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LINEAR MAPPINGS CONTINUOUS IN MEASURE

BY
DANIEL M. OBERLIN!

In [3], Marcinkiewicz and Zygmund proved the following theorem.

THEOREM 1. Suppose that 0 < p < q <2 and that T is a continuous linear
operator on I¥ (= IZ([0, 1])) with norm || T |, so that

JOI |Tf(x)|Pdx<|T|" Ll | f(x)|P dx

for every f € I¥. Then for any n and any fi, ..., f, € I we have
1

n pla 1[n plq
& 1" e s[5 1ot i

Stated differently, Theorem 1 says that a continuous linear operator on I?
extends in a natural way to the space I?(1%) of M-valued functions on [0, 1]. Now
let L be the space of all measurable functions on [0, 1], equipped with the
topology of convergence in measure. Our first result is an analog of Theorem 1.
It implies that a continuous linear operator on L extends in the same natural
way to the space of all %-valued measurable functions on [0, 1].

THEOREM 2. Let (X, u) be a measure space and assume that p is a probability
measure on X. Let T be a linear operator defined on the space of measurable
functions on X, and assume that T is continuous with respect to the topology of
convergence in measure on X. Fix q with 0 < q < 2. Then for every ¢ > 0 there
exists 6 > 0 such that for any n and for any measurable functions f, ..., f,on X
which satisfy

[ n 1/q
pixeX: |y |f,~(x)|"] zé}sé,
[i=1
we have
n 1/q
pixe X: |y |Tf,-(x)|"] >¢ <e
i=1

Using Theorem 2 as a lemma we can prove the following theorem, which was
proved in [4] with the extra hypothesis that G be abelian.

THEOREM 3. Let G be a compact group and let L(G) be the space of all
(Haar-) measurable functions on G, equipped with the topology of convergence in
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measure. For x € G define the left and right translation operators L, and R, on
L(G) by L. f(y) = (xy), R. f(y) = f (vx) (f € L(G), y € G). The only continuous
linear operators on L(G) which commute with each R , are the finite linear combin-
ations of the L,’s.

The proof of Theorem 2 rests on the following lemma.

LeMMA. For 0 < g < 2, the space 4 is topologically isomorphic to a subspace
of L.

Proof. For 1< g <2 this is a consequence of Theorem 5.2 of [5], which
states that (for these values of g) I4 is topologically isomorphic to a subspace of
L. But given the result of [2], the proof of Theorem 5.2 in [5] works for any g
with 0 < g <2.

Proof of Theorem2. Let X, u, T, q, and ¢ be as in the statement of Theorem
2, and let m stand for Lebesgue measure on [0, 1]. By the lemma there exist
g1 g2 --- € L (corresponding to the usual [ basis) so that the following hold.

(1) There exists g, >0 such that if m{y € [0, 1]: |Y c;gdy)| = &4} < &4
then () |¢;|9)" < ¢;

(2) Given any &, > 0 there exists some § > 0 such that if (}_ |¢;[9)'/? <6,
then

m{y: |3 cigi(y)| = &1} <e,.

Let ¢, be as in (1) and choose ¢; > 0 with &3 < &4, £3/€4 < &/3. Since T is
continuous, there exists ¢, > 0 such that if the measurable function h on X
satisfies pu{x € X: |h(x)| > ¢,} <&, then p{x: |Th(x)| > es} <e&;. Choose
&; > 0 such that ¢, < ¢&,, €,/(¢,€4) < &/3. Choose ¢ as in (2) (corresponding to
the present ¢,) and such that 6/(¢; ¢,) < &/3. Then

€) ((0 + &1)/es + &3)/eq = O/e284 + &1 /6284 + &3 /64 < &.
Now suppose that u{x: (}_ | fi(x)[9)"/? = 8} < é; we will show that
px: (X | Th(x) )1 2 ¢} <.

 Since miy: |L7(00)] 2 1) > ey implies (5 |7)1)"> 5 by () we
ave

uix: [mfy: |¥ fi(x)giy)| = 1} > ea]} < 0.
Writing ¢, (x, y) for Y fi(x)g:(y) and E, for the set
{x: [m{y: |1(x, y)| =1} > &1}

we get u(E,) < 6. If x ¢ E;, then m{y: |@,(x, y)| = &,} < ¢;. It follows (from
Fubini’s theorem) that

(1 x m)(x, y) € X x [0, 1]: |§s(x, )| Z &1} <O + &y
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Since &, >¢, we have (ux m)(x,y): |Pi(x, y)| =&} <8+ ¢, Another
application of Fubini’s theorem then yields

