty}].$$

Choose a map $\overline{\phi}: B_n(X) \to \mathbb{R}P^{\infty}$ corresponding to η under the above identifications. Since $\pi_i(\mathbb{R}P^{\infty}, \mathbb{R}P^m) = 0$ for $i \leq m$, we may deform $\overline{\phi}$ into $\mathbb{R}P^m$ as long as $nk \leq m$. There is no difficulty lifting $\overline{\phi}: B_n(X) \to \mathbb{R}P^m$ to obtain

and one checks easily that ϕ is equivariant.

In terms this configuration index we can summarize results as follows:

(a) $c_n(S^1) = \begin{cases} 0 & \text{for } n = 2k + 1 \\ 1 & \text{for } n = 2k. \end{cases}$

(b)
$$c_2(S^k) = k, k \ge 1.$$

(c)
$$c_3(S^k) = \begin{cases} k & \text{for } k \neq 1, 3, 7 \\ k - 1 & \text{for } k = 1, 3, 7. \end{cases}$$

- (d) $c_n(M^k) \ge k$, for any k-manifold, $k \ge 3$, $n \ge 4$.
- (e) $c_2(M^2) = 2$ for any compact orientable 2-manifold,
- (f) $c_3(M^2) = 2$ for any compact orientable 2-manifold.
- (g) $c_n(X) = 1$ for some $n \ge 2$ implies X imbeds in \mathbb{R}^2 , whenever X is a finite complex of dim ≥ 2 .

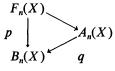
Remarks. (a) and (b) are simple exercises. (c) and (d) follow from [5]. (e) and (f) are consequences of imbedding $M^2 \subset S^3$. (g) is Theorem 3.1.

6. An open question

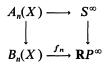
Theorem 3.1 contains a glaring omission, namely the case where X is a 1-complex. There is no difficulty in one direction namely: If X is a 1-complex which imbeds in \mathbb{R}^2 , then there exist equivariant maps $\phi: F_n(X) \to S^1$ for every $n \ge 2$. This follows because it is easy to construct equivariant maps $F_n(\mathbb{R}^2) \to S^1$ for every $n \ge 2$. For example, think of \mathbb{R}^2 as complex numbers and use the Haar system 1, z, \ldots, z^{n-1} . As stated, the converse requires embedding X in \mathbb{R}^2 under the assumption that an equivariant map $\phi: F_n(X) \to S^1$ exists for some $n \ge 2$. If n = 2, there is no problem since this case forces the Wu invariant $\Phi^2(X) = 0$ and X cannot contain the Kuratowski graphs K_1 and K_2 . The difficulty then is isolated as follows.

Question 6.1. If n > 2 and there is an equivariant map $\phi: F_n(X) \to S^1$, does this force $\Phi^2(X) = 0$ when X is a 1-complex?

There is an alternative way of looking at this question and that is to consider the diagram



where $A_n(X)$ is the orbit space of the action of the alternating group $A_n \subset \Sigma^n$ and q is the associated 2-fold cover. Then, we have a classifying map



and we define generalized mod 2 Wu classes by setting

$$\Phi_n^i(X) = f_n^*(u^i) \in H^i(B_n(X); \mathbb{Z}^2)$$

where u is the nonzero element of $H^1(\mathbb{R}P^{\infty}; \mathbb{Z}_2)$.

Problem 6.2. Relate $\Phi_n^i(X)$ and $\Phi_2^i(X) = \Phi^i(X)$.

More specifically, a solution to the following problem will allow us to extend Theorem 3.1 to include 1-complexes.

Problem 6.3. If K is one of the two Kuratowski graphs, show that $\Phi_n^2(K) \neq 0$ for every $n \geq 2$.

Added in Proof. A detailed proof of the result, used in Proposition 3.2, that a 2-complex X embeds in S^2 if, and only if, X fails to contain K_1 , K_2 , or L may be found in S. Mardešić and J. Segal, On polyhedra embeddable in the 2-sphere, Glasnik Matematički, vol. 1 (21), (1966), pp. 167–175.

BIBLIOGRAPHY

- 1. E. ARTIN, Theory of braids, Ann. Math., vol. 48 (1947), pp. 101-126.
- S. CLAYTOR, Peanian continua not imbeddable in a spherical surface, Ann. Math., vol. 38 (1937), pp. 631-646.
- 3. P. E. CONNER AND E. E. FLOYD, Fixed point free involutions and equivariant maps II, Trans. Amer. Math. Soc., vol. 105 (1962), pp. 222–228.
- 4. E. FADELL, Homotopy groups of configuration spaces and the string problem of Dirac, Duke Math. J., vol. 29 (1962), pp. 231-242.
- 5. ———, Equivariant maps on configuration spaces of spheres, Amer. J. Math., vol. 97 (1975), pp. 699–706.
- 6. E. FADELL AND L. NEUWIRTH, Configuration spaces, Math. Scand., vol. 10 (1962), pp. 111-118.
- 7. E. FADELL AND J. VAN BUSKIRK, The braid groups of E^2 and S^2 , Duke Math. J., vol. 29 (1962), pp. 243-258.
- 8. C. KURATOWSKI, Sur le problème des courbes gauches en Topologie, Fund. Math., vol. 15 (1930), pp. 271–283.
- 9. J. M. OVERDECK, On the non-existence of complex Haar systems, Bull. Amer. Math. Soc., vol. 77 (1971), pp. 737-740.
- 10. I. J. SCHOENBERG AND C. T. YANG, On the unicity problems of best approximation, Ann. Mat. Pura. Appl., vol. 54 (1961), pp. 1–12.
- 11. BRIAN UMMEL, Imbedding classes and n-minimal complexes, Proc. Amer. Math. Soc., vol. 38 (1973), pp. 201–206.
- 12. W. T. WU, A theory of imbedding, immersion and isotopy of polytopes in a euclidean space, Science Press, Peking, 1965, Math. Reviews, vol. 35, no. 6146.

UNIVERSITY OF WISCONSIN MADISON, WISCONSIN