SOLVABLE GROUPS ADMITTING AN "ALMOST FIXED POINT FREE" AUTOMORPHISM OF PRIME ORDER

BY

Stephen M. Gagola, Jr.

1. Introduction and notation

In [9], Thompson has proved that a group admitting a fixed point free automorphism of prime order is necessarily nilpotent. In this paper, we relax somewhat the fixed point free hypothesis on the automorphism, but we do assume that the group in question is solvable. The specific hypothesis considered is the following:

Hypothesis 1.1. $\quad P$ is a group of prime order p, N is a solvable group and P acts on N as a group of automorphisms in such a way that for every prime divisor r of $|N|,[R, P]=R$ holds for every P-invariant Sylow r-subgroup R of N.

If p is not a Fermat prime (i.e., p is not of the form $1+2^{s}$) then the group N in the above hypothesis is necessarily nilpotent. This fact is a consequence of results appearing in a paper of E. Shult [8], although it is not explicitly stated there. A complete proof is given here.

The interesting case, occupying the bulk of this paper, is when p is a Fermat prime. In Section 4 we show that if $p \geq 17$, then N has a nilpotent normal 2-complement, equivalently, $N / \mathbf{F}(N)$ is a 2-group, where $\mathbf{F}(N)$ is the Fitting subgroup of N. For the remaining Fermat primes (3 and 5), $N / \mathbf{F}(N)$ need not be a 2-group, but some of its structure is determined. In particular, the possible prime divisors of the order of $N / \mathbf{F}(N)$ are determined (see Theorem 4.2(c)).

Whenever one group A acts on another group B as a group of automorphisms, the usual semidirect product $A B$ may be constructed, and this idea is used implicitly throughout this paper. One frequent occurance of this is the case when B is an $F[A]$-module for some field F. Another obviously is $A=P$ and $B=N$ in the situation of hypothesis 1.1 . Notice that this hypothesis is an example of a coprime action, as $|N|$ is necessarily prime to p.

The notation used throughout this paper is standard we hope, and we use [3] and [5] as general references for the standard group theoretical results needed. We also use [2] as a general reference for representation theory.

If G is a finite group, $\operatorname{Irr}(G)$ denotes the set of irreducible (complex) characters of G, and for $\chi \in \operatorname{Irr}(G)$, let det $\chi \in \operatorname{Irr}(G)$ denote the linear character
defined by

$$
(\operatorname{det} \chi)(g)=\operatorname{det} \mathfrak{X}(g)
$$

where \mathfrak{X} is any representation affording χ. If $N \triangleleft G$, we sometimes view characters of G / N as characters of G with N in their kernels (and similarly with Brauer characters).

2. Some preliminary lemmas and needed facts

Lemma 2.1. Let G be a group of the form $P R$ where $|P|=p$ is a prime, and $R=[R, P]$ is a nontrivial r-group for some prime $r \neq p$. Assume $Z(R)$ is cyclic, P acts trivially on $Z(R)$, and that every characteristic abelian subgroup of R is contained in the center of R. Then R is extra special, and if r is $\operatorname{odd}, \exp (R)=r$.

Proof. See Lemma 1.2 of [4].
Let V be an irreducible $F[G]$-module over a field F of characteristic q. Then $\Delta=\operatorname{End}_{F[G]}(V)$ is a division ring finite dimensional over F, and if E is a maximal subfield of Δ (necessarily containing F) then V may be viewed as an irreducible $E[G]$-module. Since $\operatorname{End}_{E[G]}(V)=E \cdot 1_{V}$, the module V is absolutely irreducible as an $E[G]$-module. By a "Brauer character of V " we shall always mean a Brauer character of V viewed as an $E[G]$-module. It need not be uniquely determined, but this does not matter for our purposes. Notice that the degree of a Brauer character associated with V is $\leq \operatorname{dim}_{F} V$, with equality iff F is a splitting field for V.

Part (a) of the following lemma is implied by Theorem 3.1 and Corollary 3.2 of [8].

Lemma 2.2. Suppose $P S$ is a group where P has prime order $p>2$, and $S=[S, P]$ is a nontrivial s-group where s is a prime (different from p). Let V be an $F[P S]$-module where the characteristic of F is $q \neq s, p$. Finally assume $[V, P]=V$. Then:
(a) If $[V, S] \neq\{0\}$, then $s=2$ and p is a Fermat prime.
(b) If PS is faithful and irreducible on V, then $\operatorname{dim}_{F} V=p-1$, and S is an extra special 2-group of order $2(p-1)^{2}$. Moreover, the $F[P S]$-module V is unique up to isomorphism, and so is the group PS.

Proof (Sketch). Notice that if $[V, S] \neq 0$ then $C_{P S}(U)$ is properly contained in S for any irreducible submodule U of V which is contained in $[V, S]$. Thus, the hypothesis of (b) are satisfied with $P S$ replaced by $P S / C_{P S}(U)$ and V replaced by U, and so (b) implies (a).

Assume now the hypothesis of (b) is satisfied. Let $E=\operatorname{End}_{F[P S]}(V)$ so that E is a finite field containing an isomorphic copy of F and view V as an $E[P S]-$
module. Let $U=V \otimes_{E} K$ where K is a finite extension of E such that K is a splitting field for all subgroups of $P S$.

By standard arguments (Clifford's Theorem and Mackey's Theorem) it is easy to establish that U_{S} is irreducible and $U_{S_{0}}$ is homogeneous for all $S_{0} \triangleleft P S$ with $S_{0} \subseteq S$. By Lemma 2.1 then, S is extra special of order $s^{2 a+1}$ say.

If ϕ is the Brauer character of U then $\phi \in \operatorname{Irr}(P S)$ as $q \nmid|P S|$. Also $[U, P]=U$ implies $\left(\phi_{P}, 1_{P}\right)_{P}=0$. Now the characters of $P S$ may be computed (see Satz 17.13 on p. 574 of [5]) and in particular, $\phi_{P}=m \rho+\delta \mu$ where ρ is the regular character of $P, \mu \in \operatorname{Irr}(P)$ and $\delta= \pm 1$. Since $\left(\phi_{P}, 1_{P}\right)_{P}=0$, it follows that $m=1, \mu=1_{P}$ and $\delta=-1$. Thus $\phi_{P}=\rho-1_{P}$.

Hence, $s^{a}=\phi(1)=p-1$. Since $p>2, p-1$ is even, forcing $s=2$ and $p=1+2^{a}$, a Fermat prime. Also $|S|=2^{2 a+1}=2(p-1)^{2}$.

