MINIMAL SETS, RECURRENT POINTS AND DISCRETE ORBITS IN $\beta N \backslash N$

BY

Ching Chou ${ }^{1}$

1. Introduction

Let N be the set of positive integers with the discrete topology and let τ be the mapping on N which sends n to $n+1$. Then τ can be extended to a continuous mapping of βN, the Stone-Čech compactification of N, into itself. The extended mapping, again denoted by τ, is one-one, $\tau(\beta N)=\beta N \backslash\{1\}$ and $\tau(\beta N \backslash N)=\beta N \backslash N$.

A nonempty subset K of βN is said to be τ-invariant if $\tau K \subset K . K$ is said to be τ-minimal if K is closed, τ-invariant and is minimal with respect to these two properties. As usual, $\omega \in \beta N$ is said to be τ-almost periodic if, for each neighborhood V of ω, the set $\left\{i \in N: \tau^{i} \omega \in V\right\}$ is relatively dense in N. Denote the set of all τ-almost periodic points in βN by A^{τ}. It is known that A^{τ} is the union of all the τ-minimal sets of βN (cf. [7]).
$\omega \in \beta N$ is said to be τ-recurrent if, for each neighborhood V of ω, the set $\left\{i \in N: \tau^{i} \omega \in V\right\}$ is infinite. Denote the set of all τ-recurrent points by R^{τ}. The complement of R^{τ} in $\beta N \backslash N$ is denoted by D^{τ}. Therefore $\omega \in D^{\tau}$ if and only if $\omega \in \beta N \backslash N$ and its orbit $o(\omega)=\left\{\omega, \tau \omega, \tau^{2} \omega, \ldots\right\}$ is discrete, and, in this case, we say ω is τ-discrete. A^{τ} is a subset of R^{τ} and, as pointed out by Nillsen [8], they seem to constitute all the known elements of R^{τ}. In this paper we shall show that R^{τ} is much bigger than A^{τ}. Note that a nonalmost periodic recurrent point was constructed by Gottschalk [6] for a certain discrete flow (ϕ, X) where X is metrizable. Note also that $(\tau, \beta N)$ and the τ-minimal sets are universal in the sense of Ellis [5, Chapter 7].

Let M^{τ} be the set of all τ-invariant probability measures on βN. Note that the set M^{τ} can be identified with the set of Banach limits on N (cf. [10]). It is known that M^{τ} is ω^{*}-compact, convex and it contains 2^{c} points where c is the cardinality of the continuum (cf. [3]). For each $A \subset N$, let $\hat{A}=\mathrm{cl}_{\beta N} A \backslash N$. The set \hat{A} is closed and open in $\hat{N}=\beta N \backslash N$ and sets of the form \hat{A} form a topological basis for \hat{N}. (See [11] for these and other basic topological properties of βN.) The upper τ-density of a set $A \subset N$ is defined by

$$
d_{\tau}(A)=\sup \left\{\mu(\hat{A}): \mu \in M^{\tau}\right\} .
$$

The term "upper density" is a proper one, as shown by the following lemma. Its proof involves an application of the Krein-Milman Theorem.

[^0]Lemma 1.1 (cf. [9]). For $A \subset N$,

$$
d_{\tau}(A)=\lim \sup _{n} \sup _{k} n^{-1}|A \cap\{k, k+1, \ldots, k+n-1\}| .
$$

(For a finite set $F,|F|$ stands for the number of elements in F.) As in [10], set

$$
K^{\tau}=\operatorname{cl} \cup\left\{\text { suppt } \mu: \mu \in M^{\tau}\right\}
$$

(For a measure v, the support of v is denoted by suppt v.)
Lemma 1.2 (cf. [2]). $\omega \in K^{\tau}$ if and only if $d_{\tau}(A)>0$ whenever $\omega \in \hat{A}$.
It is easy to see that the interior of D^{τ} is dense in \hat{N} (cf. [2]). In [8], Nillsen proved that $D^{\imath} \cap K^{\imath}$ is dense in K^{\imath}. Let ex M^{\imath} denote the set of extreme points of M^{τ}. Note that $\mu \in M^{\tau}$ is extreme if and only if it is ergodic (cf. [1]). In Section 2 , we prove the following:

Theorem. The set $D^{\tau} \cap\left(\bigcup\right.$ suppt $\left.\left.\mu: \mu \in \operatorname{ex} M^{\tau}\right\}\right)$ is dense in K^{τ}.
In particular, the support of an ergodic measure can contain τ-discrete points.

The abundance of τ-discrete points in \hat{N} does not prevent the widespread distribution of its complement in \hat{N}. We shall prove the following in Section 3.

Theorem. Suppose that $A \subset N$ and $d_{\tau}(A)>0$. Then \hat{A} contains a τ-recurrent point which is not τ-almost periodic.

