A CHARACTERIZATION OF $\operatorname{PSL}(4, q), q$ EVEN, $q>4$

BY
Peter J. Lambert ${ }^{1}$

1. Introduction

We prove the following result:
Theorem. Let G be a group with the same character table as $\operatorname{PSL}(4, q)$, q even, $q>4$. The $G \simeq \operatorname{PSL}(4, q)$.

The argument hinges on properties of G derived from the class algebra in Section 3 which, taken in conjunction with Suzuki's work on (C)-groups in [8] and [9], enable us to obtain three subgroups of G isomorphic to $\operatorname{SL}(2, q)$ satisfying the conditions of K. W. Phan's characterization of special linear groups in [7].

The theorem has already been proved by different methods when $q=2$ $\left(\operatorname{PSL}(4,2) \simeq A_{8} ;\right.$ see [4]) and when $q=4$ (see [6]). In the present proof, all results up to and including (6.1) can be obtained for the case $q=4$ with a little extra difficulty. But Phan's theorem in [7], which excludes the case $q=4$, is not so easily adaptable.

The reader is referred to Section 2 of [4] where techniques of obtaining group-theoretical information from a character table are discussed: results 2.1-2.8 in [4] will be used frequently in the present paper and will be referred to henceforth as A2.1-A2.8. Most of the notation is standard; if $g \in G$ then $o(g)$ denotes the order of g and if n is a positive integer then $\pi(n)$ denotes the set of primes dividing n.

2. Products of transvections in $S L(4, q)$

A transvection in $S L(4, q)$ is a conjugate of

$$
\left(\begin{array}{llll}
1 & & & \\
& 1 & & \\
& & 1 & \\
1 & & & 1
\end{array}\right)
$$

The $q-1$ nonidentity elements in the center of the Sylow 2-subgroup

$$
\left\{\left(\begin{array}{llll}
1 & & & \\
* & 1 & & \\
* & * & 1 & \\
* & * & * & 1
\end{array}\right)\right\}
$$

Received November 19, 1975.
${ }^{1}$ The author's current address is 132 Eastholme Drive, York, England.
of $S L(4, q)$ are all transvections. One can verify the following statement concerning the class algebra of $S L(4, q)$ by vector space calculations of the kind exhibited in Section 2 of [5].
(2.1) There are $q+2$ nonidentity classes of $S L(4, q)$ containing products of two transvections, represented by the elements

$$
\left(\begin{array}{llll}
1 & & & \\
& 1 & & \\
& & 1 & \\
1 & & & 1
\end{array}\right),\left(\begin{array}{llll}
1 & & & \\
1 & 1 & & \\
& & 1 & \\
& & & 1
\end{array}\right),\left(\begin{array}{llll}
1 & & & \\
1 & 1 & & \\
& 1 & 1 & \\
& & 1 & 1
\end{array}\right),\left(\begin{array}{cccc}
1 & 1 & & \\
\alpha & \alpha+1 & \\
& & 1 & \\
& & & \\
& 0 \neq \alpha \in G F(q)
\end{array}\right.
$$

The number of ways in which the element

$$
\left(\begin{array}{cccc}
1 & 1 & & \\
\alpha & \alpha+1 & & \\
& & 1 & \\
& & & 1
\end{array}\right)
$$

can be expressed as a product of two transvections is $q+1-N_{\alpha}$ where N_{α} is the number of solutions in $G F(q)$ of the quadratic equation $x^{2}+\alpha x+\alpha=0$.

3. The class algebra of G

By A2.8, G and $\operatorname{PSL}(4, q)=S L(4, q)$ have isomorphic class algebras. In particular, if \mathscr{C} is the class of G corresponding in the character table to the class of transvections in $S L(4, q)$, and if $\mathscr{D}, \mathscr{L}, \mathscr{M}_{\alpha}\left(\alpha \in G F(q)^{*}\right)$ correspond to the respective classes of the other elements listed in (2.1), then

$$
\mathscr{C}^{2}=\{1\} \cup \mathscr{C} \cup \mathscr{D} \cup \mathscr{L} \cup\left\{\mathscr{M}_{\alpha} \mid \alpha \in G F(q)^{*}\right\}
$$

and if $z_{\alpha} \in \mathscr{M}_{\alpha}$ and $t \in \mathscr{C}$ then

$$
\#\left(z_{\alpha}=t^{\circ} t^{\circ}\right)_{G}=q+1-N_{\alpha} .
$$

The following table is compiled by computing the orders of the elements of $S L(4, q)$ listed in (2.1), and their centralizers, and using A2.3 and A2.5:

Class	Centralizer order	Primes dividing order of an element
\mathscr{C}	$q^{6}\left(q^{2}-1\right)(q-1)$	2
\mathscr{D}	$q^{5}\left(q^{2}-1\right)$	2
\mathscr{L}	$q^{4}(q-1)$	2
\mathscr{M}_{α}	$q\left(q^{2}-1\right)(q-1)\left(q+1-N_{\alpha}\right)$	odd

It is evident from centralizer orders and a remark in Section 2 that \mathscr{C} is the
only class of G containing 2-elements central in Sylow 2-subgroups of G; therefore \mathscr{C} contains involutions.
3.1) For each $\alpha \in G F(q)^{*}$ the element $z_{\alpha} \in \mathscr{M}_{\alpha}$ has the same order as

$$
\left(\begin{array}{cccc}
1 & 1 & & \\
\alpha & \alpha+1 & & \\
& & 1 & \\
& & & 1
\end{array}\right)
$$

and is conjugate to its inverse but to no other power of itself.
Proof. In $S L(4, q)$ the classes of elements of odd order which are products of two transvections are in 1-1 correspondence with the distinct classes of elements of odd order in the subgroup

$$
\left\{\left(\begin{array}{lll}
X & & \\
& 1 & \\
& & 1
\end{array}\right): \operatorname{det} X=1\right\} \approx S L(2, q)
$$

Each such element lies inside a cycle of order $q \pm 1$ and is conjugate to its inverse but to no other power. Further, elements of a given odd order generate conjugate cyclic subgroups.

Consequently, once we establish the orders of the elements $z_{\alpha} \mid \alpha \in G F(q)^{*}$ it will follow from A2.6 that each is conjugate to its inverse but to no other power.

Let $\varepsilon= \pm 1$ and suppose $q+\varepsilon=p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{r}^{a_{r}}$. It is enough to identify the orders of the p_{i}-elements in \mathscr{C}^{2} for each i. The orders of the elements of composite order can then progressively be determined using A2.7.

Suppose the element

$$
\left(\begin{array}{cccc}
1 & 1 & & \\
\beta & \beta+1 & & \\
& & 1 & \\
& & & 1
\end{array}\right)
$$

of $S L(4, q)$ has order $q+\varepsilon$ and let $o\left(z_{\beta}\right)=n$. If $z_{\beta}=t_{1} t_{2}$ is a solution of the equation $\left(z_{\beta}=t^{\circ} t^{\circ}\right)_{G}$ then $\left\langle t_{1}, t_{2}\right\rangle \approx D_{2 n}$ contains n solutions, whence $n \leq q+\varepsilon$. By A2.5, $\pi(n) \neq \pi(q+\varepsilon)$. Now $z_{\beta}^{n+1}=z_{\beta}$ and by A2.6,

$$
\left(\begin{array}{cccc}
1 & 1 & & \\
\beta & \beta+1 & & \\
& & 1 & \\
& & & 1
\end{array}\right)
$$

is conjugate to its $(n+1)$ st power, whence $n \equiv 0$ or $-2 \bmod q+\varepsilon$. Therefore $n=q+\varepsilon$. Thus we identify the order of the p_{i}-part of z_{β} for each i. It follows from A2.6 and previous remarks that the classes of p_{i}-elements in \mathscr{C}^{2} form a_{i} orbits under the action of field automorphisms on the character table,
and that the elements in each orbit have the same order as they generate conjugate cycles. If we number the orbits so that the j th orbit contains elements which in the $S L(4, q)$ case have order p_{i}^{j} then we have
(i) the a_{i} th orbit contains elements of order $p_{i}^{a_{i}}$, and
(ii) an element in the j th orbit is not conjugate to its $\left(p_{i}^{k}+1\right)$ st power if $k<j$ (A2.6).

In view of this there is only one way to assign orders to the orbits and the result is proved.
(3.2) Let N be a subgroup of G all of whose 2-elements lie in \mathscr{C}. Then a Sylow 2-subgroup of N is either normal or a T.I. set. In the latter case, N has a single class of involutions.