Again, from the character theory of PS, ϕ must be rational valued. Hence $\operatorname{tr}\left(x_{U}\right) \in G F(q) \subseteq F$, where $x_{U}: U \rightarrow U$ is the linear transformation determined by $x \in P S$. All Schur indices for finite fields are trivial, so $F=E$ and $\operatorname{dim}_{K} U=$ $\operatorname{dim}_{F} V=p-1$, and V is unique up to isomorphism. Finally, there are two extra special groups of order $2(p-1)^{2}$ up to isomorphism, but only one of these admits a group of automorphisms of order p. A Sylow p-subgroup of the full automorphism group of this group has order p, and it readily follows that the group $P S$ is unique up to isomorphism.

Corollary 2.3. Let PS be a group where P has prime order $p>2$, and $S=[S, P]$ is a nontrivial s-group for some prime $s \neq p$. Assume PS acts faithfully on a finite abelian group A having order prime to $p s$ and which satisfies $[A, P]=A$. Then $s=2, p$ is a Fermat prime and S is a subdirect product of isomorphic extra special 2-groups, each having order $2(p-1)^{2}$.

Proof. Since the order of A is prime to $p s, P S$ acts faithfully on $A / \phi(A)$ and $[A / \phi(A), P]=A / \phi(A)$. Clearly, we may replace A by $A / \phi(A)$ so as to assume $\phi(A)=1$. Then, A is a completely reducible abelian group under $P S$ and we may write $A=V_{1} \dot{+} V_{2} \dot{+} \cdots \dot{+} V_{k}$ where each V_{i} is an irreducible $G F\left(q_{i}\right)$ $[P S]$-module for some prime q_{i} different from p and s. Then, $\left[V_{i}, P\right]=V_{i}$ for all i, and $P S$ is faithful on $[A, S]$. It follows that S is a subdirect product of the groups $S / \mathbf{C}_{P S}\left(V_{i}\right)$ where i ranges over all indices for which $\left[V_{i}, S\right]=V_{i}$, and we are done by Lemma 2.2(b).

Lemma 2.4. Let P be a cyclic group of prime order p, and let P act on a group N satisfying $O^{q, r}(N)<O^{q}(N)<N$. Assume

$$
\left[N / O^{q}(N), P\right]=N / O^{q}(N) \quad \text { and } \quad\left[O^{q}(N) / O^{q, r}(N), P\right]=O^{q}(N) / O^{q, r}(N)
$$

If q is odd, or if p is not a Fermat prime, then

$$
O^{q, r}(N)=O^{q}(N) \cap O^{r}(N)
$$

Proof. In general, $O^{q, r}(N) \leq O^{q}(N) \cap O^{r}(N)$, and the lemma is unaffected if $O^{q, r}(N)$ is factored out. Thus, we may assume $O^{q, r}(N)=1$. Let $R=O^{q}(N)$ and let Q be a P-invariant Sylow q-subgroup of N. Then R is the unique Sylow r-subgroup of N. If $\phi(R) \neq 1$, then by induction, $Q \phi(R) / \phi(R) \triangleleft N / \phi(R)$. Hence $[Q, R] \leq \phi(R)$, and so $[Q, R]=1$, proving the lemma. Thus, we may assume $\phi(R)=1$ so that R is a vector space over $G F(r)$. For odd p, the hypotheses of Lemma 2 are satisfied with $S=Q$ and $R=V$. Thus, if $[Q, R] \neq 1$ then $q=2$ and p is a Fermat prime, a contradiction, and we are finished in this case. Thus, we may assume $p=2$. If $O_{q}(N)>1$, then by induction $Q / O_{q}(N)$ is normal in $N / O_{q}(N)$ and hence $Q \triangleleft N$. Thus, we may assume $O_{q}(N)=1$. Hence, $P Q$ is faithful on R. Now, P inverts some element $x \neq 1$ of Q and so P acts without fixed points on $\langle x\rangle R$. By Thompson's theorem [9], $\langle x\rangle R$ is nilpotent, which contradicts that $\langle x\rangle$ is faithful on R. (Actually, since $p=2$, a more elementary argument can be used to prove directly that $\langle x\rangle R$ is abelian.)

3. Representation theory

This section contains some technical results from representation theory which will be useful for the next section.

Lemma 3.1. Let G be a group of the form $P R$ where P has prime order p and $R=[R, P]$ is a nontrivial r-group for some prime r (necessarily different from p). Let U be an $F[P R]$-module where F is a finite field of characteristic r. Then, $[R U, P]=R U$ if and only if $\operatorname{hom}_{F[P R]}(U, F)=\{0\}$.

Proof. In general, we have $[R U, P]=[R, P][R, P, U][U, P]$. Since $[R, P]=R$, this simplifies to $[R U, P]=R[R, U][U, P]$. The last two factors are contained in U. Thus, $[R U, P]=R U$ is equivalent to $[R, U][U, P]=U$. In additive form, this may be written as $U=[U, R]+[U, P]$. Notice, $[U, R]$ is the radical of U when viewed either as an $F[R]$-module or as an $F[P R]$-module, and the equation is equivalent to the statement that U does not have the principal $F[P R]$-module as a homomorphic image, i.e., $\operatorname{hom}_{F[P R]}(U, F)=\{0\}$.

Lemma 3.2. Let V be an irreducible $F[G]$-module and W an irreducible $F[H]-$ module where H is a subgroup of G. Assume F is a finite field which is a splitting field for all subgroups of G. Assume also that the Brauer characters of V and W may be lifted to ordinary irreducible characters, say χ and λ respectively, and that $\left(\chi_{H}, \lambda\right)_{H} \neq 0$. Then W is a homomorphic image of V_{H}.

Proof. Let the characteristic of F be q. Then, F is obtained from the prime subfield by adjoining a primitive m th root of unity, where $q \nmid m$. Moreover, since F is a splitting field for all the cyclic subgroups of G, it follows that the exponent of G divides $q^{a} m$ for some a. Let K denote the algebraic number field obtained by adjoining a primitive $q^{a} m$ th root of 1 to the rationals. Hence, K is a splitting field (in characteristic 0) for all subgroups of G. Let R be the localiza-
tion of the algebraic integers of K relative to some prime ideal containing q, and let \mathscr{P} denote the unique prime ideal of R. Then $R / \mathscr{P} \cong F$, and we may regard $R / \mathscr{P}=F$. As R is a P.I.D., χ is realizable in R, and we choose an R-free $R[G]$-module, say X_{0} which affords χ. Let $X=X_{0} \otimes_{R} K$, and regard $X_{0} \subseteq X$. Thus, X is an irreducible $K[G]$-module affording χ. Since χ is a lift of the Brauer character affording V, the $F[G]$-module $X_{0} / \mathscr{P} X_{0}$ is isomorphic to V.