The above theorem has the following consequence: $K^{\tau} \cap\left(R^{\imath} \backslash A^{\imath}\right)$ is dense in K^{τ}.

As defined in [9], a motion is a one-one mapping of N into N under which N has no periodic points. If σ is a motion, then one may define $A^{\sigma}, M^{\sigma}, D^{\sigma}$, etc. as in the case that $\sigma=\tau$. In [10], Raimi proved that if σ, δ are motions such that $M^{\sigma}=M^{\delta}$ then the σ-minimal sets and the δ-minimal sets are identical. He asked whether the converse is true. In Section 4, we shall provide a negative answer:

Theorem. There exists a motion σ such that (i) $A^{\tau}=A^{\sigma}$ and $\sigma=\tau$ on $A^{\tau}=A^{\sigma}$, and (ii) $M^{\sigma} \neq M^{\mathfrak{\tau}}$.

In Section 4 we shall also prove the following.
Theorem. Let K_{0} be a fixed τ-minimal set. If σ is a motion of N and if K is a σ-minimal set in βN then there exists a homeomorphism ϕ of K_{0} onto K such that $\phi(\tau \omega)=\sigma \phi(\omega)\left(\omega \in K_{0}\right)$.

2. Slim sets and τ-discrete points in K^{τ}

Let k be a positive integer. A subset C of N is called a k-chain if whenever p and q are two adjacent integers in $C,|p-q| \leq k$. If C is a k-chain and $C \subset A$ then C is called a k-chain in A. The number of elements in a k-chain C is called
the length of C. A maximal k-chain in A will be called a k-component of A. Each set A is the disjoint union of its k-components.

Definition. A set $S \subset N$ is said to be τ-slim if for each $k \in N$, the length of each k-component of S is bounded by a constant depending only on S and k.

One of the reasons that we study τ-slim sets is given in the following result.
Lemma 2.1 (cf. [2]). A set S is τ-slim if and only if $\hat{S} \cap A^{\tau}=\emptyset$.
In [2, Proposition 2.2], we constructed a τ-slim set A with $\bar{d}_{\tau}(A)>0$. A similar but somewhat simpler example in the following.

Example 1. Let $S_{1}=\{1,2\}$. Define S_{n} inductively by setting

$$
S_{n+1}=S_{n} \cup\left(\sup S_{n}+n+S_{n}\right), \quad n=1,2, \ldots
$$

Let $S=\bigcup_{n=1}^{\infty} S_{n}$. Note that $\left|S_{n}\right|=2^{n}$ and $\sup S_{n}=2^{n+1}-n-1$. Therefore, by Lemma $1.1, \bar{d}_{\tau}(S) \geq \lim _{n}\left|S_{n}\right| / \sup S_{n}=1 / 2$. (In fact, it is easy to see that $d_{\tau}(S)=1 / 2$.) On the other hand, the length of each k-component of S equals $\left|S_{k}\right|$. Therefore, S is τ-slim.

The above example can be applied to construct many other τ-slim subsets of N.

Proposition 2.2. Suppose that A is a subset of N with $\bar{d}_{\tau}(A)>0$. Then there exists a τ-slim set $B \subset A$ with $\bar{d}_{\tau}(B)>0$.

Proof. If A is already τ-slim then there is nothing to be shown. Therefore, assume that A is not τ-slim. Then there exists $k_{0} \in N$ such that A contains k_{0}-chains of any given length. Let $S=S_{1} \cup S_{2} \cup \cdots$ be the set in Example 1. Set $t_{n}=\left|S_{n}\right|$ and $p_{n}=\sup S_{n}$. Choose k_{0}-chains C_{1}, C_{2}, \ldots in A such that
(1) $\left|C_{n}\right|=p_{n}$ and
(2) $\sup C_{n}+n<\inf C_{n+1}, n=1,2, \ldots$.

Write C_{n} as $\left\{c_{n, i}: i=1,2, \ldots, p_{n}\right\}$ where $c_{n, i}<c_{n, j}$ if $i<j$. By (1), the set $B_{n}=\left\{c_{n, k}: k \in S_{n}\right\}$ is contained in C_{n}. Let $B=\bigcup_{n=1}^{\infty} B_{n}$.

Note first that, by Example 1 and (2), the length of a k-chain in B is at most $\sum_{i=1}^{k} t_{i}$. Therefore B is τ-slim. On the other hand, since C_{n} is a k_{0}-chain,

$$
C_{n} \cup\left(C_{n}+1\right) \cup \cdots \cup\left(C_{n}+k_{0}-1\right) \supset\left\{c_{n, 1}, c_{n, 1}+1, c_{n, 1}+2, \ldots, c_{n, p_{n}}\right\}
$$

Hence,
(3) $k_{0} p_{n} \geq c_{n, p_{n}}-c_{n, 1}$.

