IDEAL NORMS ON £ ® L,

BY
Y. GORDON! AND P. SAPHAR?

Introduction

Let E and F be two Banach spaces. There is a natural 1-1 canonical map
from E ® F to L(E’, F) the space of all bounded operators from E’ to F. In
this paper, we identify £ ® F as a subspace of L(E’, F). Then we can define
any ideal norm « on the elements of E ® F. Let Q be a locally compact
topological space, u a positive Radon measure on Q, p a real number, 1 <
p < 0o, L, = L,(Q, n) the Banach space of equivalence classes of scalar
valued pth power integrable functions defined on Q. It is also possible to
identify canonically E ® L, as a subspace of the Banach space L,(Q, u, E)
consisting of the equivalence classes of E-valued pth power integrable functions
defined on Q. Let A, be the norm of the space L,(E) = L,(Q, y, E), E Qx, L,
be the subspace E ® L, normed by A,, and let E ®;, L, be the completion of
E ®,, L, We know that L(E) = E ®;, L,

A, is a natural norm to consider on E ® L, and in general if 1 < p < o0
there is no ideal norm y such thaty = A,on £ ® L,. Butifv,denotes the ideal
norm associated with the class of p-nuclear operators, 7, the ideal norm of the
class of p-absolutely summing operators, and =, the dual norm of r,, we have
on E ® L, the following inequalities for all 1 < p < oo:

(%) T, <v, <A, <m,<v, (cf. [17] and [20]).

Ifp=1l,onE®L,n, <vi=A;, =n) =vi,andif p = 0, on E® L,
T, = Ve = Ay = 7w, < vl [18].

In Section 1 we prove that in a certain sense the inequality v, < A, < 7, on
E ® L, is the best possible. To obtain this result, we prove at the beginning
another version of the duality theorem of L. Schwartz [21]. Later in Section 1
we improve some characterizations obtained by S. Kwapien [14] on the sub-
spaces of L,(SL,), quotients of L,(QL,) and subspaces of quotients of L,(SQL,),
and give some applications of the preceding results to the theory of p-absolutely
summing operators between L, -spaces, which extend some results obtained by
L. Schwartz [21] for diagonal radonifying operators to the class of all operators.

Section 2 introduces a technique of interpolation which is useful in estimating,
for example, the (p, ¢g)-absolutely summing norms. The following result fol-
lows immediately from Proposition 2.2: If u is a linear map from L,(u) to
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L,,(v) n L, (v) and if u is (r, g;)-absolutely summing when considered as a
map, denoted by u;, from L,(u) to L,(v) for j = 0 and 1, then for any
0 < a < 1 the operator u is (r, g,)-absolutely summing as a map from L,(x)
to L, (v), where 1/p, = (1 — a)/po + a/py, 1/g, = (1 — ®)/go + a/q,. More-
over, the (r, g,)-absolutely summing norm of u: L, — L,_satisfies the inequality

Ty, qa(u: Lp - Lpa) = nilro_a(uO)n;x(“l)'

S. Kwapien used a very specific method of interpolation when proving in [12]
that for every 1 < p < oo, L(l}, 1)) = IT1,p (hi» I,) where 1/r(p) =1 —
|4 — 1/p|. Our method cannot yield his result exactly, however, it is general,
and applicable to many other cases.

The technique of interpolation is extended to include another class of
operators introduced by H. P. Rosenthal [19] and B. Maurey [16], called the
g-cylindrical operators of type p. These results are derived from Proposition 2.1
which tells us when the intersection L, (Q, u, Eg) 0 L, (Q, u, E;) admits
interpolation and describes the interpolating norm.

In Section 3 we consider an arbitrary ideal norm assigned to the space of
linear operators from /] to /5. We show that if « is not uniformly equivalent
to the ordinary operator norm ||-|| on the spaces of operators from /{ to /3,
then the unconditional structure of the spaces L(I{, /;) normed by « is not
good; for example, these spaces are not uniformly complemented in any
infinite-dimensional Banach space X which has an unconditional Schauder
decomposition into finite-dimensional spaces all having the same dimension p.
This implies that the local unconditional constant (defined in [7]) of (L(I7, 15), @)
tends to co.

Our notations in general will be similar to [6]. We denote by & (E, F) the
subspace of L(E, F) consisting of all finite-rank operators from E to F. Given
any sequence {x;};, in Eand 1 < p < oo, we write

g,(x) = sup {(X [<xi, XDINPs x" € E', x| = 1} if I < p < oo,

sup x| if p=oo.

If [4, «] is a normed ideal, o’ will be the dual norm, o* the adjoint norm,
o* the conjugate norm. [A4, o] is called perfect if « = a**. We denote by
(T'l,» m,) the ideal of p-absolutely summing operators, by (N,, v,) the ideal of
p-nuclear operators and by (/,, i,) the ideal of p-integral operators. For any
T € L(E, F), the ideal norm ¢ is defined by &(T) = |T|. E ®, F will denote
the space E ® F (subspace of L(E’, F)) equipped with the norm «, and E ® ) F
the completion of £ ®, F.

An L, space will always be some L,(Q, u) (1 < p < 00). An operator
AeL(E, L, is said to be p-decomposed [23] if there exists a function
fe L,Q, u, E") such that, for any x € E, A(x)(¢) = {x, f(¢)> p almost every-
where. We have to note that this definition of p decomposed operator is, in
general, stronger than the definition of p-decomposable operators of S. Kwapien
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(cf. [12]). It is easy to verify that f is uniquely determined. We set A, (4) =
A,(f) and we denote by A,(E, L,) the Banach space of all p-decomposed
operators from E to L, normed by A,. With this identification A (E, L,(Q, p)) =
L,(Q,pu, E).