Proof. We may assume that N has two distinct Sylow 2-subgroups V and W. Suppose $V \cap W \cap \mathscr{C}$ is not empty. If $t \in V \cap W \cap \mathscr{C}$ and $v \in V \cap \mathscr{C}$, $w \in W \cap \mathscr{C}$ and $o(v w)=k$ then $\langle t, v, w\rangle \approx D_{2 k}$ or $D_{2 k} \times Z_{2}$, the former only if $k=4$ and $(v w)^{2}=t$. If k is odd, $t(v w)=(t v) w \in \mathscr{C}^{2}$ has twice odd order, a contradiction. If k is a power of 2 then by hypothesis $v w \in \mathscr{C}$ and V, W commute, a contradiction. Therefore V and W intersect trivially. Let $x, y \in N \cap \mathscr{C}$. If $o(x y)$ is odd, then x is conjugate to y in $\langle x, y\rangle$. If not, then $\langle x, y\rangle$ is contained in a Sylow 2-subgroup T of N. Let $z \in N \cap \mathscr{C} \backslash T$. Then x is conjugate to z in $\langle x, z\rangle$ and z is conjugate to y in $\langle z, y\rangle$. It follows that all 2-elements in N are conjugate in N.
4. A subgroup of G isomorphic to $S L(2, q) \times S L(2, q) \times Z_{q-1}$

There is a self-centralizing element A in $G L(2, q)$ of order $q^{2}-1$ which is conjugate to A^{q} but to no other power of A. Let g belong to the class in G corresponding in the character table to the class in $\operatorname{SL}(4, q)$ of

$$
\left(\begin{array}{ll}
\lambda & \\
& \lambda \\
& \\
A
\end{array}\right)
$$

where $\lambda^{2}=(\operatorname{det} A)^{-1}$. By considering the centralizer in $S L(4, q)$ and applying A2.3 we have $\left|C_{G}(g)\right|=q\left(q^{2}-1\right)^{2}$. Now

$$
\left(\begin{array}{ll}
\lambda & \\
& \lambda \\
- & \\
A
\end{array}\right)
$$

commutes with the transvection

$$
\left(\begin{array}{ll|l}
1 & & \\
1 & 1 & \\
\hline & & \\
& & \\
\hline
\end{array}\right)
$$

Hence by A2.7 there exists $t \in \mathscr{C}$ commuting with g and the class of $g t$ corresponds to the class of

$$
\left(\begin{array}{ll}
\lambda & \\
\lambda & \lambda \\
& -A
\end{array}\right)
$$

It follows that $\left|C_{G}(g t)\right|=q\left(q^{2}-1\right)$.
(4.1) \quad The order of g is $q^{2}-1$ and $C_{G}(g)=L_{1} \times\langle g\rangle$ where $L_{1} \approx S L(2, q)$.

Proof. If $o(g)=n$ then, by A2.5, $\pi(n)=\pi\left(q^{2}-1\right)$. As $g \in C_{G}(g t)$ we also have $n \mid q^{2}-1$. Since $g^{n+1}=g$,

$$
\left(\begin{array}{ll}
\lambda & \\
& \lambda \\
& \\
A
\end{array}\right)
$$

is conjugate to its $(n+1)$ st power (A2.6). Therefore $n+1=q$ or q^{2}. It follows that $n=q^{2}-1$.

Since

$$
\left(\begin{array}{ll}
\lambda & \\
& \lambda \\
& \\
A
\end{array}\right)
$$

commutes with transvections but no other 2-elements in $S L(4, q)$, the 2 elements of $C_{G}(g)$ lie in $\mathscr{C}(\mathrm{A} 2.7)$. By (3.2), a Sylow 2-subgroup of $C_{G}(g)$ is normal or a T.I. set. Since

$$
\left|C_{G}(g): C_{G}(g t)\right|=q^{2}-1
$$

the latter is true and $C_{G}(g)$ has $q^{2}-1$ involutions. It follows that in $\bar{C}=$ $C_{G}(g) /\langle g\rangle$ (of order $q\left(q^{2}-1\right)$) there are $q+1$ trivially intersecting Sylow 2-subgroups. By a result of Suzuki in [8], $\bar{C} \approx S L(2, q)$. The multiplier of $S L(2, q)$ is trivial when q is even, $q>4$ (see [2]) whence $C_{G}(g) \approx S L(2, q) \times\langle g\rangle$.

It follows from the structure of $S L(2, q)$ that the elements of odd order in L_{1} lie in $\left(\mathscr{C} \cap L_{1}\right)^{2}$. The $q-1$ classes of elements of odd order in L_{1} are, by (3.1), in 1-1 correspondence with $\left\{\mathscr{M}_{\alpha} \mid \alpha \in G F(q)^{*}\right\}$; there is no fusion in G of distinct classes in L_{1}. Let b be an element of L_{1} of order $q+1$, and let $u=g^{q+1}$.
(4.2) $\quad C_{G}(b)=\langle b\rangle \times L_{2} \times\langle u\rangle$ where $L_{2} \approx \operatorname{SL}(2, q)$.