By Lemma 1.1,

$$
\begin{aligned}
\bar{d}_{\tau}(B) & \geq \lim \sup _{n}\left|B_{n}\right| /\left(c_{n, p_{n}}-c_{n, 1}\right) \\
& \geq \lim \sup _{n} t_{n} / k_{0} p_{n} \quad(\text { by }(3)) \\
& =1 / 2 k_{0} \quad(\text { by the calculation in Example } 1) .
\end{aligned}
$$

So B is the set we are looking for.

The following proposition is contained in [7, p. 65]. For the convenience of the reader, we like to provide a proof here.

Proposition 2.3. Let K be a closed τ-invariant subset of \hat{N}. If $\omega \in K \backslash A^{\tau}$ and if U is a closed-open neighborhood of ω then $U \cap K \cap D^{\tau} \neq \emptyset$.

Proof. Let $\omega \in K \backslash A^{\tau}$ and U be a closed open neighborhood of ω. Since $\omega \notin A^{\tau}$, we may assume that the set $\left\{i \in N: \tau^{i} \omega \in U\right\}$ is not relatively dense, in other words,

$$
\begin{equation*}
o(\omega)=\left\{\omega, \tau \omega, \tau^{2} \omega, \ldots\right\} \not \not \neq \tau^{-1} U \cup \tau^{-2} U \cup \cdots \cup \tau^{-k} U \tag{1}
\end{equation*}
$$

for $k=1,2, \ldots$
Let $U_{k}=U \backslash\left(\tau^{-1} U \cup \tau^{-2} U \cup \cdots \cup \tau^{-k} U\right)$. We claim that

$$
\begin{gather*}
U_{k} \cap K \neq \emptyset \quad \text { for } k \in N \tag{2}\\
\tau^{k} U_{k} \cap \tau^{j} U_{j}=\emptyset \quad \text { if } i \neq j \tag{3}
\end{gather*}
$$

If (2) and (3) have been established, then, by (2), there exists $\omega^{\prime} \in \bigcap_{k}\left(U_{k} \cap K\right)$, and, by (3), $\left\{\tau^{k} U_{k}\right\}$ is a sequence of disjoint neighborhoods of $\tau^{k} \omega^{\prime}$. Therefore, $\omega^{\prime} \in U \cap K \cap D^{\tau}$. It remains to prove (2) and (3).

If there exists k such that $U_{k} \cap K=\emptyset$ then

$$
\begin{equation*}
K \cap U \subset \tau^{-1} U \cup \tau^{-2} U \cup \cdots \cup \tau^{-k} U \tag{4}
\end{equation*}
$$

Since $\omega \in K \cap U$ and K is τ-invariant, $\tau \omega \in K$. Hence, by (4),

$$
\begin{aligned}
\tau \omega \in & \tau\left(\tau^{-1} U \cup \cdots \cup \tau^{-k} U\right) \cap K \\
& =(U \cap K) \cup\left(\tau^{-1} U \cap K\right) \cup \cdots \cup\left(\tau^{-k+1} U \cap K\right) \\
& \subset\left(\tau^{-1} U \cup \tau^{-2} U \cup \cdots \cup \tau^{-k} U\right) \cup\left(\tau^{-1} U \cap K\right) \cup \cdots \cup\left(\tau^{-k+1} U \cap K\right) \\
& \subset \tau^{-1} U \cup \tau^{-2} U \cup \cdots \cup \tau^{-k} U .
\end{aligned}
$$

By induction, one may conclude that $o(\omega) \subset \tau^{-1} U \cup \cdots \cup \tau^{-k} U$ and it contradicts (1). Therefore, (2) holds.

To see (3), note that if $\tau^{k} \omega_{k}=\tau^{j} \omega_{j} \in \tau^{k} U_{k} \cap \tau^{j} U_{j}, j>k$ and $\omega_{k} \in U_{k}$, $\omega_{j} \in U_{j}$, then $\omega_{k}=\tau^{j-k} \omega_{j} \in U$. So $\omega_{j} \in \tau^{k-j} U$ and it contradicts the definition of U_{j}. So $\tau^{k} U_{k} \cap \tau^{j} U_{j}=\emptyset$ as we have claimed.