By hypothesis, $\left(\chi_{H}, \lambda\right)_{H} \neq 0$, so that λ is a constituent of χ_{H}. Since X_{H} is completely reducible, it follows that X_{H} contains a maximal $K[H]$-module, say M, such that X / M affords λ. Let $M_{0}=M \cap X_{0}$. Then M_{0} is an R-pure $R[H]-$ submodule of X_{0}, and the quotient X_{0} / M_{0} is a free R-module. (This construction of M_{0} in X_{0} is the same idea appearing in Theorem 1 of [10]). Now, X_{0} / M_{0} affords λ, and it follows that the $F[H]$-module $\left(X_{0} / M_{0}\right) / \mathscr{P}\left(X_{0} / M_{0}\right)$ is isomorphic to W, as λ is a lift of the Brauer character for W. Thus, $X_{0} / \mathscr{P} X_{0}$ maps onto W, and since $V \cong X_{0} / \mathscr{P} X_{0}$, we have $\operatorname{hom}_{H}\left(V_{H}, W\right) \neq\{0\}$.

The next technical lemma is the first indication that, in the situation of Hypothesis 1.1, exceptional sets of primes will have to be considered in case p is 3 or 5.

Lemma 3.3. Let G be a group of the form $G=P S Q$, where P is a cyclic group of prime order p, and p is a Fermat prime. Assume $Q=[Q, P]$ is a normal q-subgroup of G and that Q is an extra special q-group of order q^{p} and exponent q. Also, assume that $S=[S, P]$ is an extra special 2-group of order $2(p-1)^{2}$ and that PS is faithful and irreducible on $Q / Z(Q)$. Let λ be a nonprincipal irreducible character of G with kernel SQ, and let χ be a faithful irreducible character of PSQ whose restriction to Q is irreducible, and which is canonical for χ_{Q}. Then $\left(\chi_{P S}, \lambda_{P S}^{k}\right)_{P S} \neq 0$ for $0 \leq k \leq p-1$ unless $p=3$ and $q \in\{5,7,11,13,23\}$ or unless $p=5$ and $q \in\{3,7,11\}$.

Proof. Since χ_{Q} is irreducible, it follows that $Z(Q)=Z(G)$. Moreover, if $Z(S)=\langle s\rangle$, then s inverts $Q / Z(Q)$ and centralizes $Z(Q)$. It follows that $I=\left\{y \in Q \mid y^{s}=y^{-1}\right\}$ is a set of coset representations for $Z(Q)$ in Q, and obviously, $P S$ permutes I.

Let X be a $K[P S Q]$-module affording χ where K is a splitting field of characteristic zero for χ. Now, if $\rho: G \rightarrow G L(X)$ is the corresponding representation (i.e., $v \rho(g)=v g$ for $v \in X, g \in G$) then G acts on $\operatorname{End}_{K}(X)$ as follows: for $f \in \operatorname{End}_{K}(X)$ and $g \in G, f^{g}=\rho(g)^{-1} f \rho(g)$. The space $\operatorname{End}_{K}(X)$ may then be viewed as a $K[P S Q]$-module in the natural way, and the character of this module is $\chi \bar{\chi}$.

Since ρ_{Q} is irreducible, we know from the representation theory of Q that $\rho(I)$ is a basis for $\operatorname{End}_{K}(X)$. Thus, $\operatorname{End}_{K}(X)$ is a permutation module for PS. Moreover, since $1 \in I$ is the only element fixed by P, P acts fixed point freely on $I-\{1\}$ and hence on $\rho(I)-\{\rho(1)\}$. Thus, except for 1 , all point stabilizers are
contained in S. Thus, we have

$$
(\chi \bar{\chi})_{P S}=1_{P S}+\sum_{i}\left(1_{S_{i}}\right)^{P S}
$$

where the S_{i} are subgroups of S (possibly with repetition).
Now, with λ as in the statement of the lemma, we have, for any i,

$$
\left(1_{P S}-\lambda_{P S}, 1_{S_{i}}^{P S}\right)_{P S}=\left(1_{S_{i}}-\lambda_{S_{i}}, 1_{S_{i}}\right)_{s_{i}}=0
$$

as ker $\lambda \supseteq S \supseteq S_{i}$. Clearly $\left(1_{P S}-\lambda_{P S}, 1_{P S}\right)_{P S}=1$, and it follows that

$$
\left(1_{P S}-\lambda_{P S}, \chi \bar{\chi}\right)_{P S}=1
$$

But $\left(1_{P S}-\lambda, \chi \bar{\chi}\right)_{P S}=\left(\left(1_{P S}-\lambda\right) \chi, \chi\right)_{P S}$. Write

$$
\chi_{P S}=\sum_{j=0}^{p-1} a_{j} \lambda^{j}+\sum_{j=0}^{p-1} b_{j} \lambda^{j} \psi+\eta
$$

where $\psi \in \operatorname{Irr}(P S)$ is the unique faithful, rational character, and η is a sum of characters of the form $\mu^{P S}$, where μ is a linear character of S. Then $(1-\lambda) \eta=0$ so that

$$
\left(\left(1_{P S}-\lambda_{P S}\right) \chi_{P S}, \chi_{P S}\right)_{P S}=\sum_{j=0}^{p-1} a_{j}\left(a_{j}-a_{j-1}\right)+\sum_{j=0}^{p-1} b_{j}\left(b_{j}-b_{j-1}\right)=1
$$

where all subscripts are read mod p. Hence,

$$
\begin{aligned}
\sum_{j=0}^{p-1}\left(a_{j}-a_{j-1}\right)^{2}+\sum_{j=0}^{p-1}\left(b_{j}-b_{j-1}\right)^{2} & =2\left\{\sum_{j=0}^{p-1} a_{j}\left(a_{j}-a_{j-1}\right)+\sum_{j=0}^{p-1} b_{j}\left(b_{j}-b_{j-1}\right)\right\} \\
& =2 .
\end{aligned}
$$

We already know $\chi_{P S}$ is rational valued, so $a_{1}=a_{2}=\cdots=a_{p}$ and $b_{1}=b_{2}=$ $\cdots=b_{p}$. Thus, the above equality yields either $a_{0}=a_{1}$ (and $\left|b_{0}-b_{1}\right|=1$) or $\left|a_{0}-a_{1}\right|=1$ (and $b_{0}=b_{1}$). The lemma asserts that $a_{0} a_{1} \neq 0$ except for $p=3, q \in\{5,7,11,13,23\}$ and $p=5, q \in\{3,7,11\}$.

