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MINIMAL SETS, RECURRENT POINTS AND
DISCRETE ORBITS IN N\N

BY

CHING CHOU

1. Introduction

Let N be the set of positive integers with the discrete topology and let z be
the mapping on N which sends n to n + 1. Then z can be extended to a
continuous mapping of fiN, the Stone-(ech compactification of N, into itself.
The extended mapping, again denoted by z, is one-one, z(flN)= fiN\{1} and
z(flN\N) flN\N.
A nonempty subset K of fiN is said to be z-invariant ifzK K. K is said to be

z-minimal if K is closed, z-invariant and is minimal with respect to these two
properties. As usual, co e fin is said to be z-almost periodic if, for each neighbor-
hood V of co, the set {i 6 N" zco e V} is relatively dense in N. Denote the set of
all z-almost periodic points in fiN by A’. It is known that A is the union of all
the z-minimal sets of fiN (cf. [7]).

co fiN is said to be z-recurrent if, for each neighborhood V of co, the set
{i e N: zco e V} is infinite. Denote the set of all z-recurrent points by R. The
complement of R in flN\N is denoted by D’. Therefore co e D if and only if
co flN\N and its orbit o(co) {co, zoo, z2co, ...} is discrete, and, in this case, we
say co is z-discrete. A is a subset of R and, as pointed out by Nillsen [8], they
seem to constitute all the known elements of R’. In this paper we shall show
that R is much bigger than A’. Note that a nonalmost periodic recurrent point
was constructed by Gottschalk [6] for a certain discreteflow (b, X) where X is
metrizable. Note also that (z, fiN) and the z-minimal sets are universal in the
sense of Ellis [5, Chapter 7].

Let M be the set of all z-invariant probability measures on fiN. Note that the
set M can be identified with the set ofBanach limits on N (cf. [10]). It is known
that M is co*-compact, convex and it contains 2 points where c is the cardin-
ality of the continuum (of. [3]). For each A = N, let Cl#s A\N. The set is
closed and open in/ N\N and sets of the form/i form a topological basis
for/. (See [11] for these and other basic topological properties of fiN.) The
upper -density of a set A = N is defined by

a,(A) sup {/z(A)"/z 6 M’}.
The term "upper density" is a proper one, as shown by the following lemma. Its
proof involves an application of the Krein=Milman Theorem.
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LEMMA 1.1 (cf. [9]). For A N,

,(A) lim sup, suPk //-1[ A t’ {k, k + 1,..., k +//- 1}1.
(For a finite set F, IF[ stands for the number ofelements in F.) As in [10], set

K’ cl w {suppt/:/ M’}.
(For a measure v, the support of v is denoted by suppt v.)

LEMMA 1.2 (Cf. [2]). CO 6 K/fand only if aY,(A) > 0 whenever CO
,.

It is easy to see that the interior of D’ is dense in/ (cf. [2]). In [8], Nillsen
proved that D’ c K’ is dense in/. Let ex/VP denote the set of extreme points
of M’. Note that/z 6 2W is extreme ifand only if it is ergodic (cf. [1]). In Section
2, we prove the following:

THEOREM. The set D" c {suppt/z:/z 6 ex M})is dense in
In particular, the support of an rgodic measure can contain z-discrete

points.
The abundance of z-discrete points in does not prevent the widespread

distribution of its complement in 2. We shall prove the following in Section 3.

THORU. Suppose that A N and d,(A) > O. Then . contains a z-recurrent
point which is not z-almost periodic.

The above theorem has the following consequence: K’ c (R’\A) is dense in
K
As defined in [9], a motion is a one-one mapping of N into N under which N

has no periodic points. If tr is a motion, then one may define A", M", D", etc. as
in the case that cr z. In [ 10], Raimi proved that if tr, 6 are motions such that
M’= M then the a-minimal sets and the 6-minimal sets are identical. He
asked whether the converse is true. In Section 4, we shall provide a negative
answer:

THEOREM. There exists a motion tr such that (i) At= A and tr z on
A’= A, and (ii)M

In Section 4 we shall also prove the following.

THEOREM. Let Ko be afixed z-minimal set. If tr is a motion ofN and ifK is a
a-minimal set in fiN then there exists a homeomorphism ck ofKo onto K such that

to).