Proof. The class of b is one of the \mathscr{M}_{α} and the class of u is known since u is the $(q-1)$-part of g; therefore the class of $b u$ is known (A2.7). By considering what happens in $S L(4, q)$ we can deduce that:
(i) $\left|C_{G}(b)\right|=q\left(q^{2}-1\right)^{2}$.
(ii) $\left|C_{G}(b u)\right|=\left|C_{G}(b)\right|$, i.e., $C_{G}(b u)=C_{G}(b)$.
(iii) $C_{G}(b)$ meets \mathscr{C} but no other class of 2-elements of G.
(iv) If $s \in C_{G}(b) \cap \mathscr{C}$ then $\left|C_{G}(b s)\right|=q\left(q^{2}-1\right)$.

Arguing as in (4.1) we deduce that $C_{G}(b) /\langle b u\rangle$ has order $q\left(q^{2}-1\right)$ and $q+1$ T.I. Sylow 2 -subgroups, and that $C_{G}(b) \approx S L(2, q) \times\langle b u\rangle$ as required.

The class of G containing u corresponds in the character table to the class of $S L(4, q)$ containing

$$
\left(\begin{array}{ll|ll}
\mu & & & \\
& \mu & & \\
& & \mu^{-1} & \\
& & \mu^{-1}
\end{array}\right)
$$

where $\langle\mu\rangle=G F(q)^{*}$. The centralizer in $S L(4, q)$ of this element is isomorphic to $S L(2, q) \times S L(2, q) \times Z_{q-1}$.
(4.3) $\quad C_{G}(u)=L_{1} \times L_{2} \times\langle u\rangle$.

Proof. Since $L_{1} \cap\left(L_{2} \times\langle u\rangle\right) \subseteq L_{1} \cap C_{G}(b)$, it is plain that L_{1} and $L_{2} \times\langle u\rangle$ intersect trivially. That their product equals $C_{G}(u)$ is immediate from order considerations (A2.3). It remains to be shown that $L_{i} \triangleleft C_{G}(u)$ ($i=1,2$).

In $S L(4, q)$ there is only one class of elements whose 2-parts lie in \mathscr{C} and whose 2 '-parts are conjugate to

$$
\left(\begin{array}{ll|ll}
\mu & & & \\
& \mu & & \\
\hline & & \mu^{-1} & \\
& & & \mu^{-1}
\end{array}\right)
$$

The centralizer of such an element has order $q^{2}\left(q^{2}-1\right)(q-1)$. It follows from A2.7 and A2.3 that if $t \in L_{i} \cap \mathscr{C}$ then

$$
\left|C_{G}(u): C_{G}(u t)\right|=q^{2}-1=\left|L_{i}: C_{L_{i}}(t)\right|
$$

Thus the involutions in L_{i} form a conjugate class of $C_{G}(u)$ and since they generate L_{i}, L_{i} is normal as required.
(4.4) The class \mathscr{D} consists of involutions.

Proof. It was shown in Section 3 that \mathscr{D} is a class of 2-elements. Since a Sylow 2-subgroup of $C_{G}(u)$ is elementary abelian it suffices to prove that \mathscr{D} meets $C_{G}(u)$. This is immediate from A2.7 because in $S L(4, q)$,

$$
\begin{equation*}
N_{G}\left(L_{i}\right)=L_{1} \times L_{2} \times\langle u\rangle(i=1,2) \tag{4.5}
\end{equation*}
$$

Proof. By (4.2), $C_{G}\left(L_{1}\right)=L_{2} \times\langle u\rangle$. Therefore $g \in L_{2} \times\langle u\rangle$. We may write $g=v u, v \in L_{2}$ of order $q+1$. Since $v \in \mathscr{C}^{2}$ the centralizer order of v is
given in Section 3. In fact, $C_{G}(v)=L_{1} \times\langle v\rangle \times\langle u\rangle$. Hence $C_{G}\left(L_{2}\right)=$ $L_{1} \times\langle u\rangle$. By (3.1) the elements of odd order in L_{i} are conjugate to their inverses but to no other powers. The subgroup of the automorphism group of $S L(2, q)$ not inducing further conjugation in the $(q \pm 1)$-cycles is $S L(2, q)$ itself. Hence $N_{G}\left(L_{i}\right) / C_{G}\left(L_{i}\right) \approx L_{i}$. The result follows.
(4.6) There is an involution $\tau \in \mathscr{D}$ such that

