
ILLINOIS JOURNAL OF MATHEMATICS
Volume 22, Number 2, June 1978

THE K-THEORY OF SOME MORE WELL-KNOWN SPACES

BY

LUKE HODGKIN AND VICTOR SNAITH

Introduction

In this paper we determine the real and complex K-theory of SG, the H-space
of degree one maps in QS under composition, and of the spaces known as the
image and the cokernel of the J-homomorphism. The interest in these spaces
stems from their role in (i) the general theory of infinite loopspaces, (ii) the
theory of spherical fibrations.
The computations are accomplished by comparing the K-theory of SG and

the image-of-J spaces with the K-theory of Qo S. Our main result (Theorem
2.5) states that the K-theory "Hopf algebras" are essentially isomorphic, the
isomorphisms being induced by suitable d-invariants. There exist splittings (see
Section 1) of the form SG= Cok J x J which yield, as a corollary of
Theorem 2.5, that Cok J is a K- and KO-theory point (Theorem 2.7). This
result has turned out to be very useful [12], [17], [21]. In order to establish the
isomorphisms it suffices to work with mod p K-homology. However the inte-
gral KO- and K-cohomology is more likely to interest homotopy theorists.
This is determined in Theorem 2.10.
The paper is arranged as follows. In Section 1 we introduce all the infinite

loopspaces which we will study and in Section 2 we state and establish the
results. The latter proceeds according to the following program. We have to
establish several g,( ;Z/p)-isomorphisms. Using results of [9] on
K,(QS;Z/pr) we show that the d-invariant embeds this Hopf algebra into
K,(BU(R) x Z; ZipS). From this we derive all our isomorphisms by showing
that the projection of SG, Cok J x J onto J is injective in K,( Z/p)
and hence is a K-theory isomorphism.
The second author would like to express his gratitude to Frank Adams, Peter

May and Jorgen Tornehave for many helpful communications and conversa-
tions concerning the relations between the infinite loopspaces studied here.

1. The spaces

Let us briefly recall all the spaces with which we will be concerned. They are
all H-spaces, in fact infinite loopspaces, and a general reference for further
details is [13]. Let X, denote the p-localization of X [19].
BU x Z is the H-space representing KU( ). It is an E-ring space in the
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manner described in [13, Chapter VIII, Section 1]. The stands for the
H-space structure induced from Whitney sum of bundles.
QS is the limit of the suspension sequence

"-* f/"S" - fY + S" + -""

and Q SO is the component consisting of maps of degree m. Q, SO is usually
called SG. QS is an Eoo-ring space in the manner described in [13, Chapter IV,
Example 1.10]. There is, up to homotopy, exactly one map of E-ring spaces
D: QS BU x Z (Z is the integers) such that DIS sends the basepoint into
BU x (0) d the other point into BU x (1). This map is the d-invariant
from stable cohomotopy to K-theory [1].
BU has the same underlying space as BU together with the H-space

structure induced by tensor product in the multiplicative group 1 + RU(
(see [13, Chapter VI, Example 5.4; 14]). The d-invafiant restricts to ve an
H-map D: SG BU.
We may, of course, localize any of the above maps and spaces.
If p is an odd prime let q be a prime power generating the units of Z/p2 and

set ff, the Adams operation. Define J x Z by the fibring of infinite
loopspaces

z z
where ( l)(x)= (x)- x for x KU().

Similarly we may define J by a means of the fibring

J* BU BUp p

where (ff/1)(y)= (y)/y for y 1 + gU(). For details see [13, Chapters V
and VIII].
The J-theory D-invariant D" o ,QS Jp x Z restricts to ve an H-map

D" SG J x (1)= J. This in fact ves a split fibring of infinite loopspaces

Cok Jp SGp J
which defines Cok J and yields a splitting of infinite loopspaces

Cok J x J SGp
when p @ 2 [16], [20].
Now let us consider the case p 2. Defined in the analogous manner we

have H-spaces BO x Z and BO and their coverings BSO, BSpin, BSO
and BSpin. Also there is a d-invariant D" QS BO x Z which restricts to
an H-map D" SG BO.

Set ff 3 and define (J) x Z by means of the fibring of infinite
loopspaces

(J)* x Z BO x Z BSpin.
Define other J-spaces by means of the following fibrings of infinite loopspaces.

(’) BSO BSp, J BSO BSO.
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For the (R)-structures we have

J2 BSO2 BSO2,
and similar fibrings giving (J)(R) and (J)(R).
The d-invariant

m. z
restricts to an H-map D: SG2 (J’2) (R).

Finally Sullivan’s solution of the Adams conjecture [!9] yields a commuta-
tive diagram in which the columns are split fibrings

Cok J2 Cok J2

 so?
In [12] this is shown to be a commutative diagram of infinite loopmaps. We

will need the splittings

CokJ xJ?=SG and CokJ. xBSO=(G/O).