Let u € L(E, F), u is called p-decomposing [23] if for any L, space and for
any A € L(F, L,), Au is p-decomposed. If u is p-decomposing, then for any
L, space there exists a number m > 0 such that for all 4 € L(F, L,), A,(Au) <
m||A|. The smallest possible m in this inequality is denoted by m(u, L,).

1. Relations between A, and ideal norms

In this paragraph we obtain some inequalities between A, and other ideal
norms on E ® L,; these are useful, for example, in estimating the ideal norms
involved, via A,

THEOREM 1.1. Let E and F be two Banach spaces,ue L(E, F)and1 < p < .

(1) The operator u is p-decomposing if and only if u' is p-absolutely summing,
and for any infinite dimensional L,-space, m(u, L,) = n,(u').

(2) For p = 1 the analogous assertion is true if E' has the Radon Nikodym
property (R.N.P.). If E’ does not have the R.N.P. there exists a Banach space F
and u € L(E, F) such that n,(u’) < oo and u is not 1-decomposing.

Proof. 1t was proved in [20] that m(u, 1) = n,(u')if 1 < p < c0. (1) can
be proved in a similar manner.
Ifp =1and m(u, L,) < o, embed

Il__.j_.)Ll

isometrically. Let A4 € L(F, I,) then there exists a sequence {x;} = F’ such
that Au(x) = ({x, u'(x})));»;. It follows that

A(GAW) = Y Nw' ()l < m(u, L) ANl = m(u, Le,({x1})
implying 7, (u") < m(u, L,).

Suppose now E’ has the R.N.P. and n,(¢') < c. Let L; be any infinite-
dimensional L,(Q, u) space and A e L(F, L;). Since (L,) = L., u'A’" is
l-integral, and since E’ has the R.N.P., u'4’ is 1-nuclear [24] and therefore Au
is 1-nuclear. The inequality

vi(Au) = A(Au) = ni(Au) < [Alm,(u')

implies that u is 1-decomposing and that m(u, L,) < 7).
We know by [24] that there exists a Banach space G such that N (E, G') #
I,(E, G'). Let T be an integral operator from F to G’ which is not nuclear, let
K be the unit ball of E’ equipped with the weak star topology, i the canonical

map from E to the Banach space of continuous functions on K, C(K). We

know that there exists a positive measure u on K such that T has the following
factorization:

T: E—— C(K)—> L,(K, p) = G,
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j being the canonical map from C(KX) to L,(K, p) and A4 linear and continuous.
Take here F = L,(K, p), and u = ji. It is clear that u is integral and not
nuclear. Then, v,(#) = A;(u) = + o0 and therefore u is not 1-decomposing.
But, since u is integral, so is #’, and it follows that #’ is also absolutely summing.

Remark. The equality n,(u') = m(u, L,) for 1 < p < oo, and p = 1 if E’
has R.N.P., adds to related results of L. Schwartz [21] and S. Kwapien [13].

LemMA 1.2. Let E be a normed space, 1 < p < oo, a be an ideal norm,

(Q, w) a measure space, and assume that on E ® L,Q, p) ax < A, for some
positive constant a. Then on E' @ L, aA, < Nl

Proof. letue E® L,andveE’' ® L,. By[26],thenorm A, on E’' ® L,
is known to be equal to the norm induced by (L,(E))". It follows therefore that

Ap,(v) = sup w
ueE®Lp Ap(u)

and by the hypothesis of the lemma

trace (v’ trace (v’
aAp,(v) < sup l___iv__lﬂ < su l___.____gv_“_;).! =

< ad(v) = o*'(v).
ueE®L, a(u) we F(E', Lp) a(w)

PropoOSITION 1.3.  Let E be a Banach space, 1 < p < o0, (Q, u) be a measure
space, with y not supported on a finite set of points, o a perfect ideal norm and

B be any ideal norm, and let a, b be two positive numbers. Then on EQ L,
we have

M A, <bBiffn, < b,
@) ax < A,iffax < v,

Proof. Suppose that 1 < p < co0. For (1) it is sufficient to prove A, < bf
implies n, < bf. Letue E® L,, A € L(L,, L,) and suppose A, < bB. Then
A (Au) < bf(Au) < b|A||f(u), but by Theorem 1.1, =n,(') = m(u, L,) =
sup, A,(4u)/||4]l. 1t follows that 7,(u) < bB(u), which proves (1).

To prove (2) it is sufficient to show that ax < A, implies ax < v,. Suppose
thatax < A,on E ® L,; then by Lemma 1.2 we haveon E’ ® L,,aA, < o?.
By (1) it follows that on E’' ® L,, an, < o®, hence if w e & (E, L,), then
w' e E' ® L, maps E" to L., so anj,(w) = an,,(w") < «*(w") = o*"(w).

Therefore, for every v: L, — E, since « is perfect,

d(v) = «* (V) < W) < a” W) = a7 'y (v) = a”liy(v).

Let we EQ L,; w =23/, x;® y;maps E' to L,. Letv =3/, y; ® x;
map L, to E. Thenv" = w and so

aw) = a(v’) = o'(v) < a”iy(v) = a”'v,(w)

which concludes the proof for 1 < p < .
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If p = 1 the assertions are clear sinceon E ® L,,v; = A; = 7n}. Ifp =
the result is again obvious sinceon E ® L., v, = A, = 7l,.

The following three corollaries improve on some known results of S.
Kwapien [14].