$$
N_{G}(\langle u\rangle)=\left(L_{1} \times L_{2} \times\langle u\rangle\right) \cdot\langle\tau\rangle,
$$

where $u^{\tau}=u^{-1}$ and $L_{1}^{\tau}=L_{2}$.
Proof. Since

$$
\left(\left.\frac{0}{I} \right\rvert\, \frac{I}{0}\right) \text { inverts }\left(\frac{\mu I}{} \left\lvert\, \frac{\mu^{-1} I}{}\right.\right)
$$

the latter element can be written as a product of two conjugates in $S L(4, q)$ of the former. Then by A2.8, $u \in \mathscr{D}^{2}$. In particular there is an involution $\tau \in \mathscr{D}$ inverting u. We can show by familiar arguments that u is conjugate to u^{-1} but to no other power. Thus $N_{G}(\langle u\rangle)=C_{G}(u) \cdot\langle\tau\rangle$. Now $L_{1} \times L_{2}$ is a characteristic subgroup of $C_{G}(u)$ and so by the Krull-Schmidt theorem, τ interchanges or normalizes the $L_{i}(i=1,2)$. Since $\tau \notin N_{G}\left(L_{i}\right)$ (by (4.5)) the result is proved.
(4.7) (i) An element of odd order in \mathscr{C}^{2} lies in a unique conjugate of L_{1}.
(ii) If $c \in L_{1}$ has odd order and belongs to the cyclic subgroup $\left\langle c_{0}\right\rangle$ of order $q \pm 1$ in L_{1}, the centralizer of c in G is $\left\langle c_{0}\right\rangle \times L_{2} \times\langle u\rangle$.

Proof. Part (ii) follows directly from the order of $C_{G}(c)$ given in Section 3. From the equation $\left|L_{1}: C_{L_{1}}(c)\right| \cdot\left|G: N_{G}\left(L_{1}\right)\right|=\left|G: C_{G}(c)\right|$ it follows that two distinct conjugates of L_{1} cannot both contain a given conjugate of c.

5. A subgroup of G isomorphic to $G L(3, q)$

In $S L(4, q)$ every element of the subgroup

$$
\left\{\left(\begin{array}{lll}
X & & \\
& 1 & \\
& & 1
\end{array}\right)\right\} \approx S L(2, q)
$$

commutes with the element

$$
\left(\begin{array}{llll}
\mu & & & \\
& \mu & & \\
& & \mu & \\
& & & \mu^{-3}
\end{array}\right)
$$

which has order $q-1$ and is not conjugate to any proper power of itself. It follows from A2.5, A2.7 and remarks in Sections 3-4 that there is an element a in the corresponding class of G which commutes with the element $b \in L_{1}$
defined in Section 4. The following facts also derive from equivalent statements about $S L(4, q)$. Let $H=C_{G}(a)$. Then

$$
|H|=q^{3}\left(q^{3}-1\right)\left(q^{2}-1\right)(q-1)
$$

the 2-elements in H lie in $\mathscr{C} \cup \mathscr{L}$; if $x, y \in H \cap \mathscr{C}$ (respectively, $H \cap \mathscr{L}$) then $a x$ and $a y$ are conjugate in G and $\left|C_{G}(a x)\right|=q^{3}(q-1)^{2}$ (respectively, $\left.q^{2}(q-1)\right)$.

In particular, $H \cap \mathscr{C}$ and $H \cap \mathscr{L}$ are classes of H, and the order of a divides $q-1$. It can be shown that the order of a is exactly $q-1$ by the methods used in proving (3.1).
(5.1) $L_{1} \leq H$; there is an element $w \in L_{2}$ of order $q-1$ such that $N_{H}\left(L_{1}\right)=$ $L_{1} \times\langle w\rangle \times\langle u\rangle$.

Proof. By definition, $a \in C_{G}(b)=\langle b\rangle \times L_{2} \times\langle u\rangle$. Therefore, there is an element w of order $q-1$ in L_{2} such that $a \in\langle w\rangle \times\langle u\rangle$. It follows that L_{1} centralizes a and

$$
N_{H}\left(L_{1}\right)=H \cap\left(L_{1} \times L_{2} \times\langle u\rangle\right)=C_{L_{1} \times L_{2} \times\langle u\rangle}(a)=L_{1} \times\langle w\rangle \times\langle u\rangle .
$$

(5.2) H is a (C)-group.