In [2] we showed that there exists an ergodic $\mu \in M^{\tau}$ such that its support contains a non- τ-almost periodic point. By the above proposition, we know that suppt μ also contains τ-discrete points. In fact, more can be said:

Proposition 2.4. The set $D^{\tau} \cap\left(\bigcup\right.$ suppt $\left.\left.\mu: \mu \in \operatorname{ex} M^{\tau}\right\}\right)$ is dense in K^{τ}.
Proof. Let $\omega \in K^{\tau}$ and let \hat{A} be a closed-open neighborhood of ω in \hat{N}. Then, by Lemma 1.2, $\bar{d}_{\tau}(A)>0$ and hence, by Proposition 2.2, there exists a τ-slim set $B \subset A$ with $\bar{d}_{\tau}(B)>0$. Since $d_{\tau}(B)>0$, by the Krein-Milman Theorem, there exists $\mu \in \operatorname{ex} M^{\tau}$ such that $\hat{B} \cap$ suppt $\mu \neq \emptyset$. Since B is τ-slim,
by Lemma 2.1, \hat{B} is disjoint from A^{τ}. Therefore, by Proposition 2.3, there exists

$$
\omega_{1} \in \hat{B} \cap \text { suppt } \mu \cap D^{\tau} \subset \hat{A} \cap \text { suppt } \mu \cap D^{\tau}
$$

The proof is completed.
We are going to show, in the next section, that if a closed τ-invariant set K is not contained in A^{τ} then $K \backslash\left(A^{\tau} \cup D^{\tau}\right) \neq \emptyset$, which perhaps makes the above two propositions more interesting.

Remark. In [8], Nillsen showed that if σ is a motion then $D^{\sigma} \cap K^{\sigma}$ is dense in K^{σ}. When $\sigma=\tau$, the above proposition is stronger than his result. A brief description on how to generalize the results in this section from τ to σ is in order. A set $S \subset N$ is said to be σ-slim if for each $k \in N$,

$$
\bar{d}_{\sigma}\left(S \cup \sigma S \cup \cdots \cup \sigma^{k-1} S\right)<1
$$

or, equivalently, there exists $n \in N$ such that $\left\{m, \sigma m, \ldots, \sigma^{n-1} m\right\} \notin S \cup \sigma S \cup$ $\cdots \cup \sigma^{k-1} S$, for each $m \in N$. With this definition, one sees right away that Lemma 2.1 and Propositions 2.2-2.4 still hold when τ is changed to σ. (In the proof of Proposition 2.3, if $V \subset \hat{N}, \sigma^{-k} V$ should be understood as the preimage of V under σ^{k}.)

3. Nonalmost periodic recurrent points

The only known method to find τ-recurrent points is to apply Zorn's Lemma to find a τ-minimal set K then show that each $\omega \in K$ is τ-almost periodic and therefore τ-recurrent. In this section we are going to produce many other τ-recurrent points. First of all we need the following.

Proposition 3.1. Let ϕ be a homeomorphism of a compact Hausdorff space X onto itself. Suppose that $T_{1} \supset T_{2} \supset \cdots$ is a sequence of nonempty closed subsets of X such that a sequence of positive integers $k_{1}<k_{2}<\cdots$ can be found to satisfy $\phi^{k_{n}} T_{n+1} \subset T_{n}$. Then $\bigcap_{n=1}^{\infty} T_{n}$ contains a ϕ-recurrent point.

Proof. Let \mathscr{F} be the family of sequences of closed subsets of X defined as follows: A sequence of closed subsets $\left\{F_{n}\right\}_{n=1}^{\infty}$ of X belongs to \mathcal{F} if, for each $n \in N$, (i) $F_{n} \subset T_{n}$, (ii) $F_{n+1} \subset F_{n}$, (iii) $\phi^{k_{n}} F_{n+1} \subset F_{n}$ and (iv) $F_{n} \neq \emptyset$.

Note first that $\mathscr{F} \neq \emptyset$, since $\left\{T_{n}\right\} \in \mathscr{F}$. \mathcal{F} can be ordered in a natural way: $\left\{F_{n}\right\} \leq\left\{G_{n}\right\}$ if and only if $F_{n} \subset G_{n}$ for each $n \in N$. It is easy to check that each
 element $\left\{K_{n}\right\}$.

Let $x \in \bigcap_{n=1}^{\infty} K_{n}$. We want to show that x is ϕ-recurrent. Indeed, let U be an open neighborhood of x. Let $V=\bigcup_{n=-\infty}^{\infty} \phi^{n} U$. Consider the sequence $\left\{K_{n} \backslash V\right\}$. It clearly satisfies conditions (i) and (ii). Using the fact that $\phi V=V$, one sees that $\left\{K_{n} \mid V\right\}$ satisfies (iii). Since $K_{n} \mid V \subset_{\neq} K_{n}$ and $\left\{K_{n}\right\}$ is minimal in \mathcal{F}, $\left\{K_{n} \backslash V\right\} \notin \mathscr{F}$. Therefore $\left\{K_{n} \backslash V\right\}$ does not satisfy (iv), i.e., there exists n_{0} such that $K_{n_{0}} \mid V=\emptyset$, or, equivalently, $K_{n_{0}} \subset V=\bigcup_{n=-\infty}^{\infty} \phi^{n} U$. Since $K_{n_{0}}$ is compact,
there exists $l \in N$ such that

$$
\begin{equation*}
K_{n_{0}} \subset \bigcup_{s=-l}^{l} \phi^{s} U \tag{1}
\end{equation*}
$$

If $n \geq n_{0}$, then $\phi^{k_{n}} x \in \phi^{k_{n}} K_{n+1} \subset K_{n} \subset K_{n 0}$. Hence, by (1), for each $n \geq n_{0}$ there exists an integer $s_{n},-l \leq s_{n} \leq l$, such that $\phi^{k_{n}-s_{n}} x \in U$. Therefore, x is ϕ recurrent, as we have claimed.