COROLLARY 1.4, Let E be a Banach space, | < p < o and b = 1. The
Jfollowing conditions are equivalent :

(1) There exists an infinite-dimensional L,-space such that on E ® L,
A, < bn,

(2) There exists an infinite-dimensional L,-space such that on E @ L,
n, < bm,.

(3) Eisan SL,-space.

Proof. The equivalences of (2) and (3) are due to [14] or [9]. (1) and (2)
are equivalent by Proposition 1.3.

Remark. It can be shown that the least constant b appearing in (1) is equal
to the least distance of E from the subspaces of the L,-spaces. The same method
establishes also:

COROLLARY 1.5. Let E be a Banach space, 1 < p < o and a = 1. The
Jollowing conditions are equivalent:

(1) There exists an infinite-dimensional L,-space such that on E ® L,
v, < aA,.

(2) There exists an infinite-dimensional L,-space such that on E ® L,
vy, < av,.

() Eisa QL,-space.

COROLLARY 1.6. Let E be a Banach space, 1 < p < . E is a SQL,-space
iff there exists an infinite-dimensional L ,-space and an ideal norm o such that on
E ® L, o is equivalent to A,

Proof. Supposethaton E ® L, ax < A, < ba. Then by (1) of Proposition
1.3,a0 < A, < n, < baon E ® L, Butn,is perfect, so by (2) of Proposition
1.3 we have on E ® L, (a/b)n, < v, < A, < n,. The equivalence of n, and
v, is equivalent to E being a SQL,-space [14]. The converse is obvious from

the inequality v, < A, < n,on E® L,.

CoRrOLLARY 1.7. Let 1 < s <p’ <r < 2. Then for any L,, L,, and L
spaces and ¢ > 0 we have:

(1) On the classes of operators from L to Ly, T1, # I1,4. = Iy = I, =
I, # I,

(2) On the classes of operators from L, to L, [1,, # [1,-. =11 = I, =
A =1,_, #1I,.

(3) On the classes of operators from L, to L,, T1; = [1,, = A, (where
A;;’(Lp’ Lr) = Ap'(Lr” Lp’))‘
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Proof. (1) It is sufficient to prove the results for the spaces L,[0, 1] and
L0, 17 with the Lebesgue measure of [0, 1]. Since L, is isomorphic to a
subspace of L, it follows by Corollary 1.4 that on L,, ® L, A,, v, and , are
equivalent. By duality, T1,(L,, L,) = I,(L,L,). Let Te I.(L,, L,); then T
factors through some L -space, so there exist 4 € L(L,, L), B € [I;(Ly, L,)
such that T = BA4. By Kwapien [13] Be [1,+(Lo, L,) = I,+(Lo, L,), hence
so also is 7. All the equalities in (1) are obtained.

Let u be a diagonal operator from /, to /,. defined by u(e;) = Aeej. By
L. Schwartz [22], u is 1-absolutely summing iff 3 |4;/”(1 + In (1/|4;))) < co.
By Corollary 1.4, u will be p’-nuclear, or p’-absolutely summing, iff 3" |1,|”" < oo.
Therefore [1,.(,, 1) = Ny, 1) # T11(, 1,). It is clear that this relation
is maintained for (L,, L, as well.

Let i be an isomorphic embedding of L, in L; and T'map L, to L, such that
vp(T) = n,(T) < 00 and 7,(T) = co. Then 7,(T) = n,(T) = v,(T) =
v,(iT) and n,(iT) = n(T) = o, so on L, ® L;, n, and 7, are not equiv-
alent. Using duality we get I(L;, L,) # I (L, L,). We see also that on
L, ® L, v, and =, are not equivalent, hence I,(L,, L)) = 7,,,(L,, L,) #
ny(Lg, Lp).

(2) This follows from (1) by duality and Corollary 1.4.

(3) It is sufficient to prove the result for L, [0, 1] and L,[0, 1]. This is
equivalent to proving that on L,, ® L,, n,, n,r and A}, are equivalent, that is,
on L, ® L,, the norms n}, n,,, and A, are equivalent. But L, is isomorphic
to a subspace of L, and by Corollary 1.4 on L, ® L, the above norms are
indeed equivalent.

Let Tell,(L,,L,) and AeL(L,,L,). We know that (see [20])
I, &, L,) = T1.(L,, L,), so AT e T1,(L,., L,). But L,. is isomorphic to a
subspace of an L,-space, so [1,(L,, L;) = A,(L,,, L) by Corollary 1.4. By
Theorem 1.1, since L, is reflexive, we deduce that nj(T) < co. Hence =, and
m} are equivalent on L, ® L, and the result follows.

Problem 1. Ts there a number a > s’ such that [T,(L,, L,) = [T,(L,, L,)?

Remark. The formulas [1,(L,, Ly) = A(L,, L) and TT,(L,, L,) = Ap(L,, L,)
generalize a similar result obtained by L. Schwartz [21] on the representation
of diagonal radonifying operators (1-absolutely summing operators by our
notation) from /, to /; and /, to ..

2. Interpolating some classes of operators between L,(Q, u, £) spaces

Let || |lo and |- ||, be two norms defined on a given complex linear space E,
and denote by B(E) the family of all E valued functions F holomorphic and
bounded with respect to both norms in a neighborhood D of the strip S =
{z; 0 < Re (z) < 1}. Asin [11, Chapter IV] we norm B(E) as follows:

IFl = sup. {IF@Dlo, IFQ + iDll}
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For 0 < o < 1 let B(E) = {Fe B(E); F(o) = 0}. BE) is a linear sub-
space of B(E). The norms || ‘||, and | - ||, are said to be consistent on E if §,(E)
is closed in B(E) for all 0 < a < 1, in which case E can be renormed by

Ixll, = inf {|F|; F € B(E), F(®) = x} (x € E).

