
THE ORBITAL COUNTING FUNCTION OF A
FUCHSIAN GROUP

BY

P. J. NICHOLLS

1. Introduction and statement of results

Let A denote the unit disc in the complex plane, A {z" Iz[ < 1), and let G
be a Fuchsian group preserving A. For 0 < r < 1 and z A we define the
orbital counting function no(r, z) to be the number of transforms V G such
that IV(z)[ < r. If there is no doubt as to the group concerned we will write
n(r, z).
The counting function is a useful tool in the investigation of Fuchsian groups

particularly with regard to the convergence of Poincar6 series [4], [12,
Chapter XI] and a number of estimates are available. The earliest result is due
to E. Hopf [6] and was used by him in the investigation of ergodic properties of
the group.

THEOREM A. If G is afinitely generated group of the first kind, there exists a
constant A, depending only on G, such that for any z A, n(r, z) < A/(1 r).

Tsuji [12, p. 518] extended Theorem A to obtain"

THEOREM B. For any Fuchsian group G there exists a constant A, depending
only on G, such that for any z A, n(r, z) < A/(1 r).

If, further, G isfinitely #enerated and of the first kind there exists B depending
on G and z such that for 0 < r < 1, n(r, z) > B](1 r).

More recently Huber [7-1, I-8] and Patterson [10] have obtained asymptotic
estimates for the counting function in various cases.

THEOREM C [’10-]. If G is finitely generated and of the first kind, and if A
denotes the noneuclidean area of the Fordfundamental re#ion, then

2z 1n(r, z) a r 1.
A ( r)

In this paper we present two new estimates for the orbital counting function.
To state these results we need the notions of multiplier and isometric circle of a
bilinear transform [5, pp. 15-30].
THEOREM 1. Let G be a Fuchsian group containing two hyperbolic transforms

T, S such that the isometric circles of T, T- x, S and S- are mutually exterior.

If Tfixes , fl has multiplier k and Sfixes 3, has multiplier p then

A
where e log 3 log

[cz /11
n(r, 0) >

(1 r)t ([2
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THEOREM 2. Let G be a fuchsian group containing two parabolic transforms
Q, v such that the isometric circles of Q, Q-1 are exterior to those of V, V- 1.
If the circles have radii q, s respectively and q, s < 1 then

From these results we may easily obtain bounds for n(r, z)--explicitly the
relationship is given by"

THEOREM 3. Let G be a Fuchsian group, suppose z A and Izl < r < 1 then

n 0 >n(r,z)>_n 0
+

Our next result shows how small the growth of the counting function may be.

THEOREM 4. Given any s > 0 there & a non-elementary Fuehsian group G
which is generated by two hyperbolic transforms, is of the second kind and whose
counting function satisfies n(r, 0)(1 r) 0(1) as r --, 1.

In the opposite direction, using a refinement of the estimates used in the proof
of Theorem 1, we obtain"

THEOREM 5. There exists a Fuchsian group G which &freely generated by two
hyperbolic transforms, is of the second kind and whose counting function satisfies

n(r, O) > r
The exponent 0.61 can certainly be improved upon for groups of this type

in fact we can obtain 0.623 for such a group--but the technique appears to be
inherently limited.
As an application of these results we consider the exponent of convergence

which, for a Fuchsian group G, may be defined by

6(G) inf {t > 0: (1 -IV(0)IY <

From the following equation

2 (-(o= (-syn(s,O

we obtain"

THEOREM D. Let G be a Fuchsian group.

(i)
(ii)

fin(r, 0) > A(1 r)-’for r > ro say, then 6(G) > s.
fin(r, 0) < B(1 r)-for r > ro say, then 6(G) < e.
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Combining Theorems 1, 2, 4, 5, and D we obtain"

THEOREM 6. Let G be a Fuchsian group.

(i) If G satisfies the hypotheses of Theorem 1 then 6(G) > el.
(ii) If G satisfies the hypotheses of Theorem 2 then (G) > e2.
(iii) If G is a group given by Theorem 4 then (G) < e.
(iv) If G is the group given in Theorem 5 then 6(G) >_ 0.61.

Part (iii) is a result of Beardon [3], parts (i) and (ii) improve some results of
Beardon [3-1, part (iv) compares with an estimate of Patterson [11-1 who ob-
tained, by different methods, a group of the type described in Theorem 5.

In conclusion we give, for the sake of completeness, a result describing the
behavior of the counting function for elementary groups.

THEOREM 7. Let G be a Fuchsian group.