We shall only apply the above proposition to the case that $\phi=\tau$ and $X=\hat{N}$.
Lemma 3.2. Suppose that $A \subset N, d_{\tau}(A)>0$ and $n \in N$. Then there exist $B \subset A, s \in N, s \geq n$, such that $d_{\tau}(B)>0$ and $B+s \subset A$.

Proof. ${ }^{2}$ By the definition of upper τ-density, there exists $\mu \in M^{\tau}$ such that $\mu(\hat{A})>0$. If for each $s \geq n, \mu\left(\hat{A} \cap \tau^{-s} \hat{A}\right)=0$, then

$$
\sum_{i=0}^{\infty} \mu\left(\tau^{-i n} \hat{A}\right)=\mu\left(\bigcup_{i=0}^{\infty} \tau^{-i n} \hat{A}\right) \leq 1
$$

This contradicts the fact that μ is τ-invariant. Therefore there exists $s \geq n$ such that $\mu\left(\hat{A} \cap \tau^{-s} \hat{A}\right)>0$. Let $B=A \cap(A-s) \cap N$. Then $\mu(\hat{B})>0$ and $B+s \subset A$.

We are now ready to prove the main result of this section.
Proposition 3.3. Suppose that $A \subset N, d_{\tau}(A)>0$. Then $A \cap\left(R^{\tau} \backslash A^{\tau}\right) \neq \emptyset$.
Proof. By Proposition 2.2, we may assume that A is τ-slim and hence, by Lemma 2.1, $\hat{A} \cap A^{\tau}=\emptyset$. Therefore, it remains to produce a τ-recurrent point in \hat{A}.

By Lemma 3.2, it is easy to construct two sequences $s_{1}<s_{2}<\cdots$ and $A=A_{1} \supset A_{2} \supset \cdots$, inductively, such that $d_{\tau}\left(A_{i}\right)>0$ and $s_{i-1}+A_{i} \subset A_{i-1}$, $i=2,3, \ldots$ Therefore, \hat{A} contains a τ-recurrent point, by applying Proposition 3.1 to the case that $\phi=\tau, X=\hat{N}$ and $T_{n}=\hat{A}_{n}$.

The above proposition tells us that $A^{\tau} \cup D^{\tau} \neq \hat{N}$. This answers a question raised in [8].

Corollary 3.4. If K is a closed τ-invariant subset of \hat{N} and $K \notin A^{\tau}$ then $K \cap\left(R^{\tau} \backslash A^{\tau}\right) \neq \emptyset$.

Proof. By Proposition 2.3, there exists $\omega \in K \cap D^{\tau} .(\tau, \beta N)$ and $(\tau, \bar{o}(\omega))$ are isomorphic in the obvious sense. ($\bar{o}(\omega)$ is the closure of $o(\omega)$).) Therefore, by the above proposition, there exists

$$
\omega_{1} \in \bar{o}(\omega) \cap\left(R^{\tau} \backslash A^{\tau}\right) \subset K \cap\left(R^{\tau} \backslash A^{\tau}\right)
$$

The set $K^{\tau} \cap D^{\tau}$ is dense in K^{τ} (see Section 2). Its complement in K^{τ} is also dense in K^{τ} :

[^1]Corollary 3.5. The set $K^{\tau} \cap\left(R^{\tau} \mid \mathrm{cl} A^{\tau}\right)$ is dense in K^{τ}.
Proof. If $\omega \in K^{\tau}$ and if \hat{B} is a closed-open neighborhood of ω then $\bar{d}_{\tau}(B)>0$. Choose a τ-slim set $A \subset B$ such that $d_{\tau}(A)>0$. From the set A, construct A_{n} and s_{n} as in the proof of Proposition 3.3. The result follows by applying Proposition 3.1 to the case that $\phi=\tau$ and $T_{n}=\hat{A}_{n} \cap K^{\tau}$.

To conclude this section, we would like to provide an example to show that $R^{\tau} \notin K^{\tau}$.

Example 2. Let $F_{1}=\{1\}$. Define F_{n} inductively by the relation $F_{n+1}=F_{n} \cup\left(F_{n}+\sup F_{n}+2^{n}\right)$. Set $F=\bigcup_{n=1}^{\infty} F_{n}$. It is easily checked that $\bar{d}_{\tau}(F)=0$.

