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Introduction

Let E and F be two Banach spaces. There is a natural 1-1 canonical map
from E (R) F to L(E’, F) the space of all bounded operators from E’ to F. In
this paper, we identify E (R) F as a subspace of L(E’, F). Then we can define
any ideal norm t on the elements of E (R) F. Let fl be a locally compact
topological space, / a positive Radon measure on fl, p a real number, <
p < oz, Lp L,,(, l) the Banach space of equivalence classes of scalar
valued pth power integrable functions defined on ft. It is also possible to
identify canonically E (R) Lp as a subspace of the Banach space Lp(, , E)
consisting of the equivalence classes of E-valued pth power integrable functions
defined on ). Let Ap be the norm of the space L,(E) L,(, l, E), E (R),, L,
be the subspace. E (R) Lp normed by A,, and let E (R), Lp be the completion of
E (R)ap L. We know that L,(E) E (R),, L,.
A is a natural norm to consider on E (R) Lp and in general if < p <

there is no ideal norm y such that A on E (R) Lv. But if v denotes the ideal
norm associated with the class of p-nuclear operators,/zp the ideal norm of the
class of p-absolutely summing operators, and/z the dual norm of/zp, we have
on E (R) Lp the following inequalities for all _< p _< "
(,) rcp <_ Vp <_ Ap < rc <_ v (cf. [17] and [20]).

Ifp 1, onE(R)L,zrt _< v A /z’ vl, andifp ,onE(R)Loo,
/zoo Voo Aoo /zoo

_
voo

In Section we prove that in a certain sense the inequality vp <_ Ap <_ /zp on
E () Lp is the best possible. To obtain this result, we prove at the beginning
another version of the duality theorem of L. Schwartz [21]. Later in Section
we improve some characterizations obtained by S. Kwapien [14] on the sub-
spaces of Lp(SLp), quotients of Lp(QLp) and subspaces of quotients ofLp(SQLp),
and give some applications of the preceding results to the theory ofp-absolutely
summing operators between Lq-spaces, which extend some results obtained by
L. Schwartz [21] for diagonal radonifying operators to the class of all operators.

Section 2 introduces a technique of interpolation which is useful in estimating,
for example, the (p, q)-absolutely summing norms. The following result fol-
lows immediately from Proposition 2.2" If u is a linear map from Lp(#) to
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Lpo(V) c Lp,(V) and if u is (r, qj)-absolutely summing when considered as a
map, denoted by uj, from Lp(t) to L,j(v) for j 0 and 1, then for any
0 < < the operator u is (r, q,)-absolutely summing as a map from
to Lp.(v), where 1/p, (1 )/Po + /Pl, 1/q (1 )/qo + /ql. More-
over, the (r, q,)-absolutely summing norm of u" Lp Lp. satisfies the inequality

1-z,,.(u" L L,,.) < npo (Uo)Zp,(u’)
S. Kwapien used a very specific method of interpolation when proving in [ 12]

that for every < p < , L(I, lp)= I-I1,,(p)(11, 1) where 1/r(p)= 1-
[1/2 1/p[. Our method cannot yield his result exactly, however, it is general,
and applicable to many other cases.
The technique of interpolation is extended to include another class of

operators introduced by H. P. Rosenthal [19] and B. Maurey [16], called the
q-cylindrical operators of type p. These results are derived from Proposition 2.1
which tells us when the intersection Lgo(l, #, E0)c L,(fl, p, El) admits
interpolation and describes the interpolating norm.

In Section 3 we consider an arbitrary ideal norm assigned to the spaceof
linear operators from l’ to l. We show that if a is not uniformly equivalent
to the ordinary operator norm []. on the spaces of operators from l’ to l,
then the unconditional structure of the spaces L(l, l) normed by a is not
good; for example, these spaces are not uniformly complemented in any
infinite-dimensional Banach space X which has an unconditional Schauder
decomposition into finite-dimensional spaces all having the same dimension p.
This implies that the local unconditional constant (defined in [7]) of (L(I, 1),
tends to c.
Our notations in general will be similar to [6]. We denote by -(E, F) the

subspace of L(E, F) consisting of all finite-rank operators from E to F. Given
any sequence {x} in E and < p < c, we write

ep(xi) sup {( I<xi, x’>IP)I/P; x’ e E’, Ilx’ll 1} if _< p < ,
sup IIx, if p .

If [A, a] is a normed ideal, a’ will be the dual norm, aa the adjoint norm,
a* the conjugate norm. [A, a] is called perfect if a a**. We denote by
(lip, z) the ideal of p-absolutely summing operators, by (Np, v) the ideal of
p-nuclear operators and by (Ip, ip) the ideal of p-integral operators. For any
T e L(E, F), the ideal norm e is defined by e(T) TII. E (R), F will denote
the space E (R) F (subspace of L(E’, F)) equipped with the norm a, and E (R) F
the completion of E (R), F.
An Lp space will always be some Lp(fl, p) (1 < p < ). An operator

A e L(E, Lp) is said to be p-decomposed [23] if there exists a function
fe Lp(D, p, E’) such that, for any x e E, A(x)(t) <x, f(t)> # almost every-
where. We have to note that this definition of p decomposed operator is, in
general, stronger than the definition ofp-decomposable operators of S. Kwapien
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(cf. [12]). It is easy to verify that f is uniquely determined. We set Ap(A)
Ap(f) and we denote by A(E, L) the Banach space of all p-decomposed
operators from E to Lp normed by Ap. With this identification Ap(E, L(, p))
L(f, p, E’).

