
ILLINOIS JOURNAL OF MATHEMATICS
Volume 21, Number 4, December 1977
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1. Introduction

Let G be a finite group, Z(G) denote the integral group ring of G, and NA(G)
denote the group of normalized automorphisms of Z(G). That is, NA(G) den-
otes the group of ring automorphismsf of Z(G) such thatf(g) has augmenta-
tion one for all g e G. As remarked in [1] and [5], little generality is lost by
studying normalized automorphisms over arbitrary automorphisms of Z(G).
The objective of this paper is to extend the previously known list of metab-

elian E. R. groups. E. R. groups are groups G in which every element ofNA(G)
has an elementary representation. Here, by saying that f in NA(G) has an
elementary representation, we mean that f can be written in the formf
where tr lies in the automorphism group of G, denoted by Aut (G), (actually
extended linearly to Z(G)) and zu denotes conjugation by a unit u in Q(G) (the
group algebra of G over the rational field). In the notation of[5], saying that G
is an E. R. group is equivalent to saying that NA(G)= CP(G) Aut (G) where

CP(G) {zlu is a unit in Q(G)normalizing Z(G)}.
Metabelian E. R. groups which have been obtained elsewhere include: (1)

class _< 2 nilpotent groups from [7], and from [1], (2) groups with a cyclic
normal subgroup of prime index, (3) groups with at most one nonlinear irredu-
cible character, and (4) groups G in which G’I 2 or 3. In [6], it is shown that
the symmetric groups are E. R. groups.

In Section 3, we will obtain a sufficient condition for a group which is a
product of an abelian normal subgroup and an abelian subgroup to be an E. R.
group. Using this result, we will show that groups containing a cyclic normal
subgroup with an abelian supplement are E. R. groups, thereby generalizing (2
and, it turns out, (4). We will also see that groups G in which G/Z is metacylic,
Z the center of G, are E. R. groups. In Section 4, we will obtain some additional
metabelian p-groups which are E. R. groups and consider a related problem on
when the complement for Aut (G) in NA(G) obtained in [5] for metabelian
p-groups is contained in CP(G).
Many of the results of this paper are taken from the author’s Ph.D. thesis.
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2. Preliminary notions

We have that NA(G) acts as a permutation group on the class sums ofG and
the kernel of this permutation representation is CP(G) (see [1], [5], or [7]). To
be explicit, iffe NA(G) and C denotes the class sum of g G,f(Co) C for
some x in G. Further, the subgroup of NA(G) fixing every class sum of G is in
fact CP(G).
The reader should now note that a normalized automorphismfwill have an

elementary representation provided there is a tr Aut (G) whiCh has the same
ation on the class sums of G as f.
Notethat iff(C)= C,,, [Cl Ic l Cdenotes the onjugaCy Class

of 0 e G. Another result we will need concerning the aCtion of NA(G) on class
sums is the following from [1] (see also [4, Proposition 2]).

L.MMA 2.1. Letf
_
NA(G) and supposef() where , x . G. Thenfor

every inteoer n, f(C,.) Cx. and al Ix I.
NA(G) also acts as a permutation group on the characters of G. That is, if ;t is

a character of G and f NA(G), we can define a new character X$ by setting
(0) x(f(o)), 0 G. For our needs, it will suffice to assume that our re-
presentations are defined over the complex field. Some elementary facts are as
follows:

LEMMA 2.2. Letfe NA(G).
(i) X is irreducible if and only if Zf is irreducible.
(ii) lff(Cg)= Cx where O, x G, then xf(o)= X(x).
(iii) X is faithful if and only if J" is faithful.
(iv) Let h NA(G) and g G. Then f(Cg)= h(o) if and only if f(o)

h(O for every irreducible character Z of G.

Proof (i) is clear, and (ii) follows since

z (g) z(c=)/Ic=l
To see (iii), note that for 0 e G, XY(g) X(1) if and only if X(x) X(1) where

f(C) C.
(iv) follows easily from (ii).

