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GROTHENDIECK SPACES

BY

SURJIT SINGH KHURANA

In this paper X will always denote a compact Hausdorff space, E a Banach
space over K, the field of real or complex numbers (we shall call K the scalars),
and C(X) (C(X E)) all K-valued (E-valued) continuous functions on X with
sup norm. A Banach space F is a Grothendieck space if every a(F’, F) conver-
gent sequence in F’ is also a(F’, F") convergent, where F’ and F" are the
topological dual and bidual of F. It is proved in [8] that ifX is an F-space, C(X)
is a Grothendieck space. In this paper we investigate conditions under which
C(X, E) is a Grothendieck space.
Every # (C(X, E))’ M(X, E’) (notations of [7], [9]) can be considered as

a regular Borel measure p: (E’, I1" II), with finite variation, where is the
class of Borel subsets of X; will denote the variation of p. For any
f: X---E,f-simple orf C(X, E), we have I (f)l -< I l(llfll)[1], [7], [9].

LEMMA 1. Let 2s denote all subsets of N, with product topology. If
2: 2--, K is a sequence of countably additive measures (this implies they are
continuous) and lim 2(M)= 2(M) exists for all M N, then 2--, 2 uniformly
on 2. In particular, 2({n})--,0.

Proof This lemma is a particular case of [4, Lemma 1];also it follows from
the classical Phillips’ lemma.

THEOREM 2. C(X, E) is a Grothendieck space ifand only if at least one ofthe
following conditions is satisfied:

(i)
(ii)

X is finite and E is a Grothendieck space.
E is finite dimensional and C(X) is a Grothendieck space.

Proof If (i) is satisfied then C(X, E)= E" where n equals the number of
elements in X. Since E is a Grothendieck space, E" is also a Grothendieck
space. Now suppose that (ii) is satisfied and let E Kp. This means C(X, E)
I-I C(X), multiplied p times. Since C(X) is a Grothendieck space, it follows that
C(X, E) is a Grothendieck space.
Now suppose that neither (i) nor (ii) is satisfied but C(X, E) is a Grothen-

dieck space. Since C(X, E)" contains (C(X))" (R) E and C(X) (R) E", then C(X)
and E are Grothendieck spaces (proofby contradiction). Thus X is infinite and
E is infinite dimensional. Let {x(n)} be a sequence of distinct points of X. If
every a(E’, E) convergent sequence in E’ is norm convergent, then E is finite
dimensional [10]. Take a sequence {f,} c E’ such that f.---,0 in tr(E’, E), but
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f, 1 for all n. Also take a sequence {e(n)} in the closed unit ball of E such
that f,(e(n)) >_ 1/2 for all n. Let la, et,)f., i.e.,

laJ, if x(n) A,
In(A) ,,, if x(n) A,

for any Borel subset A of X. It is a straightforward verification that {.}
(C(X, E))’ and . 1 for all n. We prove that .0 in a(F’, F), where
F C(X, E). For a s C(X) and e E, ( e)= 0(x(n))(e) O. Since
C(X) E is norm dense in C(X, E) and ,] 1 for all n it follows that
v,(h)0 for all h C(X, E) and so ,0 in a(F’, F). For any M N, define
L" C(X, E)’ K, L()= (. e(n)) (note

nM nM

It is easy to verify that L s F". Since F is a Grothendieck space, ,0 in
e(F’, F"). Thus <L, ,)0 for all M c N. Define X,: 2 K, X(M)=
<L, ,>. By Lemma 1, X,({n})0 and so f,(e(n))O. Sincef,(e(n)) 1/2 for
all n, this is a contradiction. This proves the theorem.

Remark 3. Our result shows that ([5], Theorem 2.2) is not correct.

I am very grateful to the referee for several useful suggestions.
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