2. The results

Let K,( ;Z/if) denote unitary K-homology with coefficients in Zipr. In
this section (Theorem 2.5) we show that several of the infinite loop maps
introduced in Section 1 induce isomorphisms in K-theory, real or complex. We
also show (Theorem 2.7) that B Cok Jp is a K-theory point. This last fact has
turned out to be quite useful [12], [17], [21].
The next result is a first approximation to what we want.

2.1. PROPOSITION. Let D be the d-invariant ofSection 1. Thenfor any prime,
p, and integer r >_ 1,

D,: K,(QS; Z/p’) K,(BU x Z;

is injective.

Proof. It is well known (for example [3])that K,(BU) is the polynomial
algebra on K,(BU(1)), with any coefficients, and that

K,(BU x Z) K,(BUe)[Uo, u
In [9] (see also [18])it is shown that

K,(QS; Zip’)- Z/p’[Op, Opt, Opk, 0,, O; ]
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where D,(O,)= Uo. Now Opk originates in Hom (R(Epk), Z), as explained in [9],
where R(G) is the complex representation ring of G. If ap, is an evaluation on a
pk-cycle we have

(2.2) of + p(O)-’ + p(O,),*- + ...+ po.
Let OP’ e K(BU

show that
Z) be the Adams operation. By means of (2.2) we will

O)=I 0 if t>k
(2.3) (D,(O,,), 1 otherwise.

Since ’ is primitive this shows that the (D,(0p,); > 1) are linearly indepen-
dent modulo decomposables. The injectivity of D, follows at once. Here we
have used the fact that

(XUo, Op’) (x, Op’) if x /(,(BUS; Z/p") and j e Z.

The homomorphism

Hom (R(E), Z) K,(QS o,;z/p )--:,(t: z; z/p’).
factors through the homomorphism induced by the inclusion of Z,

Hom (R(E), Z) Hom (R(U(pk)), Z) K,(BU(pk) x (pk); Z/p’).
Hence (D, ap,, ) is evaluation of ’ on a p-cycle. The inclusion Zipk

U(pk) is Nven by the regular representation3 y1 where y is the canonical
one-dimensional representation. Hen the Kronecker pairing with OP’ is given
by the trace of a pk-cycle on =o’ O’(Y) ’ YI’. This is p if > k and
zero otherwise.
Now ((0),) pk and (a, ) 0 for any of the decomposable terms

in (2.2)so applying ( 0) to (2.2)yields

pk(D, 0, ) + pk {pk if k
0 otherwise.

This equation holds in Zip for any s 2 1, which implies (2.3).

2.4. COROLLARY. t D be the J-theory d-invariant ofSection I and let be
its universal covering. Then for all r 1, each of the homomorphisms below is
injective. D," K,(QoS; Z/if) K,(J Z/p’) (p 2),

o,. r,(s; Z/p’) r,(; Z/p’) (p ),
o, r,(QoS; z/2") ,((
o,. r,(sa; z/e’) r,((i); z/),
B," K,(OoS; Z/2") K,((J)*; Z/2"),,. ,(g; z/’) ,((J); z/’).
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Proof. By universality of the d-invariants the K-theory d-invariants factor
through the J-theory D-invariants. This, together with the discussion of Section
1, accounts for the first four homomorphisms. D, is injective because, as spaces,
Qo SO Qo so x RP and J2 J2 RP.

2.5. THEOREM. Let D and D be as in Corollary 2.4. Then each of the maps

D" QoS--, J (p 2),
D" SGp-, Jop (p 2),
D" QoS (J’2 ,
o. -, (Ji)(R),

and Sullivan’s map (see Section 1) e" SG J2 induces isomorphisms in real or
complex K-cohomolo#y.

Proof When p 4:2 we have D: SGp jop is a split surjection (of spaces)
which induces an injection in K,( Zip’) by Corollary 2.4. Hence it induces
an isomorphism on K,( ZipS). The same must be true of the d-invariant on
each component of QSp, in particular on QoS. Now QS, SG,,J andJ have
finite homotopy groups consisting of p-torsion. By an easy argument (see [18,
Lemma 9.2]) using the K-theory universal coefficient theorem [2, p. 282 et seq.]
and the Kunneth formula [5, p. 113] we see that D* is an isomorphism on KU*.
The Bott sequence relating KO-theory and KU-theory [5, p. 207] now implies
D* is an isomorphism on KO*.
Now let p- 2. By the above argument it suffices to demonstrate isomor-

phisms in K,( Z/2"). Consider the following commutative diagram:

SG2 ,(jz)(R) ,BSO2

SG2 ’(Ji)(R) BOO2

BSO 
Here h sends a vector bundle V to V (R) w V, ?z’ is the universal cover of the map
e’ of Section 1 and the remaining maps are the canonical ones.
Most routes in (2.6) are obviously seen to commute. The triangle involving