3. Metabelian groups

For N<G, let A(N) denote the kernel of the natural map from Z(G) to
Z(G/N). It follows from [5] that the subgroup

o(G, G’)= {f NA(G) If(g g mod A(G’)A(G) for all g e G}
of NA(G) is a complement for Aut (G) in NA(G) when G is metabelian. Thus, in
order to show that a metabelian group G is an E. R. group, it suftiees to show
every element of to(G, G’) has an elementary representation.
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We will also need the following in which (i) is a restatement ofLemma 2.1 of
[5] and holds for any group, (ii) follows immediately from Lemma 5.4 of [5],
and part (iii) follows directly from (ii).

LEMMA 3.1. Let N<G.

(i) Forf NA(G),f(A(N)) A(N) ifand only iff(Cn) is the class sum ofan
element ofNfor all n N.

(ii) If G is metabelianandf o(G, G’), thenf(A(N))= A(N).
(iii) If G is metabelian andf to(G, G’), f induces an automorphism on

lying in to(G, ,’) where , G/N.

We next obtain some results concerning the action ofo(G, G’) on class sums.
The notation Zn will be used to denote the nth term of the upper central series
G starting with Z Z, Z the center of G.

LEMMA 3.2. Let G be a metabelian oroup and let f co(G, G’). Then
f(Ca) Cafor all O Z2.

Proof. If O Z, it follows that f(g) Z from the action of NA(G)on class
sums. Now, it is well known that if N is an abelian normal subgroup and
at 02 mod A(N)A(G), at, 2 e G, then et 2 (see [9] or [8, Corollary 4]).
Hence, since f(/)= mod A((;’)A(G), f(a)=

Next, suppose O Z2- Z and let it be an irreducible character of G. It
suffices to show ;tY(#)= it(e). If it is not faithful, we may apply induction on
G] by Lemma 3.1 and conclude ;if(a) it(g). If X is faithful, xf(o) X(O) since

faithful characters are zero on Z2-- Z.
One might note that the above lemma yields og(G, G’)

_
CP(G) when G is a

class < 2 nilpotent group and hence, the result of [7], that class < 2 nilpotent
groups are E. R. groups.

Let G, denote the nth term of the lower central series of G starting with
Go G.

LEMMA 3.3. Let G be a metabelian Oroup,f co(G, G’), and O G. Then there
exists x oG2 such that f(a)= x.
Proof Suppose f(tTa) ty, y 6 G. Since G/G2 is nilpotent of class _< 2,

Thus, for some x in the conjugacy class of y, x 0 mod A(G2). Hence x
and f

Finally, we develop a lemma on faithful characters. To begin with, suppose A
is a normal subgroup of G, let it be an irreducible character of G, and let M
denote an irreducible C(G)-module (C the complex field)affording it. From the
results of section 50 of [2], we have that ifM is a homogeneous component of
M viewed as a C(A)-module and if A* ffi {g G IgM1 M1}, then M is an
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irreducible C(A*)-module andM M. Let Co(A) denote the centralizer of A
in G.

LEMMA 3.4. Suppose A and G/A are abelian, lfz isfaithful, then A*
_
C(A).

Proof Let F denote the irreducible representation of A* afforded by M.
Since Mx is a direct sum of isomorphic C(A)-modules and since A is abelian,
F(a) is a scalar matrix for all a A. Hence if A* and a A, F(ga) F(a).
Moreover, F(0a)= F(ag)since A*<G, whence A*_ C(A)since F is
faithful.

THEOREM 3.5. Suppose G AB where A is an abelian normal sublroup ofG
and B is an abelian suboroup ofG. In addition, suppose thatfor anyf to(G, G’)
we can find a t Aut (G)such thatf(Co) t(t3for all a A and tt(b) bfor
all b B. Thenf() t()for all {t G and hence G is an E. R. troup.

