GROTHENDIECK SPACES

BY

SURJIT SINGH KHURANA

In this paper X will always denote a compact Hausdorff space, E a Banach space over K, the field of real or complex numbers (we shall call K the scalars), and C(X) (C(X, E)) all K-valued (E-valued) continuous functions on X with sup norm. A Banach space F is a Grothendieck space if every $\sigma(F', F)$ convergent sequence in F' is also $\sigma(F', F'')$ convergent, where F' and F'' are the topological dual and bidual of F. It is proved in [8] that if X is an F-space, C(X)is a Grothendieck space. In this paper we investigate conditions under which C(X, E) is a Grothendieck space.

Every $\mu \in (C(X, E))' = M(X, E')$ (notations of [7], [9]) can be considered as a regular Borel measure $\mu: \mathscr{B} \to (E', \|\cdot\|)$, with finite variation, where \mathscr{B} is the class of Borel subsets of $X; |\mu|$ will denote the variation of μ . For any $f: X \to E, f \mathscr{B}$ -simple or $f \in C(X, E)$, we have $|\mu(f)| \le |\mu| (||f||) [1], [7], [9]$.

LEMMA 1. Let 2^N denote all subsets of N, with product topology. If $\lambda_n: 2^N \to K$ is a sequence of countably additive measures (this implies they are continuous) and $\lim \lambda_n(M) = \lambda(M)$ exists for all $M \subset N$, then $\lambda_n \to \lambda$ uniformly on 2^N . In particular, $\lambda_n(\{n\}) \to 0$.

Proof. This lemma is a particular case of [4, Lemma 1]; also it follows from the classical Phillips' lemma.

THEOREM 2. C(X, E) is a Grothendieck space if and only if at least one of the following conditions is satisfied:

- (i) X is finite and E is a Grothendieck space.
- (ii) E is finite dimensional and C(X) is a Grothendieck space.

Proof. If (i) is satisfied then $C(X, E) = E^n$ where *n* equals the number of elements in X. Since E is a Grothendieck space, E^n is also a Grothendieck space. Now suppose that (ii) is satisfied and let $E = K^p$. This means $C(X, E) = \prod C(X)$, multiplied *p* times. Since C(X) is a Grothendieck space, it follows that C(X, E) is a Grothendieck space.

Now suppose that neither (i) nor (ii) is satisfied but C(X, E) is a Grothendieck space. Since C(X, E)'' contains $(C(X))'' \otimes E$ and $C(X) \otimes E''$, then C(X)and E are Grothendieck spaces (proof by contradiction). Thus X is infinite and E is infinite dimensional. Let $\{x(n)\}$ be a sequence of distinct points of X. If every $\sigma(E', E)$ convergent sequence in E' is norm convergent, then E is finite dimensional [10]. Take a sequence $\{f_n\} \subset E'$ such that $f_n \to 0$ in $\sigma(E', E)$, but

Received July 20, 1976.

Copyright © Board of Trustees, University of Illinois

 $||f_n|| = 1$ for all *n*. Also take a sequence $\{e(n)\}$ in the closed unit ball of *E* such that $f_n(e(n)) \ge 1/2$ for all *n*. Let $\mu_n = e_{x(n)} f_n$, i.e.,

$$\mu_n(A) = \begin{cases} f_n & \text{if } x(n) \in A, \\ 0 & \text{if } x(n) \notin A, \end{cases}$$

for any Borel subset A of X. It is a straightforward verification that $\{\mu_n\} \subset (C(X, E))'$ and $\|\mu_n\| \leq 1$ for all n. We prove that $\mu_n \to 0$ in $\sigma(F', F)$, where F = C(X, E). For a $g \in C(X)$ and $e \in E$, $\mu_n(g \otimes e) = g(x(n))f_n(e) \to 0$. Since $C(X) \otimes E$ is norm dense in C(X, E) and $\|\mu_n\| \leq 1$ for all n it follows that $\mu_n(h) \to 0$ for all $h \in C(X, E)$ and so $\mu_n \to 0$ in $\sigma(F', F)$. For any $M \subset N$, define $L_M: C(X, E)' \to K$, $L_M(\mu) = \sum_{n \in M} \mu(\chi_{x(n)} \otimes e(n))$ (note

$$\sum_{n \in M} |\mu(\chi_{x(n)} \otimes e(n))| \leq \sum_{n \in M} |\mu| (||\chi_{x(n)} \otimes e(n)||)$$
$$\leq \sum_{n \in M} |\mu| (\chi_{x(n)})$$
$$= |\mu| \left(\sum_{n \in M} \chi_{x(n)}\right) < \infty).$$

It is easy to verify that $L_M \in F''$. Since F is a Grothendieck space, $\mu_n \to 0$ in $\sigma(F', F'')$. Thus $\langle L_M, \mu_n \rangle \to 0$ for all $M \subset N$. Define $\lambda_n: 2^N \to K$, $\lambda_n(M) = \langle L_M, \mu_n \rangle$. By Lemma 1, $\lambda_n(\{n\}) \to 0$ and so $f_n(e(n)) \to 0$. Since $f_n(e(n)) \ge 1/2$ for all n, this is a contradiction. This proves the theorem.

Remark 3. Our result shows that ([5], Theorem 2.2) is not correct.

I am very grateful to the referee for several useful suggestions.

REFERENCES

- 1. J. K. BROOKS AND P. W. LEWIS, *Linear operators and vector measures*, Trans. Amer. Math. Soc., vol. 192 (1974), pp. 139–162.
- 2. N. DINCULEANU, Vector measures, Pergamon Press, New York, 1967.
- A. GROTHENDIECK, Sur les applications lineaires faiblement compactes d'espaces du type C(K), Canad. J. Math., vol. 5 (1953), pp. 129–173.
- S. S. KHURANA, Convergent sequences of regular measures, Bull. Acad. Polon. Sci. Sér. Math. Astronom. Phys., vol. 24 (1976), pp. 37-42.
- TSANG-HAI KUO, Weak convergence of vector-measures on F-spaces, Math. Zeitschr., vol. 143 (1975), pp. 175–180.
- 6. H. P. ROSENTHAL, On relatively disjoint families of measures, with some applications to Banach space theory, Studia Math., vol. 37 (1970), pp. 13-36.
- A. SCHUCHAT, Integral representation theorems in topological vector spaces, Trans. Amer. Math. Soc., vol. 172 (1972), pp. 373–397.
- 8. G. SEEVER, Measures on F-spaces, Trans. Amer. Math. Soc., vol. 133 (1968), pp. 267-280.
- 9. J. WELLS, Bounded continuous functions on locally compact spaces, Mich. Math. J., vol. 12 (1965), pp. 119–126.
- 10. A. NISSENZWEIGN, w*-sequential convergence, Israel J. Math., vol. 22 (1975), pp. 266-272.

THE UNIVERSITY OF IOWA IOWA CITY, IOWA