Il ]I, is then called the interpolating norm and we denote by E, the completion
of the space (E, ||]|l), 0 < a < 1.

Corresponding to the pair of norms |||, and ||+ ||; on E there is the pair of
conjugate norms, which we shall also continue to denote by |||, and | -],
on the space of linear functionals defined on E. Denoting by E* the space

(Eg, II*ll0) o (Ef, -1

of linear functionals on E continuous in both norms, we may also talk about
the consistency of the (conjugate) norms |- |, and |||, on E*.

By [11], ||-llo and ||-||; are consistent on E if given any 0 # x € E there
exists x* € E* such that x*(x) # 0. It follows therefore that |||, and | -]
are always consistent on E*, since E = E**,

If 0 <a <1 and both norms are consistent on E, the inclusion map
(E®), — (E,) has norm < 1. We shall say E* is a consistent norming space
for E if in addition to the consistency of the norms |||, and |-||; on E, for
every 0 < a < 1 and x € E the following equality is satisfied:

**) Ixlle = sup {I<x, xDI/1%'[la; X" € (E*)a}.

A well-known classical example is the following: let (2, u) be a measure

space, 1 < po, p; < o, and E be the space L, (1) n L, (1) which is equipped
with the two norms

-l =Ml j =01
Since for each j = 0, 1, E is dense in L, in the |- ||; norm, we have
Ej = (E 1) = Ly = Ly ().
Therefore, E* = L, (u) N L, (p). The norm |-[|; (j = 0, 1) on E* coincides

with the norm |- ||ij, on E*,

It is well known that in this example the norms | - ||, and |||/, are consistent
on E. Moreover, given any 0 < « < 1 and x € E, x’ € E*, the interpolating
norms of x and x’ are

x|l = lIx and |x'|l, = x|, . where = PoPr
Ixlla = lxlle,, Ixlle = 1%"llc,, P« et (I — op,

Of course, equality (**) is also satisfied since (E*), is dense in L, ., so that we
can say E* is a consistent norming space for E.

In the following proposition we require E* to separate the points of E,, this
is clearly so for the above example.
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PROPOSITION 2.1. Let E be a linear space equipped with two norms | ||, and
||, such that E* is a consistent norming space for E, and E* separates the
points of E,. Let Q be a locally compact topological space, u a positive Radon
measure and let 1 < py, py < 00 withp, < . Let

B = Lpo(Q’ U, EO) N Lp;(Q’ u, El)

and denote by ||| -|||; the norm induced on Bby A, ,j = 0, 1.

Then ||| |llo and |||-||l; are consistent norms on B and the interpolating norm
1“1lle (0 < & < 1) coincides on B with the norm induced by the space L,(Q, p, E,)
where 1/p, = (1 — a)/py + o/p;.

Proof. Let us first prove |||*|||o and |||‘||]; are consistent norms on B. If
0 # fe B, there is a set A4 such that [, f # 0, and then there is x* € E* such
that [, x*/ # 0 and so {f, x* ® x,> # 0. Since x* ® y, is continuous as a
functional on L, (E;) forj = 0and 1, the norms ||| Illo and ||| -]|| are consistent.

The space [ B] of simple functions is dense in B, in the norm induced on B
by L, (E,); observe B = L, (E,), by the fact that foranyx e Eand0 < a < 1,
Ixl. < IxI&~*Ix|l§, and so a simple application of Holder’s inequality shows
any f € B must belong to L, (E,).

Thus it suffices to prove the equality of the norms ||||||, and A, on [B].
Letf = X7, X, ® x4, € [B], where x, € E and A4, are y-measurable mutually
disjoint subsets of Q. Regard f as an element in L, (E,) and assume that its
norm A, (f) < 1.

Given ¢ > 0, there exist F, € f(E) such that

F(x) = x, and [F[ < (1 + 9)lx.
Define

G(z) = Zl IF " 9F(2) ® ¥a,

Po — Pi :
where a = (= /(@ — 1)if p; = o).
apo + (1 — &) py '

Then G € B(B) and G(«) = f, and we get
MGEWllo = [X IFN ™| F(iy) | 5°u(A,)] /P

< [X IF [P0 = p(4,)] e
< [X A+ eIxlEuAn]P < (1 + g/,

NG + inllly = [T IF P2 F(1 + iy)l5u(4,)]' P
< [T IFIP U] < (1 + o

We have thus proved
SNl = inf {IG]; G € B(B), G(®) = f} < A, ().
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To prove A, (f) = |lIflll, let f be defined as above and assume A, (f) > 1.
Then there exist y, € (E*),, |yl < 1 + €and <{x,, y.> = |x,/, Let

g = QN X lIx "1y ® xa,-

Clearly A, (g9) < 1 + ¢ {f, 9> > 1. Proceeding as in [11] it is seen that
for any F € B(B) with F(&) = f, [|F|l > 1, so || flll. = A, (/).

Remark. Proposition 2.1 was proved above for complex Banach spaces,
the real case could be done by using the real interpolation method of Lions and
Peetre [2]. Other forms of Proposition 2.1 were obtained by Calderon [3].

Let 1 < p < g < o. An operator u: E — F is called (p, q)-absolutely
summing if there exists C such that for any finite subset {x;}; = E the follow-
ing inequality holds:

& a9 < C sup {(X 1<x;, XDIP)P; x| = 13

Let n, ,(u) = inf C. =, (u) is called the (p, g)-absolutely summing norm of
u (see [12] and [15]).