Proof It suffices to show ;t" ff for every irreducible character of G.
If ;t is not faithful, let M be a minimal normal subgroup of G contained in

kcr ;t. Set = G/M. Since f inducs an automorphism on Z(() lying in
to(t, (’), we would be able to conclude ;t ;t by induction on ]G[ provided
t also induces an automorphism on G. To show this, we show tr(M)-- M.

Suppose M
_

A. From Lemma 3.1, tr(C)=f(C) is a class sum of an ele-
ment of M for all m e M. Hence tr(M)= M.
Now, suppose M A. Then M r A 1 and it follows that [M, G] 1.

Thus M
_

Z. If ab M where a A, b e B, then a e Z and hence t(a)
f(a) a by Lemma 3.2. Therefore tr(ab) ab, and again t(M) M.

Thus, we may assume ;t is faithful. Let A* be as in the setting of Lemma 3.4. If
0 e G- A*, Jr(0)= 0 since ;t is induced from the normal subgroup A*. Si-
milarly, xf(0) 0, since if f(C) C, where x oG2, x A* and hence
.f(e) ;((x)= 0. We also have if(0)= 0. For by Lemma 3.1, when a A,
a(Co) =f(Co) is the class sum of an element of A and hence ,(A) A. Thus, a
fixes the cosets of A in G, whence (0) A*. We now have .f(a) if(g) 0 for

G-A*.
Finally, suppose 0 A*. If O A, gf(0)= if(0) by our hypothesis. If
A* A, write 0 ab, a A, b B. Since A*

_
Co(A), b Z. Hence we

again have .f(o) if(0) since

We next apply Theorem 3.5 to obtain some E. R. groups.

THEOREM 3.6. Suppose G AB where A is a cyclic normal subgroup ofG and
B is an abelian subgroup of G. Then G is an E. R. group.

Proof Let f o(G, G’). We will construct t e Aut (G) satisfying the
hypothesis of Theorem 3.5.
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Write A (a). By Lemma 3.3,f(Co) (?o, for some positive integer s where
ae aGz. Also, (s, a I)= 1 by Lemma 2.1. For 0 G, write 0 ba, b B.
Define by setting a(ba) ba. Assuming that r is in fact an automorphism of
G, a will satisfy the hypothesis of Theorem 3.5 since has the same action asf
on the class sums of A by Lemma 2.1 and r certainly fixes the elements of B.
To see that a Aut (G), we will only show that a is well defined. The reader

can easily check that r is 1-1 (use the fact that (s, a I) 1) and that a is a
homomorphism.

First note that if a e Z, f(a) a a. Hence, if ba bza where b,
b,eB, b-b2=a-eZ, whence a-=a-. It now follows that
r(b a)a(b2 a) 1, so that r is well defined.
As a corollary to Theorem 3.6, we can generalize Brown’s result [1] that

groups in which G’I 2 or 3 are E. R. groups.

COROLLY 3.7. lf G’[ p, p a prime, then G is an E. R. oroup.

Proof Let P denote the p-Sylow subgroup of G .and let K be a p’-Hall
subgroup of G. Setting H Na(K) P, Na(K) the normalizer of K in G, we
have [K, HI = 1. Further, since K is a p’-Hall subgroup of KG’, G Na(K)KG’
and hence G KHG’.

If G’
_
H, K

_
Z and G is a class 2 nilpotent group which is an E. R. group.

If G’ H, G’ H 1 and we may apply Theorem 3.6 with A G’ and
B= KH.
We will next show that groups in which the central quotient is metacyclic are

E. R. groups. Concerning such groups we first note the following result.

LEMMA 3.8. Suppose G contains a normal suboroup A containing Z such that
G/A and A/Z are both cyclic. Ifx G oenerates G/A and a A oenerates A/Z,
then G’= <[a,

Proof First note that the mapping 0 [0, x], 0 A, is a homomorphism of
A onto G’ [3, Aufgabe 2, S. 259] with kernel Z. Hence G’l A/Z I. Also,
since a and [a, x] commute, [a, x]" [a’, x] for every positive integer n. There-
fore, In, x][ I /zI and hence <In, x]) G’.