Let u L(E, F), u is called p-decomposing [23] if for any L space and for
any A L(F, L), Au is p-decomposed. If u is p-decomposing, then for any
Lp space there exists a number m > 0 such that for all A L(F, L), A,(Au) <_
m[[A [[. The smallest possible rn in this inequality is denoted by re(u, L,).

1. Relations between Ap and ideal norms

In this paragraph we obtain some inequalities between Ap and other ideal
norms on E (R) Lp; these are useful, for example, in estimating the ideal norms
involved, via A.
THEOREM 1.1. Let E andFbe two Banach spaces, u L(E, F) and < p < oz.
(1) The operator u is p-decotnposin9 if and only if u’ is p-absolutely summing,

andfor any infinite dimensional Lp-space, re(u, Lp) rcp(u’).
(2) For p the analogous assertion is true if E’ has the Radon Nikodym

property (R.N.P.). If E’ does not have the R.N.P. there exists a Banach space F
and u L(E, F) such that zrl(u’) < oz and u is not 1-decomposing.

Proof It was proved in [20] that m(u, Ip) n(u’) if < p < oz. (1) can
be proved in a similar manner.

Ifp and re(u, L1) < , embed

isometrically. Let A L(F, 11) then there exists a sequence {x’} F’ such
that Au(x) ((x, u’(x’i)))i 1. It follows that

AI(jAu) ., ][u’(x’)]l _< re(u, L)llAJ] m(u, L)el({x’})
implying z(u’) _< re(u,
Suppose now E’ has the R.N.P. and r(u’) < oz. Let L1 be any infinite-

dimensional Ll(fl, #) space and A e L(F, L1). Since (L1)’ Loo, u’A’ is
1-integral, and since E’ has the R.N.P., u’A’ is 1-nuclear [24] and therefore Au
is 1-nuclear. The inequality

v(Au)
implies that u is 1-decomposing and that re(u, L1) <_ l(u’).
We know by [24] that there exists a Banach space G such that NI(E, G’)

II(E, G’). Let T be an integral operator from E to G’ which is not nuclear, let
K be the unit ball of E’ equipped with the weak star topology, the canonical
map from E to the Banach space of continuous functions on K, C(K). We
know that there exists a positive measure # on K such that T has the following
factorization"

T" E C(K) L,(K, ,) 6’,
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j being the canonical map from C(K) to Li(K #) and A linear and continuous.
Take here F Lx(K, I), and u ft. It is clear that u is integral and not
nuclear. Then, vx(u) Al(u) + and therefore u is not 1-decomposing.
But, since u is integral, so is u’, and it follows that u’ is also absolutely summing.

Remark. The equality rcp(u’) m(u, Lp) for 1 < p _< , and p if E’
has R.N.P., adds to related results of L. Schwartz [21] and S. Kwapien [13].

LEMMA 1.2. Let E be a normed space, < p < , a be an ideal norm,
(f, It) a measure space, and assume that on E (R) Lp(f, I) aa < Ap for some
positive constant a. Then on E’ (R) L,, aA, <_ a’.

Proof. Let u E (R) L and v E’ (R) Lp,. By [26], the norm A, on E’ (R) L,
is known to be equal to the norm induced by (Lp(E))’. It follows therefore that

Itrace (v’u)lAp,(v) sup
.(R), A(u)

and by the hypothesis of the lemma

aA,(v) < sup Itrace (v’u)l < sup Itrace (v’w)l aa(v,) aa,(v).
.(R), (u) ,.,., (w)

PROPOSITION 1.3. Let E be a Banach space, < p <_ oz, (f, #) be a measure
space, with # not supported on a finite set ofpoints, a a perfect ideal norm and
fl be any ideal norm, and let a, b be two positive numbers. Then on E (R) L
we have

(1) A < bfl ff n < bfl,
(2) aa < Ap (ffaa < v.
Proof Suppose that < p < oz. For (1) it is sufficient to prove A < bfl

implies rt < bfl. Let u e E (R) L, A L(L,, L) and suppose Ap _< bfl. Then
A(Au) _< b[(Au) <_ bllAIIl(u), but by Theorem 1.1, rr(u’) m(u, L,)
supa Ap(Au)/I[AII. It follows that n’(u) < bfl(u), which proves (1).
To prove (2) it is sufficient to show that aa < A implies aa _< v. Suppose

that aa < Ap on E ( Lp; then by Lemma 1.2 we have on E’ (R) L,, aAp, < aa’.
By (1) it follows that on E’ (R) L,, an, < aa’, hence if w (E, Lp,), then
w" E’ (R) Lp, maps E" to Lo,, so an,(w) an,(w") <_ aa’(w") aa"(w).