To compute these inner products, we need to compute some values of $\chi_{P S}$. We remark that I. M. Isaacs, in a different, more general context, has described an algorithm for computing values of the canonical extension χ of χ_{Q}. See [6].

Let $x \in S$ be a noncentral involution (x exists only for $p>3$). Now $\psi(x)=0$ where $\psi \in \operatorname{Irr}(P S)$ is the unique faithful, rational character. Thus, exactly half of the "eigenvalues for $\psi(x)$ " are negative ones, and the other half are ones. As ψ is the Brauer character for $Q / Z(Q)$, it follows that $\left|\mathbf{C}_{Q / Z(Q)}(x)\right|=q^{(p-1) / 2}$. Since $(\chi \bar{\chi})_{P S}$ is the permutation character of PS on $Q / Z(Q)$, it follows that $\chi(x)^{2}=q^{(p-1) / 2}$ and so $\chi(x)=\delta q^{(p-1) / 4}$, where δ is a sign. We use the fact that $\operatorname{det} \chi(x)=1$ to compute δ. Suppose $\rho(x)$ has u eigenvalues equal to 1 , and v eigenvalues equal to -1 . Then

$$
\chi(x)=u-v=\delta q^{(p-1) / 4} \quad \text { and } \quad \chi(1)=u+v=q^{(p-1) / 2}
$$

As det $\chi(x)=1$ it follows that v is even. Solving for v yields

$$
v=\frac{q^{(p-1) / 2}-\delta q^{(p-1) / 4}}{2}
$$

Therefore, the numerator must be congruent to $0 \bmod 4$. Now if $p>5$, then $(p-1) / 2$ and $(p-1) / 4$ are powers of 2 , both ≥ 2, and

$$
q^{(p-1) / 2} \equiv q^{(p-1) / 4} \equiv 1 \quad \bmod 4
$$

This proves $\delta=1$. If $p=5$, then the numerator is congruent to $1-\delta q \bmod 4$ so $q \equiv \delta(\bmod 4)$. Hence δ is determined.

If $x \neq 1$ is any element of $P S$ which is not a noncentral involution, then $\langle x\rangle$ acts Frobeniusly on $Q / Z(Q)$, which implies that $\chi(x)^{2}=\left|\mathbf{C}_{Q / Z(Q)}(x)\right|=1$. Thus $\chi(x)= \pm 1$.

The case $p \geq 17$. In this case, all character values for $\chi_{P S}$ are ≥-1 and we have

$$
\begin{aligned}
a_{0} & =\left(\chi_{P S}, 1_{P S}\right)_{P S} \\
& =\frac{1}{|P S|} \sum_{x \in P S} \chi(x) \\
& \geq \frac{1}{|P S|}(\chi(1)-(|P S|-1)) \\
& >\frac{\chi(1)}{|P S|}-1
\end{aligned}
$$

Now $\chi(1)=q^{(p-1) / 2}$ and $|P S|=\left(1+2^{s}\right) \cdot 2^{2 s+1}$ where $p=1+2^{s}, s \geq 4$. Thus a_{0} will be greater than one if

$$
q^{2 s-1}>2 \cdot\left(1+2^{s}\right) \cdot 2^{2 s+1}
$$

This last inequality is implied by the inequality

$$
q^{2 s-1}>2 \cdot 2^{s+1} \cdot 2^{2 s+1}=2^{3 s+3}
$$

which is equivalent to $q>2^{(3 s+3) / 2 s-1}$. Since $p=1+2^{s}$ is a Fermat prime, s is a power of 2 , and in our case $s \geq 4$. If $s \geq 8$, the fractional exponent in the last inequality is less than 1 so that all odd primes q satisfy it. For $s=4$ the exponent is $15 / 8<2$, so all odd primes $q>2^{2}=4$ satisfy the inequality. It suffices now to compute a_{0} for $p=17$ and $q=3$. In this case, S cannot be a central product of 4 dihedral groups of order 8, as, in this group there are $2^{8}-2^{4}=240$ noncentral involutions (which could not be fixed point freely permuted by an automorphism of order 17, as 17 does not divide 240). Hence, S is the central product of three dihedral groups with one quaternion group. For this group, the number of noncentral involutions is $17 \cdot 14$. Hence

$$
a_{0} \geq \frac{1}{17 \cdot 512}\left(3^{8}+17 \cdot 14 \cdot 3^{4}-(17 \cdot 512-17 \cdot 14-1)\right)>1
$$

We have now shown that for $p \geq 17, a_{0}>1$ and hence $a_{1} \geq 1$. The lemma is now proved for $p \geq 17$.

The cases $p=5$ and $p=3$. The explicit values of $\chi_{P S}$ are needed in order to handle the cases $p=5$ and $p=3$.

For simplicity, write $\chi(x)=\chi(k)$ if the order of x is k and $k \neq 2$. Let $\chi(2)$ denote the value $\chi(s)$ where s is the unique central involution of S, and let $\chi\left(2^{\prime}\right)$ denote $\chi(x)$ where x is a noncentral involution of S (which exists for $p=5$, but not when $p=3$). We already know $\chi\left(2^{\prime}\right)=\delta q$ where δ is the unique sign satisfying $q \equiv \delta(\bmod 4)$. The values of $\chi_{P S}$ at all other nonidentity elements are signs. Let s be the central involution of S. If s has 1 as an eigenvalue with multiplicity u on X, and -1 with multiplicity v, then

$$
u-v=\chi(2), \quad u+v=\chi(1)=q^{(p-1) / 2}
$$

Thus $2 v=q^{(p-1) / 2}-\chi(2)$. Now, det $\chi_{P S}=1_{P S}$, so v must be even, and $q^{(p-1) / 2} \equiv \chi(2)(\bmod 4)$. This determines $\chi(2)$ as $\chi(2)$ is a sign. In fact, for $p=5$, $\chi(2) \equiv q^{2} \equiv 1(\bmod 4)$, so $\chi(2)=1$.