On the other hand, for each $k \in N$, there are infinitely many 2^{k}-components of F. Let

$$
C_{k}=\left\{n \in N: n \text { is the smallest element of a } 2^{k} \text {-component }\right\} .
$$

From the definition of F, one sees that $C_{k}+\sup F_{k-1}+2^{k-1} \subset C_{k-1}$, $k=2,3, \ldots$ Therefore, it follows from Proposition 3.1, with $T_{k}=\hat{C}_{k}$, $s_{k}=\sup F_{k}+2^{k}$, that there exists $\omega \in R^{\tau} \cap \hat{F}, \omega \notin K^{\tau}$.

4. Minimal sets for motions of N

Recall that a motion is a one-one mapping of N into N under which N has no periodic points. Raimi [9] provided a necessary and sufficient condition for two motions σ and δ to satisfy $M^{\sigma}=M^{\delta}$. In [10] he showed that if $M^{\sigma}=M^{\delta}$ then the σ-minimal sets and the δ-minimal sets are identical. He asked whether the converse holds. In this section we shall provide a negative answer.

Lemma 4.1. Suppose that σ and δ are two motions of N. Suppose that $S \subset N$ is both σ-slim and δ-slim and $\sigma=\delta$ on $N \backslash S$. Then $A^{\sigma}=A^{\delta}$ and if $\omega \in A^{\sigma}=A^{\delta}$ then $\sigma \omega=\delta \omega$.

Proof. Since $\hat{S} \cap A^{\sigma}=0$ and $\hat{S} \cap A^{\delta}=0$, if $\omega \in A^{\sigma} \cup A^{\delta}$ then $\omega \in(N \backslash S)^{\wedge}$ and, by assumption, $\sigma \omega=\tau \omega$. The fact that $A^{\sigma}=A^{\delta}$ follows easily from this observation.

Proposition 4.2. There exists a motion σ such that:
(i) $A^{\sigma}=A^{\tau}$ and $\sigma=\tau$ on $A^{\sigma}=A^{\tau}$;
(ii) $M^{\sigma} \neq M^{\tau}$.

Proof. Let $A=\left\{a_{1}, a_{2}, \ldots\right\}, a_{1}<a_{2}<\cdots$, be a τ-slim subset of N with $\bar{d}_{\tau}(A)>0,1 \notin A$. Let $B=N \backslash A=\left\{b_{1}, b_{2}, \ldots\right\}, b_{1}<b_{2}<\cdots$. Let σ be the motion defined by the following listing of N :

$$
b_{1}, b_{2}, a_{1} ; b_{3}, b_{4}, a_{2} ; \cdots ; b_{2^{n-1}+1}, b_{2^{n-1}+2}, \ldots, b_{2^{n}}, a_{n} ; \ldots
$$

It means that if c_{k} denotes the k th element in the above listing then $\sigma c_{k}=c_{k+1}$. We claim that σ satisfies (i) and (ii).

Note that $\bar{d}_{\sigma}(A)=0$, while by assumption $\bar{d}_{\tau}(A)>0$. Therefore $M^{\sigma} \neq M^{\tau}$, i.e., (ii) holds. Let

$$
S=A \cup(A-1) \cup\left\{b_{2 n}: n=1,2, \ldots\right\}
$$

Note that $\sigma=\tau$ on $N \backslash S$, since if $p \in N \backslash S$ then $p=b_{m}$ for some $m \in N, m \neq 2^{n}$ ($n \in N$) and $b_{m}+1=b_{m+1}$. To prove (i), by Lemma 4.1, we only have to show that S is both τ-slim and σ-slim.

By assumption, A is τ-slim and, hence, $A-1$ is also τ-slim. Since $b_{2^{n}}-b_{2^{n-1}} \geq 2^{n-1},\left\{b_{2^{n}}, n=1,2, \ldots\right\}$ is τ-slim. Therefore, S being a union of three τ-slim sets, is τ-slim.

It is easy to see that A and $\left\{b_{2 n}: n=1,2, \ldots\right\}$ are σ-slim. Therefore, S will be σ-slim if $(A-1) \cap(N \backslash A)=(A-1) \cap B$ is. Let the 1 -components of B be B_{1}, B_{2}, \ldots where $\sup B_{i}<\inf B_{i+1}$. Denote the largest element in B_{i} by t_{i}. Note that

$$
(A-1) \cap B=\left\{t_{i}: i=1,2, \ldots\right\}
$$

Since S is τ-slim, there exists $c \in N$ such that the length of each 1-component of S is bounded by c. Let $\left\{t_{i}, t_{i+1}, \ldots, t_{i+l-1}\right\}$ be a $(\sigma)-k$-chain in $(A-1) \cap B$ of length l, i.e., for each $j, i \leq j \leq i+l-2$, there exists $p \in N, p \leq k$, such that $\sigma^{p} t_{j}=t_{j+1}$. We claim that
(iii) $\left\{t_{i}+1, t_{i+1}+1, \ldots, t_{i+l-1}+1\right\}$ is a $(k+c)$-chain in A.