Therefore, for every v" Lp, - E, since a is perfect,

a’(v) aa’"’(v) <_ ax’"a(v) < a-’rc’p,(v)= a-’rcap:(v)= a-’i(v).
LetwE(R)Lp;w ,’=xx,(R)ymapsE’toLp. Letv ’=xy,(R)x

map Lp, to E. Then v’ w and so

a(w) a(v’) a’(v) <_ a- i,(v) a-avp(w)
which concludes the proof for 1 < p < oz.



270 Y. GORDON AND P. SAPHAR

Ifp 1 the assertions are clear since on E (R) Lt, vx Ax hi. Ifp oo
the result is again obvious since on E (R) Loo, voo Aoo noo.
The following three corollaries improve on some known results of S.

Kwapien [14].

COROLLARY 1.4. Let E be a Banach space, < p < and b >_ 1. The
following conditions are equivalent"

(1) There exists an infinite-dimensional Lp-space such that on E (R) Lp,
A <_ bn.

(2) There exists an infinite-dimensional L-space such that on E (R) L,

(3) E is an SLp-space.

Proof. The equivalences of (2) and (3) are due to [14] or [9]. (1) and (2)
are equivalent by Proposition 1.3.

Remark. It can be shown that the least constant b appearing in (1) is equal
to the least distance ofE from the subspaces of the L-spaces. The same method
establishes also:

COROLLARY 1.5. Let E be a Banach space, < p < and a >_ 1. The
following conditions are equivalent"

(1) There exists an infinite-dimensional L-space such that on E (R) L,,
v < aAp.

(2) There exists an infinite-dimensional L-space such that on E (R) L,,
vp < av.

(3) E is a QLp-space.

COROLLARY 1.6. Let E be a Banach space, 1 < p < . E is a SQL,-space
iff there exists an infinite-dimensional L-space and an ideal norm such that on
E (R) L, o is equivalent to A,.

Proof. Suppose that on E (R) Lv, a < Av < b. Then by (1) of Proposition
1.3, a < A < n < b on E (R) L. But n is perfect, so by (2) of Proposition
1.3 we have on E (R) L, (a/b)np < v < A < n. The equivalence of n and
vp is equivalent to E being a SQL-space [14]. The converse is obvious from
the inequality v < A < n on E (R) L.
COROLLARY 1.7. Let 1 < s < p’ < r < 2. Then for any Lp, L,, and Ls

spaces and e > 0 we have:
(1) On the classes of operators from L to L, I-I, v l-I+8 IIs, Ioo
# I,.

(2) On the classes of operators from L, to Ls, 1-I,, v 1-I,,-8 II Is

(3) On the classes of operators from L, to L,, 1-[1 I-[,, A’, (where
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Proofi (1) It is sufficient to prove the results for the spaces Lv[0, 1] and
L[0, 1] with the Lebesgue measure of [0, 1]. Since Lz, is isomorphic to a
subspace of L, it follows by Corollary 1.4 that on Lp, (R) L,, A,, v,, and rr are
equivalent. By duality, YL,(L, Ln) I,(L,Ln). Let T I,(L, Ln); then T
factors through some Loo-space, so there exist A L(L,, Loo), B 1-L,(Lo, Ln)
such that T BA. By Kwapien [13] B 1-In+(Loo, Ln) l,+(Loo, L,), hence
so also is T. All the equalities in (1) are obtained.

Let u be a diagonal operator from l to ln, defined by u(e3 e’. By
L. Schwartz [22], u is 1-absolutely summing iff
By Corollary 1.4, u will bep’-nuclear, orp’-absolutely summing, iff
Therefore 1-[n,(ln, ln,) Nn,(ln, 1,) # I-It(/p,/,). It is clear that this relation
is maintained for (Ln, Ln,) as well.

Let be an isomorphic embedding of Ln, in L and T map Ln to Lp, such that
vn,(T) 7rn,(T) < c and r(T) c. Then rrn,(iT) rrn,(T) vn,(T) >
v,(iT) and r(iT) rr(T) , so on Ln, (R) L, , and nt are not equiv-
alent. Using duality we get Ioo(L, Ln) In(L, L). We see also that on

Ln, (R) L, vn, and t are not equivalent, hence
:(L, Lv).

(2) This follows from (1) by duality and Corollary 1.4.
(3) It is sufficient to prove the result for Lp[0, 1] and L,[0, 1]. This is

equivalent to proving that on L, (R) L,, n, n, and A,, are equivalent, that is,
on L (R) Lv,, the norms n, zt,, and Ap, are equivalent. But L, is isomorphic
to a subspace of L, and by Corollary 1.4 on L, (R) L, the above norms are
indeed equivalent.

Let T I-I,,,(L,,L,,) and A L(L,,,L). We know that (see [20])
I-Ip,(L,,, Lp,) I-I (L,, L,), so AT I-I(L,, L). But L,, is isomorphic to a
subspace of an L-space, so 1-I(L,,, L) A(L,,, L) by Corollary 1.4. By
Theorem 1.1, since L,, is reflexive, we deduce that n(T) < o. Hence n, and
n are equivalent on L, (R) L,, and the result follows.

Problem 1. Is there a number a > s’ such that I-L(Ls, Lp) I-L,(L,, Lp)?