Now let x be an element of order 4. As x^{2} is a central involution, and $\chi(x)$ is a sign, we have

$$
\chi(4)=\chi(x)=u_{1}-u_{2}+(v / 2) i+(v / 2)(-i)=u_{1}-u_{2}
$$

where $u_{1}+u_{2}=u=\left(q^{(p-1) / 2}+\chi(2)\right) / 2$. Now, u_{2} must be even, as $\operatorname{det} \chi(x)=1$. But

$$
u_{2}=\frac{q^{(p-1) / 2}+\chi(2)-2 \chi(4)}{4}
$$

and thus $q^{(p-1) / 2}+\chi(2)-2 \chi(4) \equiv 0(\bmod 8)$. This determines $\chi(4)$ uniquely. Notice that for $p=5$,

$$
q^{(p-1) / 2}=q^{2} \equiv 1(\bmod 8)
$$

so $\chi(2)=1$ and hence $\chi(4)=1$. The only elements remaining are those of orders $2 p$ and p. Now, since $\chi_{P S}$ is rational valued, we have $\chi\left(g^{p}\right) \equiv \chi(g)(\bmod p)$ for any $g \in P S$. Thus

$$
\chi(2 p) \equiv \chi(2)(\bmod p) \quad \text { and } \quad \chi(p) \equiv \chi(1)(\bmod p) .
$$

Thus $\chi(2 p)=\chi(2)$ and $\chi(p)$ is the unique sign satisfying $q^{(p-1) / 2} \equiv \chi(p)(\bmod p)$.
We now tabulate these values below. Let δ, δ_{4} and δ_{p} denote the unique signs satisfying the congruences

$$
\delta \equiv q(\bmod 4), \quad \delta_{4} \equiv q^{(p-1) / 2}(\bmod 4), \quad \delta_{p} \equiv q^{(p-1) / 2}(\bmod p)
$$

Also, let ε be the sign satisfying $q+\delta_{4}-2 \varepsilon \equiv 0(\bmod 8)$.

Element of $P S$	Value when $p=5$	Value when $p=3$
1	q^{2}	q
2 (central)	1	δ_{4}
2^{\prime} (noncentral)	δ_{q}	(no such elements when $p=3$)
4	1	ε
p	δ_{p}	δ_{p}
$2 p$	1	δ_{4}

We note that for $p=5, S$ must be the central product of a dihedral group with a quaternion group. Otherwise, S would have 12 elements of order 4, which could not be permuted fixed point freely by an automorphism of order 5 . Hence, when $p=5, S$ has 10 noncentral involutions, and 20 elements of order 4. Also, there are $\frac{1}{2}(p-1)|S|=64$ elements of order p, and the same number of order $2 p$. Thus

$$
\begin{aligned}
a_{0} & =\left(\chi_{P S}, 1_{P S}\right)_{P S} \\
& =\frac{1}{160}\left(q^{2}+1+10 \delta q+20+64\left(1+\delta_{p}\right)\right) \\
& =\frac{1}{160}\left((q+7 \delta)(q+3 \delta)+64\left(1+\delta_{p}\right)\right) .
\end{aligned}
$$

It is easy to check that $a_{1}=\left(\chi_{P S}, \lambda\right)_{P S}$ satisfies $a_{1}=a_{0}$ when $\delta_{p}=-1$ and $a_{1}=a_{0}-1$ when $\delta_{p}=1$. Now

$$
a_{0} \geq \frac{1}{160}((q-7)(q-3))>1 \quad \text { when } q \geq 19
$$

and hence it suffices to consider odd primes q less than 19 (and $\neq 5$). If q is 17 or 13 then $\delta=1$ so

$$
a_{0} \geq \frac{1}{160}((13+7)(13+3))>1
$$

For the remaining primes $(q=3,7,11)$ we tabulate the following.

q	δ	δ_{p}	a_{0}	a_{1}
3	-1	-1	0	0
7	-1	-1	0	0
11	-1	1	1	0

This proves the lemma when $p=5$.
When $p=3, S$ is the quaternion group of order 8 , in which there are no noncentral involutions, and 6 elements of order 4. In PS there are 8 elements of order 3 and 8 of order 6 . We have

$$
a_{0}=\left(\chi_{P S}, 1_{P S}\right)_{P S}=\frac{1}{24}\left(q+\delta_{4}+6 \varepsilon+8 \delta_{p}+8 \delta_{4}\right)
$$

Thus, $a_{0} \geq(1 / 24)(q-23)>1$, when $q>47$, and hence $a_{0}, a_{1} \neq 0$ when $q>47$. We remark that when δ_{p} and δ_{4} are of opposite signs, then $a_{0}=a_{1}$ and for $\delta_{p}=\delta_{4}=1$ we have $a_{1}=a_{0}-1$, while for $\delta_{p}=\delta_{4}=-1$ we have $a_{1}=a_{0}+1$. The following table is easily worked out:

q	5	7	11	13	17	19	23	29	31	37	41	43	47
δ_{4}	1	-1	-1	1	1	-1	-1	1	-1	1	1	-1	-1
ε	-1	-1	1	-1	1	1	-1	-1	-1	-1	1	1	-1
δ_{p}	-1	1	-1	1	-1	1	-1	-1	1	1	-1	1	-1
a_{0}	0	0	0	1	1	1	0	1	1	2	2	2	1
a_{1}	0	0	1	0	1	1	1	1	1	1	2	2	2

From the table, we have $a_{1} a_{0}=0$ exactly when $q \in\{5,7,11,13,23\}$, and this completes the entire proof of Lemma 3.3.

Corollary 3.4. Let G have a normal series $Q \triangleleft S Q \triangleleft P S Q$ where P is a cyclic group of prime order $p, S=[S, P]$ is an extra special 2-group of order $2(p-1)^{2}$ and $Q=[Q, P]$ is an extra special q group of order q^{p} and exponent q (where $2 \neq q \neq p$). Assume PS acts faithfully and irreducibly on $Q / Z(Q)$. Let U be a faithful irreducible $F[G]$-module where F is a finite field of characteristic 2 which is a splitting field for all subgroups of G. Assume U_{Q} is irreducible. Then

$$
\operatorname{hom}_{F[P S]}\left(U_{P S}, F\right) \neq\{0\}
$$

unless $p=3$ and $q \in\{5,7,11,13,23\}$ or unless $p=5$ and $q \in\{3,7,11\}$.
Proof. Let L be a faithful, irreducible $F[P S Q / S Q]$-module, regarded as an $F[P S Q]$-module. Write

$$
L^{k}=L \otimes_{F} L \otimes_{F} \cdots \otimes_{F} L(k \text { times }) .
$$

Then, $U, U \otimes L, U \otimes L^{2}, \ldots, U \otimes L^{p-1}$ is a complete list of irreducible $F[P S Q]-$ modules whose restriction to Q is U_{Q}. Notice

$$
\begin{aligned}
\operatorname{hom}_{F[P S]}\left(\left(U \otimes L^{k}\right)_{P S}, F\right) & \cong \operatorname{hom}_{F[P S]}\left(U_{P S},\left(\left(L^{k}\right)^{\wedge} \otimes F\right)_{P S}\right) \\
& \cong \operatorname{hom}_{F[P S]}\left(U_{P S}, L_{P S}^{p-k}\right)
\end{aligned}
$$

It follows that $\left(U \otimes L^{k}\right)_{P S}$ maps onto F for all k if and only if $U_{P S}$ maps onto $\left(F \oplus L \oplus L^{2} \oplus \cdots \oplus L^{p-1}\right)_{P S}$. Notice that this last module is really just the regular $F[P S Q / S Q]$-module. It therefore suffices to prove that $U_{P S}$ maps onto $F \oplus L \oplus L^{2} \oplus \cdots \oplus L^{p-1}$ unless $p=3$ and $q \in\{5,7,11,13,23\}$ or unless $p=5$ and $q \in\{3,7,11\}$. Clearly, we may replace U by any of the modules $U \otimes_{F} L^{k}$, so that we may assume U is the "canonical" extension of U_{Q}. (This is the unique extension of U_{Q} to U satisfying $\operatorname{det} x_{U}=1$ for every $x \in P S$).