2. Slim sets and -discrete points in K

Let k be a positive integer. A subset C ofN is called a k-chain if whenever p
and q are two adjacent integers in C, P q < k. If C is a k-chain and C = A
then C is called a k-chain in A. The number of elements in a k-chain C is called



56 CHING CHOU

the length of C. A maximal k-chain in A will be called a k-component of A. Each
set A is the disjoint union of its k-components.

DEFINITION. A set S N is said to be z-slim if for each k N, the length of
each k-component of S is bounded by a constant depending only on S and k.

One of the reasons that we study z-slim sets is given in the following result.

LEMMA 2.1 (cf. [2]). A set S is z-slim if and only if c A’= O.
In [2, Proposition 2.2], we constructed a z-slim set A with aTe(A)> 0. A

similar but somewhat simpler example in the following.

Example 1. Let St {1, 2}. Define S inductively by setting

S+t=S,w (supS+n+S), n=l, 2,
Let S ) o=t S,. Note that IS, 2 and sup S, 2"+t n 1. Therefore,
by Lemma 1.1, aI,(S) > lim, IS, I/sup S 1/2. (In fact, it is easy to see that
aI,(S) 1/2.) On the other hand, the length of each k-component of S equals
Skl. Therefore, S is z-slim.
The above example can be applied to construct many other z-slim subsets

of N.

PROPOSITION 2.2. Suppose that A is a subset ofN with tt,(A) > O. Then there
exists a z-slim set B A with aY,(B) > O.

Proof If A is already z-slim then there is nothing to be shown. Therefore,
assume that A is not z-slim. Then there exists ko N such that A contains
ko-chains of any given length. Let S S $2 w be the set in Example 1.
Set t, [S and p sup S. Choose ko-chains Ct, C2, in A such that

(1) [C[ p and
(2) sup C. + n < inf C,+, n 1, 2,

Write C. as {c," i= 1, 2, p} where c., < c.. if/<j. By (1), the set

B {C,k" k S} is contained in C.. Let B B.
Note first that, by Example and (2), the length of a k-chain in B is at most

k. ti. Therefore B is z-slim. On the other hand, since C is a ko-chain,

C.
Hence,

(3) kop, >-
By Lemma 1.1,

a,(B) > lim sup B
> lim sup t/kop (by (3))

1/2ko (by the calculation in Example 1).
So B is the set we are looking for.
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The following proposition is contained in [7, p. 65]. For the convenience of
the reader, we like to provide a proof here.

PROPOSrrION 2.3. Let K be a closed -invariant subset of1. Ifo9 K\A and
if U is a closed-open neighborhood of 09 then U K c D 4= .

Proof. Let 09 e K\A and U be a closed open neighborhood of 09. Since
o A’, we may assume that the set {i e N: zto e U} is not relatively dense, in
other words,

(I) o(co)= {co, zoo, z2co, ...} "t’-IU k=) -2U k.) L.) ,-ku

for k 1, 2,

By induction, one may conclude that 0(09) z-U w w "-ku and it con-
tradicts (1). Therefore, (2)holds.
To see (3), note that if zkOgk zJoj zkuk C zUj, j > k and 09k Uk,

to U, then tOk z-ko e U. So tog e zk-u and it contradicts the definition
of Ug. So zkUk zgUg 0 as we have claimed.

In [2] we showed that there exists an ergodic # e M such that its support
contains a non-z-almost periodic point. By the above proposition, we know
that suppt # also contains z-discrete points. In fact, more can be said:

PROPOSITION 2.4. The set D" c {suppt :/ 6 ex M’}) is dense in K’.

Proof Let o 6 K and let A be a closed-open neighborhood of o in/.
Then, by Lemma 1.2, ar,(A) > 0 and hence, by Proposition 2.2, there exists a
-slim set B = A with aY,(B)> 0. Since aY,(B)> 0, by the Krein-Milman
Theorem, there exists # ex M’ such that/ c suppt/ 4: 0. Since B is -slim,

Let Uk U\(z-aU w T,-2U k.) Ld T,-ku). We claim that

(2) UkK4:O forkeN,

(3) zkUk z;U; 0 if/4= j.

If (2) and (3) have been established, then, by (2), there exists
co’ k (Uk K), and, by (3), {zkUk} is a sequence of disjoint neighborhoods
of zko’. Therefore, o9’ e U c K D’. It remains to prove (.2)and (3).