Remark. The formulas I-[1(L,, L) A(L, L) and YII(Lo, Lr) A,,(L,, L,)
generalize a similar result obtained by L. Schwartz [21] on the representation
of diagonal radonifying operators (1-absolutely summing operators by our
notation) from lp to ls and 1, to lr.

2. Interpolating some classes of operators between Lp(Q, #, E) spaces

Let I1"11o and I1" ilx be two norms defined on a given complex linear space E,
and denote by fl(E) the family of all E valued functions F holomorphic and
bounded with respect to both norms in a neighborhood D of the strip S
{z; 0 < Re (z) < 1}. As in [11, Chapter IV] we norm fl(E) as follows:

[[t[[ sup {[[f(it)[[o, [if(1 +
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For 0 < < let fl,(E) {Ffl(E);F() 0}. fl(E) is a linear sub-
space of fl(E). The norms II’ll o and II" Ilx are said to be consistent on E if fl(E)
is closed in fl(E) for all 0 < < 1, in which case E can be renormed by

Ilxll inf {llFII F fl(E), F() x} (x E).

II" I1 is then called the interpolating norm and we denote by E, the completion
of the space (E, II" II), 0 _< _< 1,

Corresponding to the pair of norms II" IIo and II" on E there is the pair of
conjugate norms, which we shall also continue to denote by II’llo and II’ll,
on the space of linear functionals defined on E. Denoting by E* the space

(E, II" IIo) r (E, I1" )

of linear functionals on E continuous in both norms, we may also talk about
the consistency of the (conjugate) norms II" IIo and II"
By [11], II’llo and II" IIx are consistent on E if given any 0 d: x E there

exists x* E* such that x*(x) O. It follows therefore that II’llo and II" ilx
are always consistent on E* since E E**

If 0 < < 1 and both norms are consistent on E, the inclusion map
(E*) (E)’ has norm < 1. We shall say E* is a consistent norming space
for E if in addition to the consistency of the norms II’llo and II" II on E, for
every 0 < < 1 and x E the following equality is satisfied"

(**) Ilxll sup {l<x, x’>l/llx’ll’, x’ (E*)}.

A well-known classical example is the following: let (fl,/z) be a measure
space, 1 < Po, P < , and E be the space Lpo(#) c L,,(#) which is equipped
with the two norms

II" I1 I1" II,; j 0,

Since for each j 0, 1, E is dense in L, in the II" II norm, we have

Therefore, E* Lo,(/) c L,,(#). The norm I[" [[y (j 0, 1) on E* coincides
with the norm II" II,,, on

It is well known that in this example the norms II" IIo and II" are consistent
on E. Moreover, given any 0 < < and x E, x’ E*, the interpolating
norms of x and x’ are

PoP[[xll [[xl[ and [Ix’[[ IIx’[I,, wherc p
Po + (1 )p

Of course, equality (**) is also satisfied since (E*) is dense in L,,, so that we
can say E* is a consistent norming space for E.

In the following proposition we require E* to separate the points of Eo, this
is clearly so for the above example.
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PROPOSITION 2.1. Let E be a linear space equipped with two norms I!" Iio and
II’llx such that E* is a consistent norminy space for E, and E* separates the
points of Eo. Let be a locally compact topological space, It a positive Radon
measure and let <_ Po, P < with Po < . Let

B L,o(f, It, Eo) c L,,(f, It, Ex)

and denote by Ill’lll the norm induced on B by A,, j O, 1.
Then IIl’lllo and Ill’lll are consistent norms on B and the interpolating norm

ill" I (o < < 1) coincides on B with the norm induced by the space L(f, #, E)
where 1/p (1 )/Po + t/p.

Proof. Let us first prove II1"111o and IIl’lllx are consistent norms on B. If
0 # f B, there is a set A such that af #: 0, and then there is x* E* such
that A x*f 0 and so (f, x* (R) Xa) 0. Since x* (R) Za is continuous as a
functional on L,j(Ej) forj 0 and 1, the norms II1"111o and IIl’lllx are consistent.
The space [B] of simple functions is dense in B, in the norm induced on B

by L,.(E); observe B
_

L,(E), by the fact that for any x E and 0 < < 1,
Ilxll -< Ilxll-llxllL and so a simple application of Hflder’s inequality shows
anyf B must belong to L,.(E).
Thus it suffices to prove the equality of the norms I1"111 and A,. on I-B].

Letf 7= x, (R) Zar e [B’I, where x, e E and Ar are It-measurable mutually
disjoint subsets of f. Regard f as an element in L,.(E) and assume that its
norm A,.(f) < 1.

Given e > 0, there exist Fr fl(E) such that

Define
F,(a) x, and IIFII (1 +

a(z) IIF, lla(z-)F(z) ( ,
where a Po P

Po + (1 )px
(= 1/(- 1) ifpx ).

Then G fl(B) and G() f, and we get

We have thus proved

lllflll inf {IIGII; G /(B), G(oO f} < A,,,(f).
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To prove Aw(f) > IIflll, letfbe defined as above and assume Av,(f) > 1.
Then there exist y’, (E*), Ily’ll < + e and (x,, y’,) > IIxll. Let

/ (Ap.(f))l-v IIx,ll--y @ Z.
Clearly A.,(#) < + e, (f, #) > 1. Proceeding as in [11] it is seen that

for any F e fl(B) with F() IIFII > 1, so IIflll
Remark. Proposition 2.1 was proved above for complex Banach spaces,

the real case could be done by using the real interpolation method of Lions and
Peetre [2]. Other forms of Proposition 2.1 were obtained by Calderon [3].