PROPOSITION 2.2. Let 1 < p < py, py < o With py < oo, and let E be a
linear space equipped with two norms |- |, and |- ||, such that E* is a consistent
norming space for E, and E* separates the points of E,. Let F be a normed
linear space and u: F — E be a linear map. Given any 0 < o < 1 denote by u,
the operator u mapping F to E,. Then

Ty, pala) < Tp, pe(0)T5, 5, (111).

Proof. u; ® 1 as a map from F ®, [, to E; ®AA,,, l,, (= 1,(E)) has norm
equal to m, ,(u)), j = 0, 1. As above, if B = [, (Eo) N I,,(E,), u ® 1 maps
F ®} I, to (B, [|I*|ll,), hence its norm satisfies the inequality

lu @ 1 < lluo ® 1)I' *luy, @ 1|

By Proposition 2.1 [|| |||, coincides with the norm induced on B by [, (E,),
and the proposition is established.

The last result is a useful tool for obtaining estimates on the n, , norm in
many cases. To illustrate this we have:

COROLLARY 2.3. Let 1 <s<p' <2, 1<r<p, 1<gqg< . There
exists a constant a = a(r, p) such that if v: L,(u) — I(v) is a bounded operator
which also belongs to the class A(L, (1), L(v)), then for any 0 < a < 1, v is
(r, r/(1 — a))-absolutely summing as a map from L,(u) to L, (v), where 1/s, =
(1 - a)/s + a/q. Moreover

7'cr, r/(l—a)(vz Lp(/‘) g Ls,,(v) < [GAS(UI Lp(u) g s(v))]l_u"v: Lp(”) - Lq(v)"a’

and both sides in the inequality are equivalent for o = 0 or 1.
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Proof. By Corollary 1.7(2) we know that on the class of operators from
L,(u) to Ly(v) the norm 7, is equivalent to 7, = A,. The equality is by (*) and
Corollary 1.4; checking the proof we see that #,(v) < aA,(v), where a depends
only on r and p.

m(v: L(p) = Ly(v)) is the norm of » ® 1 considered as a map from
L) ®) I to L(v) ®, L, and [v: L,(u) —» L,(v)|l is the norm of v ® 1
considered as mapping L,(1) ®." I to L,(v) ®;_[l,. The inequality follows
by interpolating the norms of v @ 1.

Remarks. (1) The inequality implies that if {e;};,», is the unit basis of
I,, and x; € l,, then the map v = 32, x; ® e; mapping [, to [ satisfies the
inequality

T, ri1 - < [aCE Ixi1%)5] (e, ({xi D)
(2) The results may also be extended to include similar inequalities between
& ,-spaces.

LEMMA 2.4 Let 2 < q < p < o and T be an operator from 1, to I,. Let
1/r = 1/g — 1/p and J: I,. - I, be the inclusion map. Then:

M v(1J) < |IT).

() If q =2, then for any 1 < s < oo there is a constant ¢, such that
v(TJ) < ¢|T}.

Proof. 1In the proof we shall assume p < oo, the case p = oo is proved in
a similar manner. Let {f;} be the canonical basis of /,, and {e;} the canonical
basis of /,, and assume T'(e;) = 32, a;;f;foranyj. If x = 3 x;e; hasnorm 1,

then
1/q
1T = (z ') < |ITI.

Therefore if r;(¢) is the jth Rademacher function on [0, 1],

)

i

Y ayx;
7

q
Zauxjr,(t)\ < |T|* forallt,
J

and integrating this inequality with respect to ¢ we obtain by Khintchine’s
inequality

a/2
% (Stapsl)” < e
J

but ¢ > 2, so that 3, 3; |a;;|%x;|* < [|T||% and minimizing this expression
over all x € /, with norm 1 we get

r/q
) % (S 1) < 11,

J
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that is, A(J'T") < ||T|. Since [, is a quotient of L,, it follows that A,(J'T") =
n(TJ) = v,(TJ), which proves (1).

To prove (2) observe that inequality (A) can be written as 3 [|[T(e)|" <
IT\", where now g = 2 and 1/r = 4 — 1/p. With the aid of the Rademacher
functions there is a bounded operator P: LJO0, 1] — I, such that if 7 is the
injections of C[0, 1] to L0, 1], then Q = PI maps C[0, 1] onto /, [10].
Hence /, is isomorphic to C[0, 1]/Q~*(0), therefore there are {x;};>, < C[0, 1]
such that Q(x,) = T(e,) and |x,|| < K||T(e,)|l (where K is independent of k).

Since I ||x,||" converges, the map b; — x; (b; the canonical basis of /..
defines a bounded operator R: /,, —» C[0, 1]. Then the diagram

I, T 1,
e N

[r’ R C[O’ 1] 1 Ls[O’ 1]
is commutative, so 7V is s-integral and since /,. is reflexive T/ is s-nuclear [17].

COROLLARY 2.5. Let 1 <s < o0, 2<p < o0, 1/r =% — 1/p. Then,
Jorany 0 < a < 1,1 <t < oo, if T is a linear operator such that T: 1, - I,
and T: I,. — I, are bounded, then the operator

T:1. -1, (Q/t, =0 — «)/2 + aft)
satisfies the inequality
Ty g-afTi by = ) < A 8IT = LIV«
where ¢, depends only on s.

Proof. Apply Lemma 2.4 with the fact that n(7J) < v{(7TJ) < ¢|T}|, so
that themap T® 1 of [, ®; L tol, ®[. I (= I(l;)) has norm < ¢ | T: 1, = L,|,
and T ® 1 considered as mapping /.. ®; L to [, ®4_ 1, (= [,()) has norm
equal to || 7: /.. — |. Finally, the result is obtained by interpolation.