If there exists k such that U c K 0 then

(4) K U "-1U k.) "-2U k.) L.) T,-k u.
Since to 6 K U and K is z-invariant, zo 6 K. Hence, by (4),

o9 r(r- U w w -U) c K

(U K)w (-’U c K)w’"w (v-+’U c K)
(v-’V v-U w ."w z-U) (-’U K) o ""w (-*+xU K)
T,-1U k..) "c-2U k.)"’" k.) z-ku.
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by Lemma 2.1,/J is disjoint from A. Therefore, by Proposition 2.3, there exists

(.01 E B suppt # c D A c suppt/ c D.
The proof is completed.
We are going to show, in the next section, that if a closed -invariant set K is

not contained in A then K\(A w D) 4= O, which perhaps makes the above two
propositions more interesting.

Remark. In [8], Nillsen showed that if tr is a motion then D c K is dense
in K. When tr , the above proposition is stronger than his result. A brief
description on how to generalize the results in this section from to tr is in
order. A set S N is said to be a-slim if for each k 6 N,

aYo(S w aS w w trk-ts) < 1,

or, equivalently, there exists n N such that {m, am,..., tr- tm} q: S w aS w
..w trk- S, for each m N. With this definition, one sees right away that

Lemma 2.1 and Propositions 2.2-2.4 still hold when z is changed to a. (In the
proof of Proposition 2.3, if V AT, a-kv should be understood as the preimage
of V under o’k.)

3. Nonalmost periodic recurrent points

The only known method to find z-recurrent points is to apply Zorn’s Lemma
to find a z-minimal set K then show that each 09 e K is z-almost periodic and
therefore z-recurrent. In this section we are going to produce many other
z-recurrent points. First of all we need the following.

PROPOSITION 3.1. Let c be a homeomorphism of a compact Hausdorffspace
X’onto itself. Suppose that T T2 is a sequence ofnonempty closed subsets
ofX such that a sequence ofpositive integers k < k 2 < can befound to satisfy
$k’T+ T. Then (’] =t T contains a (k-recurrent point.

Proof. Let be the family of sequences of closed subsets of X defined as
follows: A sequence of closed subsets {F}_ of X belongs to if, for each
n e N, (i) F. T, (ii) F.+ c F., (iii) kk’F.+t F and (iv) F. 4: .
Note first that :/: 0, since {T} e . can be ordered in a natural way:

{F.} < {G.} if and only if F. G. for each n e N. It is,easy to check that each
chain in has a lower bound. Therefore, by Zorn’s Lemma, has a minimal
element {g}.

Let x -_ K. We want to show that x is b-recurrent. Indeed, let U be
an open neighborhood of x. Let V ).= -oo &U. Consider the sequence
{K. \V}. It clearly satisfies conditions (i) and (ii). Using the fact that V V,
one sees that {K. \V} satisfies (iii). Since K.\V K.and {K.} is minimal in ,
{K. \V} . Therefore {K. \V} does not satisfy (iv), i.e., there exists no such that
K.o \V 0, or, equivalently, K.o = V )=-oo 4"U. Since K,o is compact,
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there exists e N such that

= L)

If n > no, then d"x ’K,/ K, Ko. Hence, by (1), for each n > no there
exists an integer s, -l < s < l, such that 4"-x e U. Therefore, x is
recurrent, as we have claimed.
We shall only apply the above proposition to the case that 4 z and X N.

LEMMA 3.2. Suppose that A N, aY,(A) > 0 and n N. Then there exist
B A, s N, s >_ n, such that c,(B) > 0 and B + s A.

Proof2 By the definition of upper z-density, there exists/ M’ such that
#(,2.) > 0. If for each s >_ n, #(fi, c z-)= 0, then

i=0 i=0

This contradicts the fact that is z-invariant. Therefore there exists s n such
that g(z-)>0. Let B=A (A-s) oN. en (B)>0 and
B+sA.
We are now ready to prove the main result of this section.

PROPOSITION 3.3. Suppose that A = N, cTa,(A) > O. Then a c (R’\A’) O.
Proof By Proposition 2.2, we may assume that A is -slim and hence, by

Lemma 2.1,/i c A’ 0. Therefore, it remains to produce a -reeurrent point in

By mma 3.2, it is easy to construct two sequens s < sz < and
A A = A2 = "", inductively, such that ,(A)> 0 and s_ + A = A_ a,

2, 3, erefore, contains a -recurrent pot, by applying Proposition
3.1 to the case that z, X and ,.
The above proposition tells us that A’ D’ . This’answers a question

raised in [8].