THeOReM 3.9. If G/Z is metacyclic, then G is an E. R. oroup.

Proof Let A, a, and x be as in the previous lemma. Supposef o(G, G’)
and set a arz,, where z Z and r is a positive integer. Writef(o)=
where y Gz. Then, since y G’,

(1) y (a’- z) at’-

for some positive integer k.
Let 0 e G and write 0 xaz where z Z. We define an automorphism of

G by setting a(O) xaYz. Assuming that is an automorphism of G, we will
have satisfies the conditions of Theorem 3.5 with B (x). For if0 A, write
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O az where z Z. Using Lemmas 2.1 and 3.2 we have

To see that r is well defined, first note that if a Z, f. 1 sincef(cf)--
a" cff’. Thus, if xaJz x’az2 where z, z2 Z, x-=zz =of-J Z.
Hence f’-J 1 and it follows that a(xalz )

Next, we show r is 1-1. Suppose r(xz)= xalyz 1 where z s Z. Then
aJy x-z-1 Z. Writing

jyj (1 +k(r- 1))jgkxj

we have a{+{,-z’# e Z. Also, (1 + k(r- 1), [A/ZI)= 1, for iffdenotes the
automorphismfinduces on Z(G/Z),

Hence 1 + k(r- 1) and ]A/Z are relatively prime by Lemma 2.1. Thus
A/Z] divides j, whence a e Z. But we have already seen that this implies

yJ 1, and hence xaJz 1.
Finally, we show r is a homomorphism. Let xdz and x’cfZ2 be elements of

G where z t, z2 Z. Writing x-’ax’= cfz where s r" and t r’-t+
r’-2 +...+ 1, we have

Since

y ,x,

xiaJxm,Jsx-mz1 xmanz2

 (x’dz x’dy z

we need x"y’x-’ or x-’x" fl’. But this follows,s by (1),
x-’d’-

aJk(r

4. MetabeHan p-groups

Let us first note the following. If G is a nilpotent group, it suffices to show
that each Sylow subgroup of G is an E. R. group in order to establish that G is
an E. R. group [5, Corollary 5.3]. Hence, if G is nilpotent, we may assume that G
is a p-group.
We will obtain two results on metabelian p-groups G which are E. R. groups

involving the maximal abelian normal subgroups of G.
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THEOREM 4.1. Suppose G is a p-oroup containino a maximal abelian normal
suboroup A which is cyclic. Then G is an E. R. oroup.

Theorem 4.1 will follow from Theorem 3.6 by the following lemma.

LEMMA 4.2. Suppose G is a p-oroup containino a maximal abelian normal
suboroup A which is cyclic. Then there exists an abelian suboroup B of G such
that G AB.

Proof We may assume G/A is not cyclic. Now, since Co(A)= A, G/A is
isomorphically contained in Aut (A) when G acts on A via conjugation. Thus, if
p is odd or ifp 2 and [A _< 4, G/A .is cyclic since Aut (A) is cyclic. Hence, we
have IAI =2re, m>3"

Write A (a). Then Aut (A)= () x (3) where (a)= as and/(a) a-*.
Further, since G/A is not cyclic, we can choose d and c in G so that d and c
generate G/A with za a power of and zequal to/. Next, we show the existence
of b e G such that b and c generate G/A and [b, c] 1. Of course, once we have
b, the proof is complete by taking B (b, c).

Let [d, c] a’. We first show 2[r. If dal 2, write d2 a. Then 2 [j by the
maximality of A and

a- (d2)* (d*)2 (dar)2.

Also, since [za 2 and since 1 2- 2,

aa al+2"-.
Using the above two equations,

a- (dar)2 d2ar(2+2,,,-t) aj+r(2+ 2,,,- t)

and hence r(2 + 2m- 1) =_ 2j mod 2". Since 41 2j and since 4 ’ (2 + 2m- ),

Now, suppose dAI > 2. If 2 , r, a e G’ and the Frattini subgroup of G is
(I)(G) (d2, a). Thus the center of (1)(G), which is contained in Co(A)= A, is
cyclic. But then (I)(G) is cyclic [3, Satz 7.8 (c), S. 306], a contradiction.