(i) If G has no limit points then n(r, 0) 0(1) as r 1.
(ii) If G has exactly one limit point then n(r, 0) A(1 r)-1/2 as r 1.
(iii) IfG has exactly two limit points then n(r, O) B log (1/(1 r)) as r 1.

We conclude this section with an outline of the proof of Theorem 1. With the
notation of the theorem we consider transforms of the form

(1.1) T"pST"p-’S... T"IS.

Using results of Tsuji [12, pp. 510-511] we estimate the absolute value of the
images of the origin under transforms of this type in terms ofN ] [nil. With
some combinatorial lemmas we estimate the number of sequences {nl,. np}
for which N is bounded by a certain quantity (see inequality (3.6)). The number
of such sequences yields the number of transforms (1.1) which map the origin
into {Izl < r}.
The proofs of Theorems 1, 2, 3, 4, 5, and 7 are given in Sections 3, 4, and 5.

In the next section we give some preliminary lemmas.

2. Preliminary results

We introduce a noneuclidean metric in A defined by

[z w] I1 ___._w
w

forz, weA.

We note that if S is a bilinear transform preserving A then IS(z), S(w)]
[z, w] [12, p. 510].

If 0 < p < 1 and z A then C(z, p) {w" [w, z] p} is a circle and
C(z, p) is contained in a disc

(2.1) {w" Iwl < IZll+lz+p} [12, p. 511].

For real numbers x, y, 0 < x < 1, 0 <y < 1, we define b(x, y)
(x + y)/(1 + xy) and note that b is an increasing function of x.
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LEMMA 1. If T is a bilinear transform preserving A and z A then

T(z)l _< (Iz l, T(0)I).

Proof. It is immediate that [z, w] < (Izl + Iwl)/(1 + Izl Iwl) for any
z, wA. Now IT(z)[- IT(z), 0]--l-z, T-x(0)] and the result follows
immediately when we observe that IT-(0)I IT(0)I.

LEMMA 2. Let H be a hyperbolic transform preserving A with fix points a, fl
and multiplier k > 1 then

k-1
In(0)l

{(k- 1)2 + kla- fll2}

Proof Writing H in multiplier form [5, p. 16] we have

H(z)- a_ k
Z- a

H(z)- fl z fl"
Thus H(0) afl(k 1)(ka fl)- and so IH(0)I (k 1)/(Ika 1) since
I1 Ifll 1. Clearly, ]ka fl[2 (k 1)2 + k]a fl]2 and we have the
required result.
We conclude this section with three combinatorial lemmas. Lemmas 3 and 4

are routine with easy proofs by induction (see [13, p. 89] for a closely related
result).

LEMMA 3. Let R be a positive integer and define M(R) to be the number of
sequences of nonzero integers the sum of whose absolute values is at most R.
Then M(R) 3R 1.

LEMMA 4. Let p be a positive integer and R a real number greater than 1.
Denote by N(R, p) the number of sequences ofp positive integers, n,..., np,
such that 1-[= ni < R. Then N(R, p) > R (log R)p- x/2(p 1)!

LEMMA 5. Let a, R be real numbers, 0 < a < 1 < R, and define N(R) to be
the number of sequences of nonzero integers, nx,. np, such that II-I’= nl <
a’R. Then, for R > Ro say,

N(R) >_ a R+ where 5 2a
6 + 2alog(1/a)

Proof We set {1 + 2alog(1/a)} -1 and x 2alogR. It is easily
seen that aXR R. Now

tx] 2’- [log (a’R)]’- a’RN(R) > N(a’R, p) 2p >
p= p= (p- 1)!

by Lemma 4. But for 1 _< p < Ix] we have aPR > R and so

txl (2a log R)- txl x,
(2.2) N(R) > aR aR

=x (p 1)! =x (p
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A routine calculation, using Taylor’s remainder formula, shows

aN eXN(R) > aR(1/2etx] 1) >_ aR(1/2e 1) > if x is large enough.
6

But e RTM R2"/( + 2, los (1/,)) from which we obtain the required result.

3. Proofs of Theorems and 2

Let n,..., nv be a sequence of nonzero integers. We form the transforma-
tion

(3.1) T"vST",-’S T"’S

which belongs to G. It is immediate that, with the hypotheses of Theorem 1, a
different sequence would yield a different transformation of type (3.1) [9, p. 118].
For such a sequence and 1 < j < p we set

ck IT"ST"-’S’" T"’S(O)I,

From Lemma 2,

-IT(0)Ia-

Thus,

(3.2)

Now

IT"S(0)I.

1 -IT(0)I > I- fl12/8k.