COROLLARY 2.6. Let E be as in Proposition 2.1 and let 1 < p; < q; < ©
(j = 0, 1) be arbitrary numbers. Let K be a compact Hausdorff space and let
u: C - E be a linear map (C = C(K)). Then for any 0 < o < 1,

anqu(u: C - Ea) < n;o_,aqo(u: C 4 E())n;hql(u: C - El)’
where 1/p, = (1 — @)/po + a/py, /g, = (1 — 0)/qo + a/q,.

Proof. If 1 <p <q < o, m, (u: C - F), for any Banach space F, is
seen to be equal to the norm of the operator & mapping C(K, ,), the space of
continuous /, valued functions on K equipped with the sup norm, to [(F)
defined by

a (f‘. f,-(-)e,-) - ¥ uh @

where f; € C, {e;} and {&,} are the unit bases of /, and /, respectively.
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This observation on the interpolating technique described earlier yields the
inequality.

Remark. The referee noted that Corollary 2.6 was obtained for p; = ¢; in
[4]. Note that Corollary 2.6 differs from the previous results in that it allows
to “interpolate” both subscripts (p, ¢) in the norm #, , when the domain space
is C(K).

Let 1 < p <gq < o0, Fand G be normed linear spaces. An operator
u: F - L,Q, u, G) is called g-cylindrical of type p (see [16]) if there is a
constant C such that for every finite sequence {x;}{ = E the following inequality
holds:

) 1/p
(J @ rweanr) ™ < e e
Let ¢, ,(u) = inf C. This is clearly the norm of
#: I(E) > 1(G) ®3, L(Q, )
which is defined by: 43 x; ® €) = X u(x;)(*) ® e;, where {e;} is the unit
basis of /, for ¢ < oo and x; € E, with the obvious convention for g = co.
If 1 <p <gq < o and if G is reflexive, then /,(G) has the R.N.P., hence
by [1],
(L(I(Q))) = L,(1,(G")
(this equality is also true for any G if Q is discrete). Therefore in this case
¢p, (1) is the norm of @': L,(I,(G")) — I,(E’). In the particular case p = 1,
1 < g < oo, it follows from the proof of Corollary 2.6 that for any u: E —
L), 1’| = mg(u'), s0 ¢y, u) = m(u'), a result obtained differently in
[19, Theorem 1].

It is interesting to recall the following characterization of ¢, (1) proved in
[16, Theorem 8].

THEOREM 2.7. Let u: F - L,(Q, u, G) be a bounded operator, 1 < p <
q < oo, l/p = 1/r + 1/q, and given any g e L(Q, p) let T;: L(Q, pu, G) -
L,(Q, u, G) be the map defined by T(f) = gf. Then c, [(u) is equal to the least
of all possible values ||v|| || T,| where Tp = u and v: F — L(G) is a bounded
operator.

As done for 7, , it is possible to interpolate the constants c, , using the
following result.

THEOREM 2.8. Let F, G be linear spaces each equipped with two norms denoted
by lI*llgy I*llg, respectively, (j = 0, 1), such that F* and G* are consistent
norming spaces for F and G and separate the points of F, and G, respectively.
Let Q be a locally compact space, u a positive Radon measure on Q and let
1 <p;j <q; < oowithqy < . Let B= L,(Go) n L,(G,) and u be a linear
map from F to B such that

¢; = Cp, o F; > L,(Gy)) < 0 (j=0,1).
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Then for every 0 < a < 1,
cpm ‘Ioz(u: Fa g Lpu(Ga)) S c(lj-a(:?.

Proof. The space H = I, (Go) N [,,(G,) has two norms induced by A, = ||

(j = 0, 1), and by Proposition 2.1 the interpolating norm |-|, on H coincides
with the norm induced by /, (G,). Similarly for the two norms on E = I, (Fo) n
l 1(F 1)'
’ By Proposition 2.1, H* is a consistent norming space for H, and since G*
separates points in G,, H* separates the points in H,. Let D = L, (H,) N
L,(H,) and [[|-]||; be the norm induced by L, (H,) on D. By Proposition 2.1
the interpolating norm [|| ]|, is the norm induced on D by L, (H,).

Let @i;: [, (F;) - L,(H;) (j = 0, 1) be the map i defined by

ﬁ(z X ®e) = E u(x)(’) ® e;.

It is clear that ||i;|| = c,,(u: F; = L,(G)). If f = 3 x; ® e; € E, then by
Proposition 2.1, | f]|, = C lx;l ,‘l:)”““, and since @(f) € D,

acoil. = ( f T I!u(x.-)lz«;)»«/q«)”“

The operator @# maps E to D and is bounded as

(E, 1)) — D, llI-1llp
with norm < |[|@;||. Therefore @ is bounded as a map from (E,|:[,) to

(D, l11*1ll,) and its norm satisfies ||@,]| < ||@oll* ~*||éi,||*. It follows then that
1/p
acoil, = ([ rueeangy-=)
< Nl 1 fla

< il =Ny I*CE axill )%,

and this completes the proof.
As a consequence to Theorem 2.8 we have the following example:

Example 2.9. Let po = 1 < py, 4o, 41, Tos 1 < ©, py = g,. For any
O0<ax<l,letl/r,=(1 — a)ry + a/r, and let p,, g, be similarly defined.
Assume u: I, — I, is a bounded operator such that 7 .(u': I, = [,,) < 0.
Then

Cpoa Ui, = 1) < llutl, - 1 1*n %' Ly, = 1).