D, e and h is easily seen to commute once one knows the definition of e. The
argument is given, for example, in [11, Appendix]. The map S2 BO2 is
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injective in K,( Z/2) because S2 SG2 is split and the rest of the compo-
site is the KO-theory D-invariant which, by Proposition 2.1, induces an injec-
tion since its composition with eomplexification BO*2 BUZz does. Since the
right hand column is an equivalence we see that (’), is injective. Hence (,’), is
an isomorphism since ,’ is a split surjection of spaces (see Section 1). Since

e’ ’ x 1R..o," SG2 S’G2 x RP -, (Jz)(R) x RP J2
we have proved the assertion about Sullivan’s map. From diagram (2.6) it is
now simple to show/ and hence D induce K,( Z/2")--isomorphisms and
the proof is complete.
The following result was first proved in [10] in the case p 4:2 and was first

proved in general in [18, Theorem 9.3 and 9.9].

2.7. THEOREM. Let p be any prime. Then the space B Cok Jp (i >_ 0)defined
in Section 1, has the same real or complex K-theory as a point.

Proof In each of the splittings SGp Cok Jp Jp, described in Section 1,
we have shown that the right projection is a K.( Z/ff)-isomorphism. By the
Kunneth formula /(.(Cok Jp; Z/if)= 0. The Rothenberg-Steenrod type of
spectral sequences [4], [15]

E2, Tor:,tx;zm (Z/p, Z/p)= K,(BX; Z/p)

for X B Cok Jp shows that /,(B+ Cok Jp; Z/p)= 0 for all > 0. The
proof is completed by a universal coefficient theorem argument similar to the
one used in the proof of Theorem 2.5.

2.8. K- and KO-cohomology

In order to render Theorem 2.5 of practical use the homotopy theorist needs
to know KO( and KU( of the spaces involved. This data may be derived
from [61, [7], [8].

First we recall that Pk" Jp Jp is an equivalence of infinite loopspaces for
any prime p and any integer k which is prime to p [8, III, Section 4.4], [12]. Also
when p 2,/93 induces an equivalence of infinite loopspaces/93: (J’) - (J’)(R).
Furthermore as infinite loopspaces SG2 S2 x RP and (Jz)(R)

RP x (J[)(R) where RP K(Z/2; 1). Hence the K- and KO-groups of all the
spaces in Theorem 2.5 are equal to those of QoSp or (oSp for suitable choices
of p. As explained in [9] if E is the union of the symmetric groups E,, then QS
and BE x Z have the same K-theory. BE is a torsion space so, by [6, Lemma
4.6], its representable K-theory and its inverse limit K-theory coincide and
from [7, Theorem 2.1] we obtain

0, R(Z.) ^.

Here R(E,)is the complex representation ring and )^ denotes IR(E,)-adic
completion. Similar results are true for the universal cover, BA, where A is
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the union of the alternating groups A, c E,. We therefore obtain

KX(BA) O, K (BAo) li.__m R(An)^.
Disjoint union of permutations endows these K-rings with "Hopf algebra"
structures

and

A" K*(BZoo) K*(BZoo) + K*(BEo)

A" K*(BAoo) K*(BAoo) + K*(BAoo)
where (R) is completed tensor product. If

d t

is the homomorphism induced by the sign homomorphism it is easy to see that
the Hopf algebra K*(BA) is the quotient of K*(BEoo) by the ideal (im (det)).
From [5, p. 172, Corollary 1.5] we know that all the generators of the R(E,)

are Burnside representations and hence real. Thus complexification,
c" RO(E,) R(,), is an isomorphism. This together with the results of [7,
Section 8] and the Bott sequence [5, p. 207] easily yield isomorphisms of
KO*(,)-Hopf algebras

(2.9) KO*(BZoo) - (li.__ RO(Z,) ^) (R) KO*(,),

- (li,__ RO(A,,) ) (R) KO*(*).KO*(BAoo

Here KO*(,)is the KO-theory of a point. We remark that

the isomorphism being induced by complexafication. Note that (R)-product and
inverse limits do not in general commute so that the isomorphisms of (2.9) have
to be verified with care. One may, for example, start with the isomorphism in
degree zero given by [7, Section 8] and then manipulate the Bott sequence.
To summarize the discussion of Section 2.8, we have the following isomor-

phisms. We write Kg., K{ for representable unitary, orthogonal K-theory re-
spectively and ) denotes p-localization.

2.10. THEOREM. Let A be R or C and let p be a prime.

(a) Let W denote one of the infinite loopspaces QoSp, SGp, Jp, Jp ifp 2 or
Qo S2, (J’2 )*. Then, as Hopf algebras,
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(b) Let X denote one of the infinite loopspaces OoS, S, (Jz), (J)(R).
Then, as Hopf algebras,

K(X)2 ((lj- R(A,,)^) (R) K(*)):
(c) Let Y denote one of the infinite loopspaces SG2, J2, J2, (J’2) (R). Then, as

Hopf algebras,

Here R(Z2) is the Hopf algebra KA(RP).
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