Proof. $H \cap \mathscr{C}$ and $H \cap \mathscr{L}$ are the only classes of 2-elements in H. The centralizer of an element in $H \cap \mathscr{L}$ has order $q^{2}(q-1)$ and is thus 2-closed. Let $t \in L_{1} \cap \mathscr{C}$. We show that $K=C_{H}(t)$ is 2 -closed by proving that if p is an odd prime dividing $|K|$, a Sylow p-subgroup of K has a normal p-complement; the intersection of these complements for all such p is the (necessarily unique) Sylow 2-subgroup of K.
$|K|=q^{3}(q-1)^{2}$. If $C_{L_{1}}(t)=V$ then $V \times\langle w\rangle \times\langle u\rangle$ is contained in K. Let P be the Sylow p-subgroup of K contained in $\langle w\rangle \times\langle u\rangle$. By the Burnside Transfer Theorem (cf. [3, Theorem 7.4.3] for instance) it is enough to show that $P \leq Z\left(N_{K}(P)\right)$. Now if $x \in N_{K}(P)$ then $\left(L_{1} \times P\right)^{x}=L_{1}^{x} \times P$, i.e., $L_{1}^{x} \leq C_{G}(P)$. By (4.7(ii)) (applied to $\left.L_{2}\right) C_{G}(P)=L_{1} \times\langle w\rangle \times\langle u\rangle$ whence $L_{1}^{x}=L_{1}$, i.e., $x \in N_{H}\left(L_{1}\right)=C_{G}(P)$ by (5.1). The result is proved.
(5.3) If $q \equiv 1$ (3) then H does not contain a subgroup isomorphic to $\operatorname{PSL}(3, q)$.

Proof. Let ω be an element of $\operatorname{GF}(q)$ of order 3. In $\operatorname{PSL}(3, q)$, the element

$$
\left[\begin{array}{lll}
\omega & & \\
& \omega^{2} & \\
& & 1
\end{array}\right]
$$

has a nonabelian centralizer of order $(q-1)^{2}(q \neq 4)$. Suppose that H contains a subgroup isomorphic to $\operatorname{PSL}(3, q)$. It follows easily that there must be an element of order 3 in $H \cap \mathscr{C}^{2}$ whose centralizer contains a nonabelian subgroup of order $(q-1)^{2}$. But by (4.7) the centralizer in G of such an element
is isomorphic to $S L(2, q) \times Z_{q-1} \times Z_{q-1}$ which has no nonabelian subgroup of the required order.

$$
\begin{equation*}
H \approx G L(3, q) \tag{5.4}
\end{equation*}
$$

Proof. It is clear from the sizes of the classes $H \cap \mathscr{C}$ and $H \cap \mathscr{L}$ that H has no nontrivial normal 2-subgroup. By a theorem of Suzuki in [9], there are normal subgroups H_{1}, H_{2} in H such that $H_{2} \leq Z\left(H_{1}\right), H / H_{1}$ and H_{2} have odd order and H_{1} / H_{2} is a simple (C)-group or the linear fractional group M_{9} over the noncommutative near-field of 9 elements. Since H_{1} contains all the 2-elements of $H, H_{1} \geq L_{1}$ and $Z\left(H_{1}\right) \leq C_{H_{1}}\left(L_{1}\right)=\langle w\rangle \times\langle u\rangle$. Also if $y \in H \cap \mathscr{L}$ then $Z\left(H_{1}\right)$ is contained in $C_{H}(y)$ which is the product of $\langle a\rangle$ and a 2-group. Therefore $Z\left(H_{1}\right) \leq\langle a\rangle$, i.e., $H_{2} \leq\langle a\rangle$. Since H_{1} / H_{2} contains a full Sylow 2-subgroup of H and $q>4, H_{1} / H_{2} \neq M_{9}$; thus H_{1} / H_{2} is simple and $H_{2}=H_{1} \cap\langle a\rangle$. The order of $H_{1} / H_{2} \approx H_{1}\langle a\rangle \mid\langle a\rangle$ is divisible by $q^{3}\left(q^{2}-1\right)$ (because $L_{1} \leq H_{1}$ and $\left|H / H_{1}\right|$ is odd) and divides $|H /\langle a\rangle|=$ $q^{3}\left(q^{3}-1\right)\left(q^{2}-1\right)$. The only group in Suzuki's list of simple (C)-groups having this property is $\operatorname{PSL}(3, q)$. The multiplier of $\operatorname{PSL}(3, q)$ can be found in Feit's paper [2]. If $q \equiv 2(3), \operatorname{PSL}(3, q)=S L(3, q)$ has trivial multiplier, i.e., $H_{1} \approx S L(3, q) \times H_{2}$ and it follows from order considerations that $H \approx$ $S L(3, q) \times\langle a\rangle \approx G L(3, q)$. If $q \equiv 1$ (3) the multiplier of $\operatorname{PSL}(3, q)$ has 2'-part Z_{3} and so