(3.3) # [TnS(O)I <_ T"’(0)I + IS(0)I
-t- IT"(0)I IS(0)I

from Lemma 1.

4k

The multiplier of T" is kI"sl and (x, y) is an increasing function of x so we
obtain from (3.2) and (3.3),

{ }{ (/z < 1 1o -/1 = I= -/1", IS(0)l

1 (1 -IS(O)l)l-/1
8kt(1 / IS(O)l) -IS(O)l I-/1

(1 -IS(0)l)l- BI =.< 1
16kl,l

Thus

(3.4) 1 > (] -IS(0)l)l fl12/16kI"1.
Applying Lemma 1 with T replaced by T",’S and z replaced by

T",’-’ST",’-2S T"’S(O)
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we obtain,

So

2 i=1

Using inequality (3.4) we obtain

(3.5) Ckp > lt [312(1-1S(O)lp k-N whereN nil.
32

Clearly p < N (since N is the sum of the absolute values ofp nonzero integers)
and so

1- p > {l fll2(1-

If

(3.6) N _< log log
I-/1(1 -IS(0)i)

then we note that bp < r and consequently IT"pST"p-’S T"’S(0)I < r.

Thus n(r, 0) is at least as big as the number of sequences of nonzero integers
the sum of whose absolute values satisfy (3.6). From Lemma 3 we compute the
number of such sequences to be

32kr)[lg{’lexp (lg 3 lg (1 _
which is (1/(1 r)) 1 where

e log3 log .e_
We conclude the proof of Theorem 1 by noting, from Lemma 2, that

-IS(O)l > 16
and by adding an equivalent of 0, namely 0 itself, which is not equivalent under
a transform of type (3.1).
To prove Theorem 2, let n,..., np be a sequence of nonzero integers. With

the hypotheses of Theorem 2 we know that each such sequence defines a unique
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transformation in G which is of the form V"pQV"p-’Q... V"IQ. Since v is
parabolic an easy estimate yields

(3.7) -IV"J(0)[ > s2/4n]..
We now follow the method of Theorem 1 and obtain from Lemma 1 and (3.7),

p

(3.8) V"pQV"’-’Q’." V"’Q(O)I < (sq/8)2". l-I n;-2.
i=1

If

(3.9) ni <_ (sq/8)’(1 r)- 1/2

then we note that ]V"QV"-’Q’"V"’Q(O)I < r. Thus n(r, 0) is at least as
big as the number of sequences of nonzero integers satisfying (3.9). From
Lemma 5 we compute the number of such sequences to be at least

sq (1 r)-1/2-/2 where 6 sq
48 4 + sq log (8/sq)’

now with/2 6/2 sq/(8 + 2sq log (8/sq)) we have the required result.

4. Proof of Theorem 5

Let T, S be two transforms defined as follows" T is hyperbolic, fixes + 1, and
has multiplier 6, S is hyperbolic, fixes -t-i, and has multiplier 6. It is easily
verified that the isometric circles of T and T- are centered at -t-7/5 and have
radii 2x//5 while those of S and S-1 are centered at -t-7i/5 and have radii
2x/g/5. Thus the four circles are mutually exterior and T, S freely generate a
Fuchsian group G (we could achieve this result with a slightly smaller multiplier
many number bigger than 3 + 2x/ would do--and a slight improvement in
the estimate of Theorem 5 would result).
Assuming that 1 is the attractive fix point of T and is the attractive fix point

of S we write T" and S" in multiplier form"

(4.1) T"(z) + 6"
z +._1, S"(z) + 6"

z +
T"(z)- z- S"(z)- z-

Thus, for a positive integer n,

6"- (6"- 1)i(4.2) T"(0) , S"(0)
6"+ 6"+

A routine calculation using (4.1) and (4.2) shows that for positive integers
n, m,

(4.3) IT"S’(O)! 2 8.6"+"

62"+2" + 62" + 62" + + 4.6n+’’
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Now for positive integers n and m, 6TM q- 62n q- 1 + 4"6"+m < 1/2"62m+2n and
so from (4.3), ]T"S"(0)I 2 < 1 20/3.6+" and

(4.4) 1 znsm(o)l > 10/3" 6Inl +

It is geometrically evident that (4.4) is valid for any nonzero integers n, m.
Now consider a sequence of nonzero integers nl,..., rtzp and for 1 _< j < p

define

laj T"2JS"2J-1(0)1,

We obtain, as in the proof of Theorem 1, 1 bp > (1/2)p-t 1-[’= (1 /).
Setting N [nll + [n2[ +’’" + ]nzpl and noting that N >_ 2p we obtain from
(4.4),

(4.5) 1 bp > (1/6).
Thus bp < r provided

(4.6) N< log 1 [log 6] -1

Consequently n(r, 0) is at least as big as the number of sequences of nonzero
integers which have an even number of terms and the sum of whose absolute
values satisfies (4.6). It follows immediately from Lemma 3 that the number of
such sequences is at least (1/4)3R where

(1)R log ..] I-log 6]-

Thus

)6 log 3
where 6n(r,O) > A

r log6

which completes the proof of Theorem 5.

