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ON A LEMMA OF MARCINKIEWICZ

BY
CALIXTO P. CALDERON

Introduction

Given any closed set F in R (real line), we shall call the distance from any
point x to F, the distance function; it will be denoted by d(x; F), or simply by
d(x). Throughout this paper, we shall be concerned with operators

0.1) T(f) = pv. j_w . ! G [5(2 - i(y)] 6) d.

Here, d(x) denotes the distance function; G(s) is a function satisfying
(0.2) |G(s) — GO)| <K]|s|, |s| <1

f(x) stands for a function belonging to the Lebesgue class I#(R), 1 < p < 0. If
x € F and G(s) = s, T reduces to the classical Marcinkiewicz integral (see [3]).
If we allow x to take values all over R, T(f) becomes a particular case of the
operator studied in [1].

Another interesting case arises when G(s) = s* where, A > 1. When x € F this
is the case of the Marcinkiewicz integral J,(x) (see [3, p. 252]).

We may consider also the situations

(0.3) G(s)=s/(1+s%), G(s)=1/(1 + s?).

These situations arise in the case of a double layer potential, more precisely,
when considering the I# behavior of the Cauchy-type integral

(04) U(z)=p.v.% [ () ds

rs—'z

where I' is the curve z = x + i §(x; F). The proof shows that the boundary
could be given by the more general expression

z=x + i¢(x) 6(x, F) where ¢(x) e C***(R), ¢ > 0.

Throughout the proof we are going to keep the notation introduced in [3] for
the various Marcinkiewicz integrals. The letter 4 will always denote the com-
plement of F.

The main theorem
The results are summarized as follows.

THEOREM. Suppose that G satisfies condition (0.2), G(0) =0 and |A| < 0.
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Then we have the following.

o (]

¢ o)

1/r
T dx) <C AP £,

where 1 <p < o, 1/p < 1/r <1+ 1/p and C,,, depends on p and r only.
If u is a finite Borel measure defined on R we have the following instead.
(i) [E(|T()| > )| <(C/2) | u]"

for 1/2 <r < 1. Here | || stands for the total variation of u; C, depends on r and
the measure of A.

Suppose now that either A has infinite measure or G(0) # 0. In that case we
have these results.

(i) | T(f)|l, <C,| f|. 1 <r < co. Here C, depends on r only.

) |E(ITw)| > )] < (Ci/)| u]-

In all the cases, T(f) is defined point wise a - e as a principal value; further-
more the operator T*(f) = sup,o | T,(f)| where

)= 1 8(x) — 8(y)
=] (x—y)G[ =) ]f ) dy

satisfies the same inequalities as T(f).
Proof. Consider x € F. In that case we have

(1.1) T.(f)(x) = GO)H,(f)(x) + T.(f)(x)

where H,(f)(x) stands for the truncated Hilbert transform
1

(12) HNN=] /0

and TJf) denotes the operator associated with G(s) = G(s) — G(0). It follows
from (0.2) that

13 IR <K [ (10 =Ko |11 P

Here J, is the Marcinkiewicz integral introduced in [3, p. 252]. Letting H*(f)
denote sup, o |H.(f)|, we have

(14) T*(f) < |GO)|H*(f) + KJ.(x; | S|, F). xeF.
Suppose now that G(0) =0 and |A| < co. In this case we have, for x € F,
' 00 d
(1.5) IT(f)] <K I'X_M oy Oy
0
<pv.|K ‘_ (x'gi)v)z | f(y)| dy

=K|C@, |/ )]
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Consequently

(1.6) T*(f)(x) < K|C©, | f D).

Here we use the notation C(8, | f|)(x) for the classical commutator singular
integral studied in [1].