$$
H_{1} \approx \operatorname{PSL}(3, q) \times H_{2} \quad \text { or } \quad H_{1} \approx S L(3, q) \times H_{2}^{\prime} \quad \text { where } H_{2} \approx H_{2}^{\prime} \times Z_{3}
$$

By (5.3) the former cannot occur. It follows that H has a normal subgroup

$$
J \approx S L(3, q) \circ\langle a\rangle \approx\{X \in G L(3, q) \mid \operatorname{det} X \text { is a cube }\}
$$

of index 3.
Clearly $L_{1}<J$. If $t \in L_{1} \cap \mathscr{C}$ then by (5.1), $\left.C_{H}(t)\right\rangle\langle w\rangle \times\langle u\rangle \approx$ $Z_{q-1} \times Z_{q-1}$. But $\left|C_{J}(t)\right|=\left[q^{3}(q-1)^{2}\right] / 3$. Hence there exists $h \in\langle w\rangle \times$ $\langle u\rangle \backslash J$ and $H=\langle J, h\rangle$. Now h acts on J (in particular on the $S L(3, q)$ contained in J) and centralizes L_{1} (see (5.1)). By considering the automorphisms of $S L(3, q)$ (cf. [1] for example) it is easily checked that in these circumstances h induces a diagonal automorphism on the $S L(3, q)$. Also $[h, a]=1$ (we can prove that $Z(H)=\langle a\rangle$ by the method used to prove $Z\left(H_{1}\right) \leq\langle a\rangle$ above). It follows that $H \approx G L(3, q)$, as required.

6. Identification of G

(6.1) There is a conjugate L_{3} of the subgroup L_{1} and an element $v \in L_{3}$ of order $q-1$ such that

$$
\begin{gathered}
\left\langle L_{1}, L_{3}\right\rangle \approx\left\langle L_{2}, L_{3}\right\rangle \approx S L(3, q), \quad\langle w, v\rangle \approx\left\langle w^{\tau}, v\right\rangle \approx Z_{q-1} \times Z_{q-1} \\
\left\langle L_{1}, v\right\rangle \approx\left\langle L_{2}, v\right\rangle \approx\left\langle L_{3}, w\right\rangle \approx\left\langle L_{3}, w^{\tau}\right\rangle \approx G L(2, q)
\end{gathered}
$$

where τ is as defined in (4.6).

Proof. In the isomorphism $\phi: H \rightarrow G L(3, q)$ we may take $\phi\left(L_{1}\right)=L$ where

$$
L=\left\{\left.\left(\left.\frac{X}{\mid} \right\rvert\,-\overline{1}\right) \right\rvert\, \operatorname{det} X=1\right\}
$$

by combining ϕ with a conjugation map if necessary. Now $N(L)=L \times C(L)$ where $C(L)$ is the subgroup

$$
\left\{\left.\left(\begin{array}{lll}
\lambda & & \\
& \lambda & \\
& & \alpha
\end{array}\right) \right\rvert\, \lambda \alpha \neq 0\right\}
$$

contained in the diagonal subgroup D of $G L(3, q)$. It follows that

$$
\phi\left(C_{H}\left(L_{1}\right)\right)=\phi(\langle w\rangle \times\langle u\rangle) \leq D .
$$

Consider the subgroup $H \cap H^{\tau}$ of $H . H \cap H^{\tau}=C_{H}\left(a^{\tau}\right)$ and

$$
\left|H \cap H^{\tau}\right| \geq|H|^{2} /|G|=\left\{\left(q^{2}+q+1\right) /\left(q^{2}+1\right)\right\}(q-1)^{3} .
$$

Now $a^{\tau} \in\left\langle w^{\tau}\right\rangle \times\langle u\rangle$ and $w^{\tau} \in L_{2}^{\tau}=L_{1}$. Replacing τ by an element $\eta \tau\left(\eta \in L_{1}\right)$ if necessary we may assume that

$$
\phi\left(w^{\tau}\right)=\left(\begin{array}{lll}
\mu & & \\
& \mu^{-1} & \\
& & 1
\end{array}\right) \in D
$$