From now on, U is an irreducible $F[G]$-module with U_{Q} irreducible and U canonical for U_{Q}. Let ϕ be the Brauer character of U. By the Fong-Swan Theorem, there exists an ordinary irreducible character χ of G such that χ agrees with ϕ on elements of odd order. (For a proof of the Fong-Swan Theorem, see Theorem 72.1 on p. 473 of [2]. There is a more conceptual,
character theoretic proof of this theorem, given in [7]. In fact, because of the specific nature of the group $G=P S Q$, a separate argument may be given to prove the existence of χ, without appealing to the Fong-Swan Theorem.)

Clearly, the module L has a Brauer character which may be lifted to an ordinary character of PSQ/SQ, say λ. Since χ is the canonical extension of χ_{Q}, the previous lemma implies $\left(\chi_{P S}, \lambda_{P S}^{k}\right)_{P S} \neq 0$ for $0 \leq k \leq p-1$ except when $p=3$ and $q \in\{5,7,11,13,23\}$ or when $p=5$ and $q \in\{3,7,11\}$. Thus, by Lemma 3.2, $U_{P S}$ maps onto $\left(F \oplus L \oplus \cdots \oplus L^{p-1}\right)_{P S}$ unless $p=3$ and $q \in\{5,7$, $11,13,23\}$ or $p=5$ and $q \in\{3,7,11\}$, and this completes the proof of Corollary 3.4.

4. Main results

The first theorem of this section is a generalization of Corollary 3.4.
Theorem 4.1. Let G be a group of the form $G=P S Q$ where $|P|=p>2$ is a prime. Assume $Q=[Q, P] \triangleleft G$ is a q-group, and $S=[S, P]$ is a 2-group, where $2 \neq q \neq p$. Assume also that $\mathbf{C}_{P S}(Q)=1$. Let U be a faithful $F[G]$-module where F is a finite field of characteristic 2 , and suppose $U=[U, S]+[U, P]$. Then:
(a) $p=3$ and $q \in\{5,7,11,13,23\}$ or $p=5$ and $q \in\{3,7,11\}$.
(b) Q is a nonabelian group of exponent q and class 2.

Proof. The hypothesis $U=[U, S]+[U, P]$, which by Lemma 3.1 is equivalent to $\operatorname{hom}_{F[P S]}\left(U_{P S}, F\right)=\{0\}$, is unchanged if we replace F by any finite extension field, say E, and U by $U \otimes_{F} E$. We may therefore assume that F is a splitting field for all subgroups of G. We now prove (a) and (b) together by induction on $\operatorname{dim}_{F} U+|G|$.

Since $O_{2}(G)=1, G$ acts faithfully on $U / J(U)$ where $J(U)$ is the radical of U. If $J(U) \neq\{0\}$, we are done by induction, so assume $J(U)=\{0\}$. Hence, U is completely reducible, and we may write $U=U_{1} \dot{+} \cdots \dot{+} U_{i}$ where the U_{i} are simple $F[G]$-modules. If $Q \subseteq \mathbf{C}_{G}\left(U_{i}\right)$ for some i, then G is faithful on U / U_{i} and induction applies again. Thus, we may assume $Q \nsubseteq \mathbf{C}_{G}\left(U_{i}\right)$ for all i. Suppose $S \subseteq \mathbf{C}_{G}\left(U_{i}\right)$ for some i and let $\bar{G}=G / \mathbf{C}_{G}\left(U_{i}\right)$. Then $\bar{G}=\bar{P} \bar{Q}$ acts faithfully on U_{i} with $[\bar{Q}, \bar{P}]=\bar{Q}$ and $\left[U_{i}, \bar{P}\right]=U_{i}$. The hypotheses of Lemma 2.4 are satisfied with $N=\bar{Q} U_{i}$ and $r=2$. By that lemma, \bar{Q} centralizes U_{i}, which is a contradiction. Thus, $S \nsubseteq \mathbf{C}_{G}\left(U_{i}\right)$ for all i. Since $O_{2}\left(G / \mathbf{C}_{G}\left(U_{i}\right)\right)=\overline{1}$ for all i, it follows that $\operatorname{PSC}_{G}\left(U_{i}\right) / \mathbf{C}_{G}\left(U_{i}\right)$ acts faithfully on $Q \mathbf{C}_{G}\left(U_{i}\right) / \mathbf{C}_{G}\left(U_{i}\right)$ for all i. If $l>1$, then induction applies and (a) follows. From (b), $Q \mathbf{C}_{G}\left(U_{i}\right) / \mathbf{C}_{G}\left(U_{i}\right)$ is a nonabelian q-group of exponent q and class 2 , for each i. Since Q is a subdirect product of these groups, the same is true of Q itself.

Thus, we may assume $l=1$, i.e., U is an irreducible $F[G]$-module. If $U_{S Q}$ reduces, then $U \cong Y^{G}$ for some irreducible $F[S Q]$-module Y. Then $\left.U_{P S} \cong Y^{G}\right|_{P S} \cong\left(Y_{S}\right)^{P S}$, and

$$
\operatorname{hom}_{F[P S]}\left(U_{P S}, F\right) \cong \operatorname{hom}_{F[P S]}\left(\left(Y_{S}\right)^{P S}, F\right) \cong \operatorname{hom}_{F[S]}\left(Y_{S}, F\right) \neq\{0\}
$$

a contradiction. Hence, $U_{S Q}$ is irreducible.

Suppose U_{Q} is not homogeneous. Then, by standard arguments, U is induced from a proper subgroup of the form $P S_{0} Q$ where S_{0} is a P-invariant subgroup of S. We may assume that $P S_{0} Q$ is a maximal subgroup of $P S Q$ so that $S_{0} \triangleleft S$, and P acts irreducibly on S / S_{0}. Write $U \cong V^{P S Q}$ where V is an $F\left[P S_{0} Q\right]$-module.