Our next step is to describe the behavior of T*(f) on 4, that is when x € A.
Let us express A as | J ¥ (a, by), where the (a,, b;) are pairwise disjoint. We
shall denote by ¢, the middle point of (a, b;). Without loss of generality we
may assume that x € (a, ¢;) since the case x € (¢, b,) could be handled in a
similar manner. Consider as before, T,(f) = G(0)H, + T.(f) where T,(f) could
be dominated in the following way:

(17) | To(f)x)| < |G| |He(fiso)(x) |
+ K|Ha(|fk,1|)(x)'

+¥ &)_Lf)glfj(y)ldy-

Frdxmyse (%

Here f;,, =f if x € (a;, ¢;) and zero otherwise, f;,, = f if x € (c;, b;) and zero
otherwise and f; =fj,o + fj.1. If x € (&, ¢,) then §(x) = x — a;. On the other
hand, if y € (a;b;) j # k, we have |x — y| > |x — a,|. Consequently

(13) o) K[ IO ay <akna(] )

itk |x=yl>e (

Here M(|f|)(x) denotes the Hardy-Littlewood maximal function. If
y€(a;b;), j#k then &(y)=min (]y—aq;|, |y—b;])< |x—y|. Con-
sequently

kxSl

JFk Y)x—yl>e (x

Ssz(;“_‘;(;%Wlf(y)ldy 2KH(x, | f ], F)

where H(x, | f|, F) is the Marcinkiewicz integral defined in [3, 2.4, p. 253].
The estimates (1.7), (1.8), and (1.9) give

(1.10) T*(f)(x) < | GO)| H*(f)(x) + KH*(fis0)(x)
+ KH*(| fisx | )x) + 2KM(| f | )(x)
+ 2KH\(x, | f |, F).
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Similar estimates are valid for x € (¢, by). Therefore
bi

(L1 [P dx < @RP [ (1S DY dx

ag Ak
bi

+ (4K [ M(|f]) dx

ak

+16(0)] j (H*(f)) dx

+cg|41<|vj |fIPdx, 1<p<oo.

ak

Here C? stands for the type constant of the maximal Hilbert transform.

By combining (1.11) and (1.4) we get (iii). Suppose now that | 4| < co. Letr
be such that 1/p < 1/r <1+ 1/p. Let 1/q=1/r — 1/p, 1 < p < 00.If G(0) = 0,
(1.11) yields

1/1

(1.12) (L (T*(f))’dx)msc,(L lf]’dx) , 1<l<oo.

In turn, if f € [°(R), we have, from (1.12),

(L13) (J o as) " <crapisi.

Holder’s inequality yields
(1.14) (j T*(f)'dx)s(j T*(f”dx) &
A

r/p
<4 |r/«c;,/v( [ 1rP dx)
A

An application of Theorems A and B in [2] to |C(6, f)| yields similar results
for T*(f) in F (see 1.6). Collecting results we get (i). In order to prove (iv) we
have to consider (1.10) specialized for the case of a measure u, namely

(1.15) T*(u)(x) < | GO)| H*(u)(x) + KH*(pi;0)(x)

+ KH*(V,1)(x) + 2KM(V)(x)

+ 2KH(x; V, F)(x), x¢€ (a, c),
where
(1.16) o) = plI O (i, €} s () = plI 0 (i, b))

for all intervals I.
Similar definitions hold for V,, i = 0, 1, where V denotes the variation of p.
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We also have y, = p.0 + i,y and Vi, = Vo + V;,y. Letting
L(p)(x) = | G(0)| H*(u)(x) + 2KM(V)(x) + 2KH(x, V., F)
and taking (1.15) into account we have
C b
(L17)  [E(T*(0)> 2) 0 (@ b)| < |E@LW > 42) 0 (a b)| + 5 [ av.
ak

The above inequality and (1.4) specialized to the case of a measure give (iv). In
order to show (ii) consider first x€ A and 1/r=1/g+ 1, 1 <g< 0. We
assume in this case that |4 | < oo and G(0) = 0. Consider 4 > 0 and suppose
that A/||u| < 1. Then

(1.18) |4l <(Iul/ay|A4].
If A/ p|| =1 then
A \"4
(1.19) < (o) T
el
Consequently

(120)  |E(T*(u) > 4)| < |E(T*(u) > A"~ | n]"0] < (C/X)| "

The last inequality follows from the case r = 1. By combining (1.18) and (1.20)
we have

(121) |4 A E(T*u) > 4)| < (C/2) | ull"

In A, T(u) < K|C(5,v)| and the corresponding inequality follows from
Theorem B in [2]. This concludes the proof of (ii).
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