Let p q . An operator u’E F is called (p, q)-absolutely
summing if there exists C such that for any finite subset {x} E the follow-
ing inequality holds"

( Ilu(x)ll)/ C sup {( I(xi, x’)[)/; IIx’ll
Let n,(u) inf C. %,(u) is called the (p, q)-absolutely summing norm of
u (see [12] and [15]).

PROPOSITION 2.2. Let 1 p Po, P with Po < , and let E be a
linear space equipped with two norms I1" Iio and I1" I1 such that E* is a consistent

normin# space for E, and E* separates the points of Eo. Let F be a normed
linear space and u" F E be a linear map. Given any 0 denote by u
the operator u mapping F to E. Then

1-,(u) ,o(Uo),/u).

lv (= lv(E)) has normProo u@ 1 as a map from F
equal to %, (ua), j 0, 1. As above, if B lvo(Eo) lv(E), u @ maps
F @ 1v to (B, I1"111), hence its norm satisfies the inequality

Ilu@ 111 Iluo
By Proposition 2.1 I1"111 coincides with the norm induced on B by lw(E),

and the proposition is established.
The last result is a useful tool for obtaining estimates on the %,a norm in

many cases. To illustrate this we have"

Coo2.3. Let 1 s < p’ 2, r < p’, q . There
exists a constant a a(r, p) such that ff v" Lv() Ia(v) is a bounded operator
which also belongs to the class A(Lv(), L(v)), then for any 0 1, v is
(r, r/(1 a))-absolute& summin# as a map from Lv() to L,(v), where 1/s
(1 a)/s + /q. Moreover

,.,/_(v. () .(v) [aa,(v" () z,())]-llv" z() (v)ll,
and both sides in the inequaBty are equivalent for 0 or 1.
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Proof. By Corollary 1.7(2) we know that on the class of operators from
Lp(#) to L(v) the norm r is equivalent to r A. The equality is by (*) and
Corollary 1.4; checking the proof we see that r(v) _< aA(v), where a depends
only on r and p.

zr(v: Lp(/) L(v)) is the norm of v considered as a map from
Lp) @ 1 to L(v) l, and [Iv" Lp() L(v)[[ is the norm of v 1
considered as mapping L(g) @ l, to L(v) l. The inequality follows
by interpolating the norms of v 1.

Remarks. (1) The inequality implies that if {e} is the unit basis of

1 and x’ e 1,, then the map v = x’ e mapping 1 to 1 satisfies the
inequality

n,,/(_(v) [a( Ilx’ll)X/]x-(({x’})).
(2) The results may also be extended to include similar inequalities between

-spaces.
LMMh2.4 Let 2 q p and T be an operator from 1 to 1. Let

1/r 1/q lip and J: 1,, 1 be the inclusion map. Then:
(1) v,(ZJ) T
(2) If q 2, then for any 1 < s < there is a constant cs such that

(TJ) c T II.

Proo In the proof we shall assume p < , the case p is proved in
a similar manner. Let {} be the canonical basis of 1, and {el} the canonical
basis of 1, and assume T(e) = ai for anyj. If x xe has norm 1,
then

r(x) aix T II.

Therefore if r(t) is the jth Rademacher function on [0, 1],

aixr(t) T for all t,

and integrating this inequality with respect to t we obtain by Khintchine’s
inequality

laxl2 T

but q 2, so that y lalalxla IITII a, and minimizing this expression
over all x 1, with norm 1 we get

() lal’ Z I1’,
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that is, A,(J’T’) < TII. Since lq is a quotient of L,, it follows that A,(J’T’)
n,(TJ) v,(TJ), which proves (1).
To prove (2) observe that inequality (A) can be written as . IIT(e)ll" -<

IITII’, where now q 2 and 1/r 1/2 lip. With the aid of the Rademacher
functions there is a bounded operator P" Lx[0, 1] 12 such that if I is the
injections of C[0, 1] to Ls[0, 1], then a PI maps C[0, 1] onto 12 [10-1.
Hence 12 is isomorphic to C[-0, 1]/Q- 1(0), therefore there are {Xk}ff= c C[0, 1]
such that Q(Xk) T(ek) and IIxll -< KllT(ek)ll (where K is independent of k).

Since IIxll converges, the map bi xi (bi the canonical basis of 1,,)
defines a bounded operator R" 1,, C[0, 1]. Then the diagram

is commutative, so TJ is s-integral and since l,, is reflexive TJ is s-nuclear [17].

COROLLARY2.5. Let < s < oo, 2 <_p <_ eo, 1It 1/2-- lip. Then,
for any 0 < < 1, <_ <_ oo, if T is a linear operator such that T: lv 12
and T: l,, l are bounded, then the operator

T: I,, I,, (l/tat (1 )/2 + /t)

satisfies the inequality

rcx. x/-at)(T" lr, Its) <_ cs liT" lp /Ell ’--"
where cx depends only on s.