Already $\phi(u) \in D$ so that now $\phi\left(a^{\tau}\right) \in D$. The centralizer of an element in $D^{\#}$ is either D or a subgroup $L^{\prime} \times Z_{q-1} \times Z_{q-1}$ containing D, where L^{\prime} equals either

$$
\left\{\left(-\frac{1}{X}\right): \operatorname{det} X=1\right\} \quad \text { or } \quad\left\{\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right): \alpha \delta+\beta \gamma=1\right\}
$$

and is conjugate in $G L(3, q)$ to L. It follows from the inequality derived for $\left|H \cap H^{\tau}\right|$ that there is a conjugate L_{3} of L_{1} in G such that

$$
H \cap H^{\tau}=L_{3} \times Z_{q-1} \times Z_{q-1}
$$

In addition, $\left\langle L_{1}, L_{3}\right\rangle \approx S L(3, q)$. Since τ normalizes $H \cap H^{\tau}, L_{3}^{\tau}=L_{3}$ and

$$
\left\langle L_{2}, L_{3}\right\rangle=\left\langle L_{1}, L_{3}\right\rangle^{\tau} \approx S L(3, q)
$$

Now $\left\langle w^{\tau}\right\rangle \times\langle w\rangle \times\langle u\rangle$ centralizes both a and a^{τ} and by order considerations, $L_{3} \cap\left(\left\langle w^{\tau}\right\rangle \times\langle w\rangle \times\langle u\rangle\right)$ has order $q-1$ and is thus cyclic. Say

$$
L_{3} \cap\left(\left\langle w^{\tau}\right\rangle \times\langle w\rangle \times\langle u\rangle\right)=\langle v\rangle .
$$

By the nature of the construction, $\left\langle w^{\tau}\right\rangle \times\langle w\rangle \times\langle u\rangle$ normalizes L_{1}, L_{2}, and L_{3}, each of whose normalizer in H is isomorphic to $S L(2, q) \times Z_{q-1} \times Z_{q-1}$.

The relations

$$
\begin{gathered}
\langle w, v\rangle \approx\left\langle w^{\tau}, v\right\rangle \approx Z_{q-1} \times Z_{q-1} \\
\left\langle L_{3}, w\right\rangle \approx\left\langle L_{3}, w^{\tau}\right\rangle \approx G L(2, q), \quad\left\langle L_{1}, v\right\rangle \approx\left\langle L_{2}, v\right\rangle \approx G L(2, q)
\end{gathered}
$$

follow, since τ normalizes $\langle v\rangle$ and by (4.7(ii)) no power of w or w^{τ} lies in L_{3} and no power of v lies in L_{1} or L_{2}.

The conditions on the subgroups L_{1}, L_{2}, L_{3} derived in (6.1) are precisely those in the hypothesis of K. W. Phan's Theorem 1 in [7]. The conclusion is that (since $q>4$) G is a homomorphic image of $S L(4, q)$. But $S L(4, q)$ is simple. Hence, we get the final result, $G \simeq \operatorname{SL}(4, q)=\operatorname{PSL}(4, q)$.

References

1. J. Dieudonne, The automorphisms of the classical groups, Mem. Amer. Math. Soc., no. 2, Amer. Math. Soc., Providence, R.I., 1951.
2. W. Feit, The current situation in the theory of finite simple groups, Actes, Congres Intern. Math., vol. 1 (1970), pp. 55-93.
3. D. Gorenstein, Finite groups, Harper \& Row, New York, 1968.
4. P. J. Lambert, Characterizing groups by their character tables, I, Quart. J. of Math. (Oxford) (2), vol. 23 (1972), pp. 427-433.
5. - Characterizing groups by their character tables, II, Quart. J. of Math. (Oxford) (2), vol. 25 (1974), pp. 29-40.
6. ——, A characterization of $\operatorname{SL}(4,4)$, J. West Afr. Sci. Assoc., to appear.
7. K. W. Phan, A theorem on special linear groups, J. Algebra, vol. 16 (1970), pp. 509-518.
8. M. Suzuki, Finite groups of even order in which Sylow 2-groups are independent, Ann. of Math., vol. 80 (1964), pp. 58-77.
9. -_, Finite groups in which the centralizer of any element of order 2 is 2-closed, Ann. of Math., vol. 82 (1965), pp. 191-212.

University of Ibadan

Ibadan, Nigeria