COROLLARY 3.4. If K is a closed -invariant subset of N a K A" then
K (R’A’) O.
Proo By Proposition 2.3, there exists e K D’. (z, fiN) and (z, ())

are isomorphic in the obvious sense. (o() is the closure ofo().) erebre, by
the above proposition, there exists

() (R’A’)= r (R’XA’).
e set W D’ is dense in K’ (see Section 2). Its complement in K’ is also

dense in K"

This simple proof was provided by the referee. Our original proof was much longer.
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COROLLARY 3.5. The set K r (R’\cl A) is dense in

Proof If co 6 K and if B is a closed-open neighborhood of co then
/(B) > 0. Choose a z-slim set A = B such that /(A)> 0. From the set A,
construct A and s as in the proof of Proposition 3.3. The result follows by
applying Proposition 3.1 to the case that qb z and T A
To conclude this section, we would like to provide an example to show that

R K’.

Example 2. Let Fx {1}. Define F. inductively by the relation
F.+x F. w (F. + sup F, + 2"). Set F [_)= F.. It is easily checked that

0.
On the other hand, for each k N, there are infinitely many 2-components

of F. Let

Ck {n N" n is the smallest element of a 2k-component}.
From the definition of F, one sees that Ck + sup Fk- + 2k- c Ck- ,
k= 2, 3, Therefore, it follows from Proposition 3.1, with Tk tk,
Sk sup Fk + 2k, that there exists o e R’ o, o9 K’.

4. Minimal sets for motions of N

Recall that a motion is a one-one mapping of N into N under which N has
no periodic points. Raimi [9] provided a necessary and sufficient condition for
two motions tr and 6 to satisfy M M. In [10] he showed that if M M
then the a-minimal sets and the 6-minimal sets are identical. He asked whether
the converse holds. In this section we shall provide a negative answer.

LEMMA 4.1. Suppose that tr and 6 are two motions ofN. Suppose that S N
is both a-slim and f-slim and tr 6 on N\S. Then A A and if 09 A A
then trco 6o9.

Proof Since ,{ c A 0 and g c A* 0, if a A* w A then 09 (N\S)
and, by assumption, trio zoo. The fact that A A follows easily from this
observation.

PROPOSITION 4.2. There exists a motion tr such that:

(i) A A" and a z on A A’;
(ii) M*:pM".

Proof Let A {a, a2 }, a < a2 < "", be a z-slim subset of N with
aY,(A)>0, IA. Let B=N\A={b,b2 }, bt<b2<.... Let a be the
motion defined by the following listing of N:

b 1, b2, a; b3, b,, a2; "..; b2.- + 1, b2.- +2 b2., an;

It means that if CR denotes the kth element in the above listing then CrCk Ck + .
We claim that tr satisfies (i) and (ii).
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Note that aYe(A) 0, while by assumption ar,(A) > 0. Therefore M 4= M, i.e.,
(ii) holds. Let

S=Aw(A-1) w{b2,:n=l, 2,...}.
Note that tr z on N\S, since if p N\S then p b,, for some m N, m 4: 2"
(n N) and b + 1 b,,+ . To prove (i), by Lemma 4.1, we only have to show
that S is both z-slim and a-slim.
By assumption, A is z-slim and, hence, A- 1 is also z-slim. Since

b2,- b2,- > 2"-, {b2,, n 1, 2,...} is z-slim. Therefore, S being a union of
three z-slim sets, is z-slim.

It is easy to see that A and {b2,: n 1, 2, ...} are a-slim. Therefore, S will be
a-slim if (A- 1) (N\A)= (A- 1)c B is. Let the 1-components of B be
Ba, B2, where sup B < inf B+ t. Denote the largest element in B by t. Note
that

(A- 1) B {ti: i= 1, 2, ...}.
Since S is -slim, there exists c N such that the length of each 1-component of
S is bounded by c. Let {t, t/ a, t/_ t} be a (tr)-k-chain in (A 1) c B of
length l, i.e., for each j, < j < + l- 2, there exists p N, p < k, such that
trntj tg+ . We claim that