Proof. Apply Lemma 2.4 with the fact that nx(TJ) < vx(TJ) < cllTII, so
that the map T (R) of lr, (R) lx to 12 (R)a lx (= lx(12)) has norm < cll T: 1 --, 12 II,
and T (R) considered as mapping 1,, (R) lx to It (R)?xoo 1o (= l(It)) has norm
equal to T: 1, --, Z, II. Finally, the result is obtained by interpolation.

COROLLARY 2.6. Let E be as in Proposition 2.1 and let < p < q < c
(j 0, 1) be arbitrary numbers. Let K be a compact Hausdorff space and let
u" C E be a linear map (C C(K)). Then for any 0 < < 1,- Eo),(u C-o E),7rv,q.(U" C Eat) <_ rCvo, qo(U C

where l/pat (1 g)/Po + /Pl, 1/qat (1 g)/qo + /q.

Proof. If < p < q < oo, rcv, q(u" C F), for any Banach space F, is
seen to be equal to the norm of the operator mapping C(K, Iv), the space of
continuous Iv valued functions on K equipped with the sup norm, to Iq(F)
defined by

Ji(’)e u(f) (R)

wheref e C, {e} and {g,} are the unit bases of lv and l, respectively.
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This observation on the interpolating technique described earlier yields the
inequality.

Remark. The referee noted that Corollary 2.6 was obtained for pj qj in
[4]. Note that Corollary 2.6 differs from the previous results in that it allows
to "interpolate" both subscripts (p, q) in the norm nv, when the domain space
is C(K).

Let < p < q < , F and G be normed linear spaces. An operator
u" F - L(f,/, G) is called q-cylindrical of type p (see 16]) if there is a
constant C such that for every finite sequence (x,} c E the following inequality
holds"

( Ilu(xi)llqU <_ C(, IIxll)a/,

Let %, (u) inf C. This is clearly the norm of

a" lq(E) l(G) (R) L(Q, #)
which is defined by" t( x (R) e3 Y u(x3(’)(R) e, where {e) is the unit
basis of 1 for q < oo and x e E, with the obvious convention for q

If < p < q < oo and if G is reflexive, then I,(G) has the R.N.P., hence
by[1],

(Lv(l,(G)))’ Lv,(lq,(G’))
(this equality is also true for any G if f is discrete). Therefore in this case
cv, q(u) is the norm of ’" Lv,(l,(G’)) --. l,(E’). In the particular case p 1,
< q < c, it follows from the proof of Corollary 2.6 that for any u" E

Lt(/0, Ila’ll- ,(u’), so cx,(u)- ,(u’), a result obtained differently in
[- 19, Theorem ].

It is interesting to recall the following characterization of c,(u) proved in
[16, Theorem 8-1.
THEOREM 2.7. Let u" F Lp(f, #, G) be a bounded operator, 1 < p <

q <_ , lip 1/r + 1/q, and given any gL(f,lx) let To "L(f,#,G)
L(f, #, G) be the map defined by To(f) 9f. Then ep, q(u) is equal to the least
of all possible values [Ivll IITII where Toy u and v" F L(G) is a bounded
operator.

As done for rv, it is possible to interpolate the constants c, using the
following result.

THEOREM 2.8. Let F, G be linear spaces each equipped with two norms denoted
by II’llv, I[’llo, respectively, (j 0, 1), such that F* and G* are consistent
norminy spaces for F and G and separate the points of Fo and Go, respectively.
Let f be a locally compact space, # a positive Radon measure on and let
1 < p <_ q <_ with qo < . Let B Lvo(Go) L,(G) and u be a linear
map from F to B such that

cj cvj,j(u" Fj --* Lvj(Gj)) < oo (j O, 1).
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Then for every 0 <_ o <_ 1,

Proof. The space H lqo(Go) c Iq,(G1) has two norms induced by Aq# l"
(j 0, 1), and by Proposition 2.1 the interpolating norm I’1 on H coincides
with the norm induced by I.(G). Similarly for the two norms on E Io(Fo) c
Ie,(F1).
By Proposition 2.1, H* is a consistent norming space for H, and since G*

separates points in Go, H* separates the points in Ho. Let D Lpo(Ho)c
Lp(H) and I[t’[llj be the norm induced by L(Hj) on D. By Proposition 2.1
the interpolating norm Ill’]ll, is the norm induced on D by L,,(H,).

Let j: l,(Fj) L,(H#) (j 0, 1) be the map t defined by

a(E x, (R) e,) E u(x,)(’) (R)

It is clear that I]jl] cuq.,(u" Fj Ln(G.i)). Iff x (R) ei e E, then by
Proposition 2.1, IfI, ( IIx,II =/ and since if(f) e D,Fo)

Illa(f)lll ( Ilu(x311q%)=/q=

The operator t maps E to D and is bounded as

(E, I’ I) (D, II1"111)
with norm < Iill. Therefore a is bounded as a map from (E, I’l=) to
(D, iI1"111) and its norm satisfies 11711 _< 117olla-llall, It follows then that

and this completes the proof.