Set $S_{1}=\left[S_{0}, P\right]$, and assume $\left[V, P S_{1}\right]<V$. Now, $S_{0}=S_{1} \mathbf{C}_{S_{0}}(P)$, and $\mathbf{C}_{S_{0}}(P)$ normalizes $P S_{1}$. Hence, S_{0} normalizes $P S_{1}$ and also [$V, P S_{1}$]. Thus [$V, P S_{1}$] is an $F\left[S_{0}\right]$-submodule of V. Clearly, the $F\left[S_{0}\right]$-submodules of V which contain [$V, P S_{1}$] are stabilized by P and hence are $F\left[P S_{0}\right]$-submodules. Let W be a maximal $F\left[S_{0}\right]$-submodule of V containing [$\left.Y, P S_{1}\right]$. As char $F=2$, it follows that V / W is the principal $F\left[P S_{0}\right]$-module, and $\operatorname{hom}_{F\left[P S_{0]}\right.}(V, F) \neq\{0\}$. However, $U \cong V^{G}$, so $U_{P S} \cong\left(V_{P S_{0}}\right)^{P S}$ and

$$
\begin{aligned}
\{0\} & =\operatorname{hom}_{F[P S]}\left(U_{P S}, F\right) \\
& \cong \operatorname{hom}_{F[P S]}\left(V_{P S_{0}}{ }^{P S}, F\right) \\
& \cong \operatorname{hom}_{F\left[P S_{01}\right.}\left(V_{P S_{0}}, F\right) \\
& \neq\{0\} .
\end{aligned}
$$

This contradiction proves that $\left[V, P S_{1}\right]=V$.
Let $\overline{P S_{1} Q}=P S_{1} Q / \mathrm{C}_{P S_{1} Q}(V)$. Since $P S_{1} Q \triangleleft P S_{0} Q$ and V is an irreducible $F\left[P S_{0} Q\right]$-module, it follows that $V_{P S_{1} Q}$ is completely reducible, and hence $O_{2}\left(\overline{P S_{1} Q}\right)=1$. From this, it follows that $\overline{P S_{1}}$ acts faithfully on \bar{Q}. If $\bar{S}_{1}=1$, then the hypotheses of Lemma 2.4 are satisfied with $N=\bar{Q} V$ and $r=2$, so \bar{Q} centralizes V. But then $\bar{Q}=1$, so Q centralizes $V^{G} \cong U$, as $Q \triangleleft G$. This contradiction proves $\bar{S}_{1} \neq 1$ so that induction applies in the group $\overline{P S_{1} Q}$ (with U replaced by $V_{P S_{1} Q}$). Thus, (a) is satisfied, and $Q \mathrm{C}_{P S_{1} Q}(V) / \mathrm{C}_{P S_{1} Q}(V)$ is a q-group of exponent q and class 2. Since the core of $C_{P S_{1} Q}(V)$ is trivial, Q itself has exponent q and class 2 .

We are now led to the case in which U_{Q} is homogeneous. Since $S Q / Q$ is a 2-group, this implies U_{Q} is irreducible in fact.

Suppose $U_{Q_{0}}$ is not homogeneous for some normal subgroup Q_{0} of G contained in Q. Choose Q_{0} with $\left|Q_{0}\right|$ as large as possible with this property. Choose a homogeneous component of $U_{Q_{0}}$ in such a way that $P S$ is contained in its inertia group. If $P S Q_{1}$ is the inertia group of this module, then $U \cong Y^{G}$ for some $F\left[P S Q_{1}\right]$-module. Let $P S Q_{2}$ be a maximal subgroup of G containing $P S Q_{1}$, and let $Y_{2}=Y^{P S Q_{2}}$. Hence $Y_{2}^{G} \cong U$ and $Q_{2} \triangleleft G$. Now

$$
\left.U_{Q} \cong\left(Y_{2}\right)^{G}\right|_{Q}=\left(\left(Y_{2}\right)_{Q_{2}}\right)^{Q}
$$

so $\left.U_{Q_{0}} \cong\left(\left(Y_{2}\right)_{Q_{2}}\right)^{Q}\right|_{Q_{0}}$. Hence $U_{Q_{0}}$ reduces into $\left|Q: Q_{0}\right|$ distinct conjugates. By maximality of Q_{0}, and $Q_{0} \subseteq Q_{1} \subseteq Q_{2}$ it follows that $Q_{0}=Q_{2}$ (and $Y_{2}=Y$).

Let \mathcal{O} be a nontrivial orbit of $P S$ on Q / Q_{0}, and choose $x Q_{0}=\bar{x} \in \mathcal{O}$. Since P acts fixed point freely on Q / Q_{0}, the stabilizer of \bar{x} in $P S$ is some subgroup of S, say S_{0}. Then, S_{0} acts on $x Q_{0}$ by conjugation, and since S_{0} is a 2-group, S_{0} must
centralize some element of $x Q_{0}$. We may assume that x is centralized by S_{0}. Clearly $Y \otimes x$ is an $F\left[S_{0}\right]$-submodule of Y^{G}, and $(Y \otimes x)^{P S}$ is a direct summand of $\left.Y^{G}\right|_{P S}$ from Mackey's theorem. Since $\left.Y^{G}\right|_{P S} \cong U_{P S}$, this implies

$$
\operatorname{hom}_{F[P S]}\left((Y \otimes x)^{P S}, F\right)=\{0\} .
$$

But

$$
\operatorname{hom}_{F[P S]}\left((Y \otimes x)^{P S}, F\right) \cong \operatorname{hom}_{F\left[S_{0}\right]}\left((Y \otimes x)_{S_{0}}, F\right) \neq\{0\} .
$$

This contradiction proves that $U_{Q_{0}}$ is homogeneous for all normal subgroups Q_{0} of G contained in Q.
In particular, every characteristic abelian subgroup of Q is contained in $Z(Q)$. Also, $U_{Z(Q)}$ is homogeneous, so $Z(Q)$ is cyclic and is contained in $Z(G)$. By Lemma 1 (with $r=q$), Q is extra special of exponent q, and (b) follows. It remains to prove (a).
Choose $Q_{1} \subseteq Q$ with $Z(Q) \subsetneq Q_{1} \triangleleft G$ such that $P S$ acts irreducibly on $Q_{1} / Z(Q)$. Now, Q_{1} is nonabelian as every normal abelian subgroup of G contained in Q is necessarily contained in $Z(Q)$. Thus $Q_{1}^{\prime}=Q^{\prime}=Z(Q)$. Now P acts fixed point freely on Q_{1} / Q_{1}^{\prime}, so $\left[Q_{1}, P\right]=Q_{1}$. If $\left[S, Q_{1}\right]=1$, then Q_{1} normalizes $S U$ and Lemma 2.4 applies with $N=Q_{1} S U$ and $r=2$. But then Q_{1} centralizes $S U \supseteq U$ which contradicts that Q_{1} is faithful on U. Hence $\mathbf{C}_{P S}\left(Q_{1}\right)<S$.