Proof. By the remark following the definition of ¢, ,,

7‘.'11«:"(14,: lw - I"o') = cpo.qo(u: lro I lpo)

and clearly |u: I,, = 1| = ¢, ,(u: 1, - 1,); this observation and Theorem
2.8 yield the result.
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3. Unconditional structures of ideals of operators from /, to /,

In this section we investigate the unconditional structure of the spaces
L(I}, I}) normed by an arbitrary ideal norm o«. We recall the following definition
of [8]: Given a real Banach space E, let

I(E) = sup inf sup
Fe #(E) {Pi} N, =
where & (E) is the collection of all finite-dimensional subspaces of E, the
infimum ranges over all possible sequences {P,} of operators from F to E
satisfying the equality > P,(f) = f for all f€ F, and r(P) denotes the rank of
an operator P.
If E is finite-dimensional, then clearly

ﬁ:: + \r(P) Pi”

where the infimum is taken over all sequences {P;} of operators from E to E
satisfying the equality >’ P,(f) = ffor all fe E.

It is clear that if E is isomorphic to a complemented subspace of a Banach
space X, where X has an unconditional Schauder decomposition into spaces all
having the same finite dimension p, then /(E) < oo. Examples of spaces with
I(E) = oo were given in [8]. A new example will be provided by Corollary 3.2.
First, we introduce the following notation: R" will denote the n-dimensional
linear space, {e;}/-, its usual unit basis. Given any vector ¢ = (g;, &5, ..., &,)
with g; = 1, h, will denote the operator defined by 4,(e;)) = ¢, i = 1,..., n.
For any permutation ¢ of {1, 2, ..., n}, g, will denote the operator defined by
gs(e) = e, for all i,

G will be the compact group of isometries of /5, dg the unique normalized
Haar measure on G. S will denote the sphere {x € I; ||x|, = 1}, dx will be
the measure on S defined by

g:i\/r(Pi)Pi

1

I(E) = inf sup
(P} N, £

f F(x) dx = f f(g@) dg, feC(S),
S G

where e € S is any fixed point. All spaces are taken here over the reals. If «
is an ideal norm, «(E) will denote the value a(lg) where 1g is the identity
operator on E.

THEOREM 3.1. Let « be an ideal norm and E = (L(I}, 13), «). Then
I(E) > n~' sup «(B)/|B].
O0#BeE

Proof. The topological dual of Eis E’ = (L(I%,17),a). Letu=Y"_, 4, ® B,
be any rank-m operator from E’ to E’, where 4, € E and B, € E'. Let {¢;}}
and {f;}{ be the canonical bases of /; and /], respectively. Let

Bk(e,) = .Zl bkl.lf.l al‘ld Ak(f;) = El akijej, 1 S i S n, 1 S k S m.
J= J=
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Let A € E’' be an arbitrary nonzero operator. Consider the probability
measure g on K = Kp x K defined by

272 h.g:Ag
- g“’ L L ;f((——————aA(A) > x (0 ® x)) dg dx,

fe€ C(K), where the first 3 ranges over all 22" possible choices of vectors ¢, 0
of the form (41, +1,..., +1), the second 3 ranges over all n! possible
permutations & of the set {1, 2, ..., n}.

The operator u defines a function of C(K) which we denote by {u,-) and
define by

uf) =

{u, a x b) = {u(a), b) = trace (b(u(a))), ae Kz, b € K.
Then,

—-2n
A<, ) = 2 j T Kulh,goAg), 0 ® x| dg dx
S

n! G &0 =

—2n
= 2n, j ) 2 [{(u(h,g.Ag))(x), 0| dg dx.
* S

Gue

Using Khintchine’s inequality, if y e I then 27" 3, |[<y, 0)] = 2712 |,
(the constant 27'/2 is due to [25]) and denoting by v the operator u(h,g,49)
mapping I3 to I{, writing v(e;) = /-, v;;f;, we obtain

2\ 1/2
) dx

.L 2" ; IKv(x), 0] dx = 2712 L (i=il
) )1/2

(f

n

Z UjiXj

j=

We see that
vij = (u(hagnAg))ij

I

Y. by trace (h,g,4gA,)
=4

trace {hsg,,Ag (Z bkijAk)} >
K=1

and denoting by {f,} the unit basis of /7, and setting w = g,4g(>\; by;;4,),
we get again by Khintchine’s inequality

27" Y |trace (hw)| = 27" Y [ &w,,|

> 27UKY w2
= 27123 Kw(h), fHV.
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Thus we obtain

212 (1) (A <u, D)

O Y S L
B NN
[ (g o)
> 2n,’z[z (j <g,,Ag (2 bk,-,.Ak> (f,>,f;> dg)z]”z,

and since [ [<g(a), bY| dg = n7'(IDlall,lbll, (cf. [5]) for any two vectors
a, b € I3, we obtain

231 (Ap(I<u, -H])

Y b Af)
k=1

n 2 1 27)1/2
=3[ 5 (7S 1aw091:) |
n: =i 2 \N: =
n l 271/2
[ 3 (n! ) IIA'g,’,(fi)IIz> ]

i R m 2172
1AL ak,sbk,,)] (2 4G
nyijr,s=1\k=1

Now observe that >7_, |A'(fD), = A{(4) = v,(A) since 4 maps I} to I}.
We shall also use the following inequality proved in [8, Lemma 2]: Let x;, y;,
k=1,2,...,n, be vectors in R". Then