As a consequence to Theorem 2.8 we have the following example"

Example 2.9. Let Po 1 _<px, qo, qx, ro, rl < co, p ql. For any
0 < < 1, let 1]G (1 )]ro + ]ra and let p,, q, be similarly defined.
Assume u: l, lp is a bounded operator such that rqo,(u’:/oo l,o,) < co.
Then

cw, q.(u" l. lw) <_ u l,, --, Iv, =o,’ =(u’ "1oo 1,o,).

Proof By the remark following the definition of cv, q,

o.(U’: 1 1,o.) Co.o(U: 1,o - l,o)
and clearly ilu: 1,, 1,,11 %,,,(u: 1, 1,); this observation and Theorem
2.8 yield the result.
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3. Unconditional structures of ideals of operators from/ to/=
In this section we investigate the unconditional structure of the spaces

L(l, l) normed by an arbitrary ideal norm a. We recall the following definition
of [8]" Given a real Banach space E, let

F (E) {Pd N, +/-

where (E) is the collection of all finite-dimensional subspaces of E, the
infimum ranges over all possible sequences {P,} of operators from F to E
satisfying the equality P(f) f for all ;" F, and r(P) denotes the rank of
an operator P.

If E is finite-dimensional, then clearly

/(E) inf sup ]1+_ x/’"r’(P)P
{Pd N, +/- II--t

where the infimum is taken over M1 sequences {P} of operators from E to E
satisfying the equality Pi(f) f for all f E.

It is clear that if E is isomorphic to a complemented subspace of a Banach
space X, where X has an unconditional Schauder decomposition into spaces all
having the same finite dimension p, then l(E) < . Examples of spaces with
l(E) o were given in [8]. A new example will be provided by Corollary 3.2.
First, we introduce the following notation" R will denote the n-dimensional
linear space, {ei)= its usual unit basis. Given any vector (e, e2,... n)
with ei +_ 1, h, will denote the operator defined by h,(eO ee, 1,..., n.
For any permutation tr of {1, 2,..., n), g, will denote the operator defined by
g,(ei) e,ti for all i.
G will be the compact group of isometries of l, dg the unique normalized

Haar measure on G. S will denote the sphere {x l; IIxll2 1), dx will be
the measure on S defined by

X dx faf(g(e)) dg, j’6 C(S),

where e e S is any fixed point. All spaces are taken here over the reals. If a
is an ideal norm, (E) will denote the value (lg) where 1 is the identity
operator on E.

THEOREM 3.1. Let be an ideal norm and E (L(I, 1), ). Then

l(g) >_ -,t sup a(B)/IIBII.
Og:BE

Proof The topological dual ofEis E’ (L(/, l’), ). Let u n Ak (R) B
be any rank-m operator from E’ to E’, where Ak E and Bk E’. Let {e}
and {fi) be the canonical bases of l and l, respectively. Let

Bk(ei) k b,iifi and At,(f)= ak,iei,
j=l j=l

<_ i<_n, 1 <_k<_m.
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Let A e E’ be an arbitrary nonzero operator.
measure/ on K Kg, x Kg defined by

Consider the probability

fe C(K), where the first ranges over all 22n possible choices of vectors e, 0
of the form (_+ 1, _+ 1,...,_ 1), the second ranges over all n! possible
permutations r of the set {1, 2,..., n}.
The operator u defines a function of C(K) which we denote by (u,.) and

define by

Then,

(u, a x b) (u(a), b) trace (b(u(a))), a Ke,, b e KE.

a(A)u(l(u, ")1)
2- 2, f
n! o y I<u(h9.Ao), 0 (R) x>l da dx

I((u(hg,Ag))(x), 0>i do dx.

Using Khintchine’s inequality, if y 1 then 2-" 0 I(y, 0)1 _> 2-/Zllyll
(the constant 2-1/2 is due to [25]) and denoting by v the operator u(hsg.Ag)
mapping l to 1’, writing v(ej) = vjif, we obtain

We see that

0 i=1

1/2
dx

1/2

vq (u(hsg,Ag))ij., bku trace(hoAgAk)
k=l

trace {hegnA9 (k=lbkijAk)
and denoting by {f} the unit basis of 1, and setting w O.AY(k bkoAk),
we get again by Khintchine’s inequality

2-" Itrace (hw)l 2-"

<w(f,),
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Thus we obtain

2t/2zi(l.)A(A)(i<u," >1)

2--n!l 2__i,j trace h.gAg
k=l bkijAk))] dg

2 2-" trace hoA9 bkijAk do
n! ,s=a k=l

-/2

n! ,,=
d

n! f,,r= =l

an since I(a(a), )1 da ()llallllll (c. []) for an two vectors
a, l, we obtain

2n(I)A(A)(I(u, ")1)

I ] 2(. )21112>-- bkijAk(fr) Y IIA’o(f’)ll2
?l! i,j,r=l k=l 2

,A(L) Ila’o(f’,)ll 2
i,j,r=l =1 2

_1 a,,,s IIA’(f’,)ll2
1 i,j, r, s= k= t=

Now observe that X=,lla’(f’,)ll2 ,(a)= v(a) since a maps 1 to 1.
W shall also use the following inequality prowd in [8, Lmma 2]: Lt x,
k 1, 2,..., n, be vectors in Rm. Then

(k=l j=l k=l

The last inequality implies that

[ ()2]1/2alrsbkij > m- x/2 akijbkj m- 1/2 Itrace (u)].
i,j,r,s=l k=l k=l i,j=l

Finally, we have proved that for every A" l -- l’,

nm1/221z(l)xA(A)la([(u .)[) [trace (u)Ivl(A).