> 0.61

5. Proofs of Theorems 3, 4, and 7

Suppose G is a Fuchsian group and z A; then for any V G we have by
Lemma 1,

(5.1) IV(z)l _< (lzl, IV(0)l).

If, for Izl < r < 1, we have that IV(0)l < (r Izl)/(1 rlzl) then it follows
from (5.1) that

( r- lzl )rlzl
Ig(z)l < Izl,

Thus

n(r,z) > n
rlzl’
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If IV(O)l < r then by (5.1), IV(z)l < (r + Izl)/(1 + rlzl) and we obtain

(r/ lzl )n ,0 >_ n(r,z)
/ rlzl

which completes the proof of Theorem 3.
To prove Theorem 4 we will use some estimates of Akaza [1] and Beardon

[2]. Let R be a real number, 0 < R < 1/2, and we choose two transforms S, T
preserving A such that the isometric circles of S, S-1, T, and T- are mutually
exterior, all have radius R and are symmetrically placed around the unit circle.
Let G be the Fuchsian group generated by S and T.
Any transform in G is of the form

(5.2) S"T"’S"... T,
for some sequence of integers n1,..., n. The grade of such a transform is
defined to be Inxl / In21 /"" / I%1. Let V e G and denote by r(V) the
radius of the isometric circle of V. If 2 denotes the least distance between any
two isometric circles of the four transforms of grade one and if V is of grade m
then [-1, p. 53_-[

(5.3) r(V) < (R/,)m-IR.
Now from elementary geometry, IV(0)[ (1 + r(V)2) -1/ and so, from

(5.3), if V is of grade m,

(5.4) IV(0)[ > {1 + (R/2)2(m-1)R2} -1/2.

Define, for any r in (0, 1), M(r) to be the largest integer m such that

{1 "t- (R/)L)2(m-1)R2} -1/2 < r.

Clearly if V is of grade m, where m > M(r), then IV(0)[ > r. Thus n(r, O)
is not greater than the number of transforms of grade not larger than M(r).
However, the number of transforms of grade m is 4.3 [1, p. 53-1 and so

(5.5) n(r, 0) _< 4(1 + 3 +’.. + 3M(’)-I) < 2" 3n(’).

From the definition of M(r), (1 + (R/2)2(’)R2) >_ r 2, from which

Thus, by (5.5)

M(r) < lg (1-r )E-2 2 log ()]-
r2R Ooo 3)/2 log (2/R)

n(r, O) < 2

Given any e > 0 we choose R so small that (log 3)/2 log (2/R) < e which
completes the proof of Theorem 4.
Theorem 70) is trivialmas a group with no limit points contains only finitely

many transforms.
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If G has one limit point then G is cyclic and is generated by a parabolic trans-
form S. Let p be the radius of the isometric circle of S then ISn(0)l < r if and
only if lnl < rp/(1 rE)1/2. Thus n(r, 0) x/ p(1 r) -1/2 as r - 1, which
proves Theorem 7(ii).

If G has two limit points then we may write G G1 w G2 where G1 is a
cyclic subgroup generated by a hyperbolic element H and G2 is a set of elliptic
transforms.

Let E G2 it is easy to show that G2 {HnE: n is an integer) and it follows
immediately that

(5.6) n(r, O) n,(r, O) + n,(r, E(0)).

From Lemma 2 we obtain after a routine computation that

(5.7) n,(r, 0)
2 log (r2[a fl[2/(l r2)) as r --. 1.

log k

From Theorem 3 we note that, for r > [E(0)[,

(5.8)

and

Now

r -!E(0)I < n,(r, E(0)) < n,
+ r lE(0)l

n, rlE(0)l’

4- rlE(0)l
--(r + [E(0)[)/(1 + rlE(O)l) -IE(0)[ r

rlE(0)[
-(r- IE(0)l)/(1 rlg(0)l) / IE(0)l r"

Thus from (5.6), (5.7), and (5.8) we deduce n(r, O). A log (1/(1 -r)).
This completes the proof of Theorem 7.
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