\%

1
. 2 buas Al )

n 2 n n
(£ cwm) <mE ¥ rpn
k=1 j=1k=1

The last inequality implies that

n m 1/2
[ Z ( E akrsbku) ] = m- 12
i, J

m

n
> Z Aijbii| = m™? |trace (u)].
.=

srys=1 \k=1 k=1

Finally, we have proved that for every 4: I} — If,

nm' 223 (15N Au(|<u, +|) = |trace (u)|vy(4).
By duality we have for every B: I} — I},

nm22n3(13)| Bl u(I<u, ->1) = |trace (w)la(B).
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Letnow P, e L(E', E'),i = 1,..., N. Then since p is a probability measure
we obtain the inequality

N

PO, N
5.+ Vi) P > 20mapizin (V7P (<P 1)

2nni(I)|B]| max

> a(B) 52‘1 trace (P)),

so if X, P, is the identity operator on E’, and as dim (E’) = n* and 7,(I}) <

v/ nnj2 [5] we have

n||B|| max
+

il + Vr(P) Pi“ = a(B),

which implies the required result on I(E).

Denote by (Ly(E, F), «) the closure in the « norm of the finite-rank operators
from E to F.

COROLLARY 3.2. If o is a perfect ideal norm not equivalent to the operator
norm ||+ || on the space of operators from I, to l,, then

WAL, 13), @) = o and  1((Lo(ls, 1), @) = oo.

Proof. 1t follows from the definition that if X and Y are normed spaces and

if
A:X—->Y and B:Y > X

are operators such that B4 is the identity on X, then I(X) < I(Y)| 4| |B].

Since E, = (L(I%, I}), «) is isometric to a norm-one complemented subspace
of (Lo(ly, 1), @), it is sufficient to prove that I(E,) — co. Assume that I(E,) <
A< oo for every n=1,2,.... Then |B| < a(B) < An|B| for every
B: I7 — 13, and as a is perfect, also for every B: I; — I,, which is a contradiction.

Remarks. (1) If ais any ideal norm and C: I§ — [I”,, then from Theorem 3.1
we obtain the inequality

ICI < «C) = «(C") < = CIILA, 13), &) = | CIILAS, I%), @)

and the analogue of Corollary 3.2 is also obvious.
(2) If X is a finite-dimensional normed space then clearly /(X) = I(X"),
hence for any ideal norm a,

H(LAY, 19, o) = 1(LU3, 1D), @),
and so if D: I} — I} is an arbitrary map we get the inequality
iy(D) = «(D)
sup {trace (uD)/a*(u); u € L(I7, 1)}

[rI(LA3, 13), a*)] ™" sup {trace (uD)/||ul; u € L(I3, I3)}
[rI(L(I3, 19), a))] ™ iy(D).

v
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As in Remark (1) it follows that for any P: I, — I3,
iy(P) 2 a(P) 2 iy(P)[nl((L(Ig, 12),)).
Results analogous to Corollary 3.2 are now easily derived. The following

theorem provides information on the rate of growth of the dimensions in many

unconditional Schauder decomposition of (Ly(/;, /,), @) into finite-dimensional
spaces.

THEOREM 3.3. Leto, = max {a(B)/|B|; B € L(I}, I5)}. Assume (Lo(ly,1,),)
has an unconditional Schauder decomposition into finite-dimensional spaces E,;
having the following property : For every n, there is a subset of integers I, such that
(Lo(I17, 13), o), considered as a natural subspace of (Ly(ly, 1,), &), is a subspace of

Yier, ® E; and sup; ., dim (E)) = p, < . Then {a,,/\/p—,,} is a bounded
sequence.

Proof. Fix n and consider the factorization

L, 1), @) = (Lo(ly, ), @) = Ey— (Lo(ly, 1), o) == (L{, 13), o)

where i € I, J, and T; are the inclusion operators, P, and Q, the natural projec-
tions. Let R; = Q,T,PJ,; then r(R) < dim (E;) < p, and Y., Ri(x) = x
for all x e L(I{, I3). Then

M=

00 > sup
+,N |ji

"
1

H

= sup P,-l
+ |

-
m
ot

3

> sup + Ri‘
* iel,

m

sup

5+

ielp

= py VPI((L(IE, 13), @)
p—-1/2 o 1;

the assertion is established.

Remarks. (1) Similar results may be obtained for the spaces considered
in Remarks (1), (2).

(2) If B: I} — I} then for any ideal norm o,
a(B) < iy(B) = i;(B") = m,(B) < |Blm,(13) < ~/nn/2 |B],
and if j: I{ — I} is the inclusion map
max {i;(B)/IBI: B e L(I}, 1)} = i,(j) = trace (jj ~H/li ~*Il = n/v/n = Vn.
Therefore v/n < sup {«,; « is an ideal norm} < \/n—n/_Z_
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The following natural question arises:

Problem 2. If r,p ¢ {1, 2, o0} characterize all ideal norms « (if any exist)
such that if E, = (L(/}, I}), o) then sup, I(E,) < co.

The cases {r, p} = {1, 2} or {2, o} have been solved here. The cases
{r, p} = {1, o} or {2, 2} were established in [8].

Ifr, p ¢ {1, 2, 0} and /. is an SQL,-space it follows by the results of Section
2, that v, is (the only ideal norm up to equivalence) equivalent to A, on /.. ® I,
and clearly the unconditional basis constant of /,, ®{, /,is equal to 1. Problem
1 is open even in this case. However, if /. is not an SQL -space, even the exis-
tence of an ideal norm « such that sup, /(E,) < oo is open.

Acknowledgment. We thank the referee for very valuable comments on
this paper.
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