) miy: [ux: [@1(x, y)| = €2} = &2]} < (0 + &1)/e,.
Write ¢,(x, y) for Y. Tfi(x)gy) = T(Y. fi9:(y))(x) and recall that

é1(x, y) = 2 fi(x)gi(y)-

By the choice of ¢,, the inequality (for fixed y) u{x: |P,(x, y)| = &3} = ¢; im-
plies the inequality u{x: |¢(x, y)| = &} = ¢,. Thus if we write E, for the set

{v: [ufx: |@2(x, y)| = &3} = &3]},

(4) yields m(E,) < (6 + &,)/e,. If y ¢ E,, though, u{x: |¢,(x, y)| = &3} <es.
Therefore

(n x m{(x, y): |@2(x, )| = &3} <[(0 + &1)/e] + &3,
and so

(1 x m}{(x, y): |2(x, ¥)| = ea} <[(0+&1)/e2] + &3

since &, > &5. A last application of Fubini’s theorem gives

o+e¢
s Iy [ )| 202 o) < (P12 44)
Taking into account (3) and the definition of ¢,, we have
() pulx: [mly: |2 Thi(x)giy) | 2 ea} 2 &0]} <.

Now (1) implies that m{y: |} Tf{x)gdy)| = &4} = €4if () | Tfi(x)])/4 = ¢, s0
(5) yields the desired result:

px: (X | Th(x)|[9)1 2 ¢} <.

Proof of Theorem3. Write I?(G) for the Lebesgue space formed with respect
to Haar measure on G and write || f ||, for the norm of a function in I?(G). Let
T be as in the statement of Theorem 3. The only part of the proof in [4] which
does not go over mutatis mutandis to the present situation is the demonstration
that T is bounded on I?(G). In [4], where the compact group G was abelian, this
was an easy observation. Here we shall use Theorem 2 to show that T is
bounded on I*(G) without the hypothesis that G be abelian. Our method is
based on an adaptation of the central idea in [1]. We shall show the following.

(6) There exists a 6 > 0 such that if fand Tf are continuous and if || f ||, <
/2, then || Tf ||, < (1 + 8)/2.
(7) Tfis continuous whenever f is a trigonometric polynomial on G.

From (6) and (7) it follows immediately that T is bounded on I*(G).
First we establish (6). Write u for normalized Haar measure on G and let



52 DANIEL M. OBERLIN

é > 0 be such that

(®) uix e G: (8 | Th() |92 > 123 < 12
if

px e G: (¥ | filx) |?)2 =20} <9
for f; € L(G). Such a § exists by Theorem 2. Let fbe a continuous function on G
such that Tf is continuous, and suppose that | f |, < §/2. By the uniform
continuity of f and TJ, there exists a Borel partition {E;}!_, of G such that
©) | fGeya) = f(xp2) |5 | Tf (xy1) — Tf (xy2)| < 6/2

for any x € G whenever y,, y,€ E;(1<i<n).Fori=1,..., n, fix x;€ E;and
let fi(x) =f(xx;)u(E;)"/*. Writing y; for the characteristic function of E;
(1 < i < n) and, for arbitrary fixed x € G, putting g(y) = ¥ f (xx;)x{y), we have

X 1A )2 = (X | f xx)) PREN? = [ g]2-
Now ||g — L, f || < /2 by (9), and so

lgllz < Lefla+llg—Lf o< fl24 9 - Lif | <.
Thus (3. | fi(x)|*)"/? < 6. As this holds for any x € G, we have
(10) px e G: (X | TH(x) )" 2 1/2} < 172
by (8). Since T commutes with each R,, Tf(x) = Tf (xx;)m(E;)"/2. If for fixed

xeG we put h(y)=)Y Tf(xx)x(y), then we have, as before,
& | TH(x)|*)* = | h| ;. Since |h — L, Tf ||, < 6/2 by (9), we get

QT )2 2 | Tf |2 — 6/2,
and this holds for each x € G. Now (10) implies that | Tf || , < 1/2 + /2, and
so (6) is established.
We conclude the proof of Theorem 3 by establishing (7). Each trigonometric

polynomial f on G is a finite linear combination of trigonometric polynomials u
which satisfy functional equations of the form

u(xy) = i ujl(x)“lk(.V)'

Here the u;’s and the uy’s are again trigonometric polynomials. For such a u
and for each fixed y € G we have

(11) Tu(xy) = (R, Tu)(x) = (TR,u)(x)

= (T li uj,u,k(y)) (x)= li Tuj(x Jun(y),

for almost all x € G. Thus there exists some x in G such that (11) holds for
almost all y € G, and so Tu is (equal almost everywhere to) a continuous
function on G.
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