Let the maximal length of a $(k+c)$-chain in A be q. If (iii) holds, then l is bounded by q. In other words, each (σ) - k-chain in $(A-1) \cap B$ is bounded by the constant q which depends only on k. So $(A-1) \cap B$ is σ-slim as we have claimed. To see (iii), note first that if $\left|B_{j+1}\right|>k$ then $\sigma^{p} t_{j} \neq t_{j+1}$ for $p=1,2, \ldots, k$. Therefore, $\left|B_{j+1}\right| \leq k$ if $i \leq j \leq i+l-2$. Also note that between t_{j} and the smallest element of B_{j+1} there is exactly one 1-component of A which, as we have pointed out earlier, is of length $\leq c$. So $t_{j+1}-t_{j} \leq c+k$, if $i \leq j \leq i+l-2$. This finishes the proof of (iii) and hence of the proposition.

In [8, Proposition 4.3], Nillsen showed that if σ_{1} and σ_{2} are motions then each σ_{1}-minimal set is homeomorphic to each set in an uncountable family of σ_{2}-minimal sets. He asked whether there exist two nonhomeomorphic σ-minimal sets. The answer is negative:

Proposition 4.3. Let K_{0} be a fixed τ-minimal set. If σ is a motion of N and if K is a σ-minimal set in βN then there exists a homeomorphism ϕ of K_{0} onto K such that $\phi(\tau \omega)=\sigma \phi(\omega), \omega \in K_{0}$.

Before proving the above proposition, let us look at the general motions more closely. If σ is a motion of N then N can be written as a disjoint union of infinite cycles and infinite half cycles (cf. [4, Section 4]). Dean and Raimi [4] showed that if σ is a motion then there exists a motion δ such that δ is defined by a single infinite half cycle and $M^{\sigma}=M^{\delta}$. Note that $M^{\sigma}=M^{\delta}$ implies that the σ-minimal sets and the δ-minimal sets are identical (cf. [10]) but it does not imply that $\sigma=\delta$ on $A^{\sigma}=A^{\delta}$. We need the following modification of their result.

Proposition 4.4. Let σ be a motion of N. Then there exists a motion δ such that:
(i) δ is defined by a single infinite half cycle, i.e., there is $c \in N$ such that $N=\left\{c, \delta c, \delta^{2} c, \ldots\right\}$,
(ii) $A^{\sigma}=A^{\delta}$ and $\sigma=\delta$ on $A^{\sigma}=A^{\delta}$.

Proof. The proof is similar to that of Lemma 4.3 and Lemma 4.7 of [4]. Therefore, we shall skip some of the details here. Let $B_{i}, i \in I$, be the infinite cycles of σ, say, $B_{i}=\left\{b_{i, n}, n=0, \pm 1, \pm 2, \ldots\right\}$ where $\sigma b_{i, n}=b_{i, n+1} . B_{i}$ can be rearranged as follows:

$$
\begin{aligned}
B_{i} & =\left\{b_{i, 0} ; b_{i, 1}, b_{i, 2}, b_{i,-2}, b_{i,-1} ; \ldots ;\right. \\
& \left.b_{i, t_{n}}, b_{i, t_{n}+1}, \ldots, b_{i, t_{n+1}-1}, b_{i,-t_{n}+1}+b_{i,-t_{n+1}+2}, \ldots, b_{i,-t_{n}} ; \ldots\right\} \\
\equiv & \left.\equiv b_{1}^{i}, b_{2}^{i}, \ldots\right\}
\end{aligned}
$$

where $t_{n}=n(n+1) / 2$. Define a motion γ as follows: $\gamma(k)=\sigma(k)$ if $k \notin \bigcup_{i \in I} B_{i}$ and $\gamma(k)=b_{j+1}^{i}$ if $k=b_{j}^{i}$. Let

$$
S=\bigcup_{i \in I}\left\{b_{i, 2}, b_{i,-1} ; \ldots ; b_{i, t_{n+1}-1}, b_{i,-t_{n}} ; \ldots\right\}
$$

Note that S is both σ-slim and γ-slim and that $\sigma=\gamma$ on $N \backslash S$. Therefore, by Lemma 4.1,

$$
\begin{equation*}
A^{\sigma}=A^{\gamma} \text { and } \sigma=\gamma \text { on } A^{\sigma}=A^{\gamma} \tag{1}
\end{equation*}
$$