Finally, set b da"/2. Then b and c generate G/A and [b, c] 1 since
b (da’/2) da’a -’/2 b.

THEOREM 4.3. Let G be a p-group where p > 3. Suppose that every maximal
abelian sub#roup of G is #enerated by at most two elements. Then G is an E. R.
oroup.

Proof By Satz 12.4, S. 343 of [3], G is one of the following types of groups:

(i) G is metacyclic,
(ii) G <x, y, z lx’ yP= z"= Ix, z] [y, z] 1, y= yzt’"-’>
(iii) G <x, y, z Ix" y= z""= [y, z] 1, y’= yz-, z"= zy> where

s 1 or is a quadratic nonresidue rood p.
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Groups of type (i) are E. R. groups by Theorem 3.9 and groups of type (ii) are
also E. R. groups since they have nilpotence class 2. Hence we may assume G is
of type (iii).
Letf to(G, G’), set A (y, z), and let B (x). We will construct an auto-

morphism a of G satisfying Theorem 3.5.
Suppose f(C’) C where c G 2 - Z. Then c 1 since zv e Z and since

f(z’) zv zVc’.
Now, let zy A where 0 < < p", 0 < j < p. We will show

(2) f(C,y)

Ifj 0, (2) holds by Lemma 2.1. Ifj =/= 0 and if p i, c 0 and (2) holds since
ziy e Z2. Finally, suppose j =/= 0 and p , i. Write kp + r, 0 < r < p, and
choose an integer m so that mr j mod p. Then zyZ z’yZ x-mz’xmZ
x-mzixmz and hence for some v Z, Czr C,, v-,z,. Thus,

and we again have (2).
Define tr by setting tr(xzy)=xzdyk. The reader can check that

tr Aut (G). In addition, equation (2) shows that Theorem 3.5 applies.
We will conclude by considering the question of when CP(G)contains

to(G, G’) for a metabelian group G. Recall that this is one method of showing
class < 2 nilpotent groups are E. R. groups. Moreover, this would be a way of
obtaining E. R. groups which avoids the construction of group automorphisms.
In fact, we will see the E. R. groups G obtained in Section 3 have to(G, G’)G
CP(G) provided G is a p-group and p is odd.

Let us return to the setting of Lemma 3.7 and show"

LEMMA 4.4. Suppose G is a p-group, p odd, and let A be an abelian normal
subgroup of G containing Z such that G/A and A/Z are cyclic. Then

IG’I IG/AI.
Proofi If x generates GIA and a generates AIZ we had seen that

([a, x]) G’. Hence G is a regular p-group [3, Satz 10.2 (c), S. 322].
Using the fact that [a, xp] 1 if and only if [a, x]p" 1 [3, Satz 10.6 (b), S.

326], it follows that G/AI I<[a, x]>l O’l.
THEOREM 4.5. Suppose G is a p-group, p odd, and either

(i) G/Z is metacyclic or
(ii) G AB where A is a cyclic normal subaroup of G and B is an abelian

subgroup of G.
Then to(G, G’)_ CP(G).

Proof. Suppose (i) holds. Using the notation of the previous lemma,
c. G/AI G’I. Thus Ca aG’ and Lemma 3.3 implies f(ta) Ca
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when fe to(G, G’). Moreover, if a’z A where z Z, then f((7o,)=f(zCo,)=
zt7"o, C’o,. Hence, we may take tr 1 in Theorem 3.5 and concludef CP(G).

(ii) is actually a special case of (i) since B/Z is embedded in Aut (A) when B
acts on A by conjugation. Hence G/Z (BZ/Z)(AZ/Z)is metacyclic since
Aut (A) is cyclic.
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