(iii) {t + 1, t+ + 1, ti+ t_ + 1} is a (k + c)-chain in A.
Let the maximal length of a (k + c)-chain in A be q. If (iii) holds, then is
bounded by q. In other words, each (tr)-k-chain in (A 1) B is bounded by
the constant q which depends only on k. So (A 1) B is a-slim as we have
claimed. To see (iii), note first that if [Bj+I[ > k then trt t+t for
p 1, 2, k. Therefore, k if < j < + l- 2. Also note that be-
tween t and the smallest element ofB+ there is exactly one 1-component ofA
which, as we have pointed out earlier, is of length < c. So t/ t < c + k, if
< j < + l- 2. This finishes the proof of (iii) and hence of the proposition.
In [8, Proposition 4.3], Nillsen showed that if trt and tr2 are motions then

each try-minimal set is homeomorphic to each set in an uncountable family of
tr2-minimal sets. He asked whether there exist two nonhomeomorphic a-mini-
mal sets. The answer is negative"

PROPOSITION 4.3. Let Ko be afixed z-minimal set. lftr is a motion ofN and if
K is a a-minimal set in fiN then there exists a homeomorphism c of Ko onto K
such that ok(zoo)= trek(co), co Ko.

Before proving the above proposition, let us look at the general motions
more closely. If tr is a motion of N then N can be written as a disjoint union of
infinite cycles and infinite half cycles (cf. [4, Section 4]). Dean and Raimi [4]
showed that if tr is a motion then there exists a motion 6 such that 6 is defined
by a single infinite half cycle and M" M. Note that M M implies that the
a-minimal sets and the f-minimal sets are identical (cf. [10]) but it does not
imply that tr 6 on A" A. We need the following modification of their
result.
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PROPOSITION 4.4. Let tr be a motion ofN. Then there exists a motion 6 such
that"

(i) 6 is defined by a single infinite half cycle, i.e., there is c N such that
N {c, die, fi2c },

(ii) A‘ A and a=6 on A A.
Proofi The proof is similar to that of Lemma 4.3 and Lemma 4.7 of [4].

Therefore, we shall skip some of the details here. Let B, e I, be the infinite
cycles of a, say, B {b,., n 0,

_
1,

__
2, ...} where abe,. b,.+ . B can be

rearranged as follows"

B {b,o; b,, bl,2, b,_ 2, bi,-

ba., ba.+ , b,,.+,_ , b,_,.+ + , b,_,.+ + 2’ bL-.; "}
{b], b,...}

where t, n(n + 1)/2. Define a motion as follows" (k) a(k)ifk B
and y(k)= b.+ if k Let

S {bL2, b,,_ ;... b,,,.+,_ , b,,_,.; ...}.
il

Note that S is both a-slim and y-slim and that a on N\S. Therefore, by
Lemma 4.1,

(1) A A and a y on A A.
Now only has infinite half cycles. For convenience, we assume that there

are infinitely many of them, say, A, 1, 2, (The finite case is easier.)
Assume that A {a,, a,, ...} where ?a, a,+ . Let 6 be defined by the
following single half cycle"

at,t; at,2at,a, a2,t a2,2a2,a; ..; at,s.+ at,s.+ 2

a2,sn+ a2,sn+ 2 a2,sn+

an, an,2 an,sn+ "}
where s, n(n- 1)/2, n 2, 3, Let E {an.," m, n N, m > n + 1}. As
before, note that E is both -slim and fi-slim and that 6 on N\E. Again, by
Lemma 4.1,

(2) A A and y di on A A.
Combining (1) and (2), it follows that 6 is the motion we are looking for.
Suppose K is a a-minimal set in fiN. Choose 6 as in Proposition 4.4. Then

a 6 on K. Let be the homeomorphism of fiN onto itself given by q(6"c)
n + 1, n 0, 1, Then, clearly, (ao) q(&o) zq(o), 09 K and (K)is
a z-minimal subset of fiN. Therefore, Proposition 4.3 follows from the following
result.
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LEMMA 4.5 [5, p. 62]. IfK and K2 are two z-minimal sets offiN then there
exists a homeomorphism c ofK onto K2 such that c(zco)= zO(ta), co K.

Proof If T is a discrete group, let T act on fiT in the usual way. In [5], Ellis
showed that if K and K2 are two T-minimal sets of fiT then there exists a
homeomorphism qb ofK onto K2 such that (t. co) t. (co), co K , t e T.
It is easily checked that his result also holds for the additive semigroup N.
Translating into our language, it means that the lemma holds.

Finally, we like to point out that fin has exactly 2 z-minimal sets (cf. [3]).
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