Now γ only has infinite half cycles. For convenience, we assume that there are infinitely many of them, say, $A_{i}, i=1,2, \ldots$ (The finite case is easier.) Assume that $A_{i}=\left\{a_{i, 1}, a_{i, 2}, \ldots\right\}$ where $\gamma a_{i, k}=a_{i, k+1}$. Let δ be defined by the following single half cycle:

$$
\begin{aligned}
& \left\{a_{1,1} ; a_{1,2} a_{1,3}, a_{2,1} a_{2,2} a_{2,3} ; \ldots ; a_{1, s_{n}+1} a_{1, s_{n}+2} \cdots a_{1, s_{n+1}}\right. \\
& \qquad a_{2, s_{n}+1} a_{2, s_{n}+2} \cdots a_{2, s_{n}+1}, \ldots, a_{n-1, s_{n}+1} a_{n-1, s_{n}+2} \cdots a_{n-1, s_{n}+1} \\
& \left.\quad a_{n, 1} a_{n, 2} \cdots a_{n, s_{n}+1} ; \cdots\right\}
\end{aligned}
$$

where $s_{n}=n(n-1) / 2, n=2,3, \ldots$ Let $E=\left\{a_{n, s_{m}}: m, n \in N, m \geq n+1\right\}$. As before, note that E is both γ-slim and δ-slim and that $\gamma=\delta$ on $N \backslash E$. Again, by Lemma 4.1,

$$
\begin{equation*}
A^{\gamma}=A^{\delta} \text { and } \gamma=\delta \text { on } A^{\gamma}=A^{\delta} \tag{2}
\end{equation*}
$$

Combining (1) and (2), it follows that δ is the motion we are looking for.
Suppose K is a σ-minimal set in βN. Choose δ as in Proposition 4.4. Then $\sigma=\delta$ on K. Let ψ be the homeomorphism of βN onto itself given by $\psi\left(\delta^{n} c\right)=$ $n+1, n=0,1, \ldots$ Then, clearly, $\psi(\sigma \omega)=\psi(\delta \omega)=\tau \psi(\omega), \omega \in K$ and $\psi(K)$ is a τ-minimal subset of βN. Therefore, Proposition 4.3 follows from the following result.

Lemma 4.5 [5, p. 62]. If K_{1} and K_{2} are two τ-minimal sets of βN then there exists a homeomorphism ϕ of K_{1} onto K_{2} such that $\phi(\tau \omega)=\tau \phi(\omega), \omega \in K_{1}$.

Proof. If T is a discrete group, let T act on βT in the usual way. In [5], Ellis showed that if K_{1} and K_{2} are two T-minimal sets of βT then there exists a homeomorphism ϕ of K_{1} onto K_{2} such that $\phi(t \cdot \omega)=t \cdot \phi(\omega), \omega \in K_{1}, t \in T$. It is easily checked that his result also holds for the additive semigroup N. Translating into our language, it means that the lemma holds.

Finally, we like to point out that βN has exactly $2^{c} \tau$-minimal sets (cf. [3]).

References

1. R. Blum and D. L. Hanson, On invariant probability measures I, Pacific J. Math., vol. 102 (1960), pp. 1125-1129.
2. C. Chou, Minimal sets and ergodic measures for $\beta N \backslash N$, Illinois J. Math., vol. 13 (1969), pp. 777-788.
3. -_, On the size of the set of left invariant means on a semigroup, Proc. Amer. Math. Soc., vol. 23 (1969), pp. 199-205.
4. D. Dean and R. Raimi, Permutations with comparable sets of invariant means, Duke Math. J., vol. 27 (1960), pp. 467-479.
5. R. Ellis, Topological dynamics, W. A. Benjamin, New York, 1969.
6. W. H. Gottschalk, Almost periodic points with respect to transformation semigroups, Ann. Math., vol. 47 (1946), pp. 762-766.
7. W. H. Gottschalk and G. A. Hedlund, Topological dynamics, Amer. Math. Soc. Colloq. Publ., vol. 36, Amer. Math. Soc., Providence, R.I., 1955.
8. R. Nillsen, Discrete orbits in $\beta N \backslash N$, Colloq. Math., vol. 33 (1975), pp. 71-81.
9. R. A. Raimi, Invariant means and invariant matrix methods of summability, Duke Math. J., vol. 30 (1963), pp. 81-94.
10. -Homeomorphisms and invariant measures for $\beta N \backslash N$, Duke Math. J., vol. 33 (1966), pp. 1-12.
11. W. Rudin, Homogeneity problems in the theory of Čech compactifications, Duke Math. J., vol. 23 (1956), pp. 409-420.

State University of New York at Buffalo
Amherst, New York

[^0]: Received July 13, 1976.
 ${ }^{1}$ Supported in part by a National Science Foundation grant.

[^1]: ${ }^{2}$ This simple proof was provided by the referee. Our original proof was much longer.