By duality we have for every B" 1’ 1,

nm/22n2(l)llB [[/(l(u, ")l) > Itrace (u)](B).
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Let now P L(E’, E’), 1,..., N. Then since p is a probability measure
we obtain the inequality

2nz2( ) B max+ +-" x/riPi) Pi > 2nrc( ) B

N
>_ (B) trace (P),

i=1

so if 2- P is the identity operator on E’, and as dim (E’) n

n/2 [5] we have

which implies the required result on l(E).
Denote by (Lo(E, F), e) the closure in the e norm of the finite-rank operators

from E to F.

COROLLARY 3.2. If is a perfect ideal norm not equivalent to the operator
norm II" on the space of operatorsfrom Ii to 12, then

l((L(l, l), )) and l((Lo(li, /2), )) .
It follows from the definition that if X and Y are normed spaces andProof.

if
A’X--. Y and B: Y--,X

are operators such that BA is the identity on X, then l(X) < I(Y)IIAII IIBII.
Since En (L(I’;, l), oO is isometric to a norm-one complemented subspace

of (Lo(l, 12), ), it is sufficient to prove that l(En) --, o. Assume that l(E,) <
2 < oo for every n 1, 2, Then Ilnll < (B) _< 2IIBI] for every
B" 1 1, and as is perfect, also for every B" 1 --. 12, which is a contradiction.

Remarks. (1) If is any ideal norm and C" 1 --, IL, then from Theorem 3.1
we obtain the inequality

IICII < (C) ’(C’) < 7IICIII((L(I7, 1), ’)) IICIII((L(I, l),

and the analogue of Corollary 3.2 is also obvious.
(2) If X is a finite-dimensional normed space then clearly I(X)= I(X’),

hence for any ideal norm e,

l((L(l, l), oa)) l((L(l, l), )),

and so if D" l l is an arbitrary map we get the inequality

i(D) (D)
sup {trace (uD)/a(u); u L(I’,/.)}

> [rcl((L(l, l), a))]-I sup {trace (uD)/llull; u L(l,/)}
[cl((L(l, l’), ))-]-i(O).
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As in Remark (1) it follows that for any P" 1 --. 1,

i(P) > (P) > i(P)/nl((L(l, l),)).

Results analogous to Corollary 3.2 are now easily derived. The following
theorem provides information on the rate of growth of the dimensions in many
unconditional Schauder decomposition of (Lo(ll, 12), ) into finite-dimensional
spaces.

THEOREM 3.3. Let an max {(B)/IIB II; B L(I, 1.)}. Assume (Lo(/1,/2),tx)
has an unconditional Schauder decomposition into finite-dimensional spaces Ef
haviny thefollowing property: For every n, there is a subset ofintegers In such that
(Lo(l, 1), or), considered as a natural subspace of (Lo(ll, 12), ), is a subspace of
ix. Ei and suptx, dim (E)= Pn < . Then {n//} is a bounded
sequence.

Proof. Fix n and consider the factorization

(L(l’t’, l), a) (Lo(/t,/2), a) -’ E, (Lo(l x, 12), a) (L(l, l), )

where e In, Jn and Ti are the inclusion operators, Pn and Qn the natural projec-
tions. Let Ri QnT,PJn; then r(R,) < dim (El) _< pn and ,t1R(x) x
for all x L(l, l). Then

> sup _+ P
:I:,N i=

4- ieln

4- In

> P2 /l((L(l’, l.), ))

the assertion is established.

Remarks. (1) Similar results may be obtained for the spaces considered
in Remarks (1), (2).

(2) If B" 1 1 then for any ideal norm ,
a(n) < ix(B) ix(n’) rcx(n’) _< IIB II(ID </ Ilnll,

and ifj: 1’ --. 1 is the inclusion map

max {i(n)/llnll" n e L(I, /.)} > ix(j) trace (jj-t)/llJ-ll n/x/’ x/’.
Therefore / < sup {n; a is an ideal norm} x/nn/2.
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The following natural question arises:

Problem 2. If r, p {1, 2, } characterize all ideal norms (if any exist)
such that if E (L(I, 1), ) then sup, I(E,) < .
The cases {r,p} {1, 2} or {2, oo} have been solved here. The cases

{r, p} {1, c} or {2, 2} were established in [8].
If r, p { 1, 2, } and 1,, is an SQLp-space it follows by the results of Section

2, that v is (the only ideal norm up to equivalence) equivalent to A on 1, (R) 1,
and clearly the unconditional basis constant of l,, (R)A 1 is equal to 1. Problem

is open even in this case. However, if l,, is not an SQL-space, even the exis-
tence of an ideal norm such that sup, l(E,) < is open.

Acknowledgment. We thank the referee for very valuable comments on
this paper.
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