Let $G_{1}=P S Q_{1}$. Notice that $O_{2}\left(G_{1}\right)=\mathrm{C}_{P S}\left(Q_{1}\right)$, and if $J(U)$ denotes the radical of U when viewed as an $F\left[G_{1}\right]$-module, then $\mathbf{C}_{G_{1}}(U / J(U))=O_{2}\left(G_{1}\right)=$ $\mathrm{C}_{P S}\left(Q_{1}\right)$. Thus, $G_{1} / O_{2}\left(G_{1}\right)$ acts faithfully on $U / J(U)$ and the hypotheses of the lemma are satisfied with G replaced by G_{1} and U replaced by $U / J(U)$. If $Q_{1}<Q$ then induction applies, and (a) follows.
Therefore, we may assume $Q_{1}=Q$, which means that $P S$ acts faithfully and irreducibly on $Q / Z(Q)$. By Lemma $2.2, S$ is extra special of order $2(p-1)^{2}$, and Corollary 3.4 now applies to this minimal situation.

Theorem 4.2. Let P and N be groups satisfying hypothesis 1.1. Then:
(a) If p is not a Fermat prime, then N is nilpotent.
(b) If $|N|$ is odd, then N is nilpotent.
(c) If p is a Fermat prime, then N has a nilpotent normal π_{p}-complement where

$$
\pi_{3}=\{2,5,7,11,13,23\}, \quad \pi_{5}=\{2,3,7,11\}
$$

and

$$
\pi_{p}=\{2\} \text { for every Fermat prime } p \geq 17 .
$$

Proof. First assume that the hypothesis of (a) or (b) is satisfied. If every Hall $\{q, r\}$-subgroup of N is nilpotent, then so is N itself. We may replace N by a P-invariant Hall $\{q, r\}$-subgroup so as to assume that N itself is a $\{q, r\}$-group. Clearly, we may assume that N is neither a q-group nor an r-group. Let U be a
minimal normal subgroup of $N P$ contained in N. Without loss, we may assume that U is an r-group. By induction, N / U is nilpotent, so that $1=O^{q, r}(N)<$ $O^{q}(N)<N$, and the hypotheses of Lemma 2.4 are satisfied. By that lemma then, $O^{q}(N) \cap O^{r}(N)=1$ and N is nilpotent.

It remains now to prove part (c). Assume that p is a Fermat prime and that N is a minimal counterexample to part (c). Let H be a P-invariant Hall 2complement in N. By part (b), H is nilpotent. If N has a normal π_{p}-complement, say K, then $K \subseteq H$ and K is nilpotent. Thus, N does not have a normal π_{p}-complement.

If $O_{\pi_{p^{\prime}}}(N) \neq 1$, then $N / O_{\pi_{p^{\prime}}}(N)$ has a normal $\pi_{p^{\prime}}$-complement, and we're done. Let $\pi(N)$ denote the prime divisors of $|N|$. If $\pi(N) \subseteq \pi_{p}$ we are done, as the identity subgroup is then a normal π_{p}-complement. Let $q \in \pi(N), q \notin \pi_{p}$ and let N_{0} be a P-invariant Hall $\{2, q\}$-subgroup of N. We may assume that $Q=N_{0} \cap H$ is the Sylow q-subgroup of H. Hypothesis 1.1 holds for the action of P on N_{0}, so if $N_{0}<N$ then Q is normal in N_{0}. Also $Q \triangleleft H$ so $Q \triangleleft H N_{0}=N$. But then $Q \subseteq O_{\pi_{p^{\prime}}}(N)=1$, a contradiction. Hence $N_{0}=N$ and N is a $\{2, q\}$-group with $O_{\pi_{p^{\prime}}}(N)=O_{q}(N)=1$.

The Fitting subgroup $\mathbf{F}(N P)$ of $N P$ must be a 2-group. If the Frattini subgroup $\phi(N P)$ is nontrivial, then $N / \phi(N P)$ has a normal 2-complement, which must be $Q \phi(N P) / \phi(N P)$. Hence $Q \phi(N P) \triangleleft N$. Thus

$$
[Q, \mathbf{F}(N P)] \subseteq Q \phi(N P) \cap \mathbf{F}(N P)=\phi(N P)
$$

As $\mathbf{C}(\mathbf{F}(N P) / \phi(N P)) \subseteq \mathbf{F}(N P) / \phi(N P)$, this proves that $Q \subseteq \mathbf{F}(N P)$, a contradiction. Thus, $\phi(N P)=1$ so that $U=\mathbf{F}(N P)$ is an elementary abelian 2-group.

Since N / U is not a counterexample to part (c), N / U has a normal π_{p}-complement, which must be $Q U / U$. Hence $Q U \triangleleft N P$.

Let $G=N_{N P}(Q)$. By the standard Frattini argument, $N P=G \cdot U$. Let $C=G \cap U=\mathbf{C}_{U}(Q)$. Since U is abelian, $C \triangleleft U$ and hence $C \triangleleft N P$. If $C \neq 1$ then N / C is not a counterexample to part (c), so that N / C has a normal π_{p}-complement (which is $Q C / C$). Thus $Q C \triangleleft N P$, and so $[U, Q, Q] \subseteq$ $[Q C \cap U, Q]=[C, Q]=1$. But this implies that $Q \subseteq \mathbf{C}(U)=U$, a contradiction. Thus, $C=1$ and G is a complement for U in $N P$.

Notice that if S is a P-invariant Sylow 2-subgroup of G, then $G=P S Q$. Furthermore, U may be regarded as a $G F(2)[G]$-module. Since $[S U, P]=S U$ and $[S, P]=S$ it follows that $[U, S]+[U, P]=U$. The hypotheses of Theorem 4.1 are now satisfied, and this forces either $p=3$ or 5 and $q \in \pi_{p}$. Either case is a contradiction, and the proof of Theorem 4.2 is now complete.

Theorem 4.1 is also useful in classifying all solvable groups N satisfying Hypothesis 1.1 and having small nilpotent (or Fitting) length. In fact, the structure of $N / \mathbf{F}(N)$ is completely determined. In order to state the result explicitly, we need some notation. Define $l(G)$ to be the nilpotent length for any solvable group G, and define $\mathbf{K}(G)$ to be the characteristic subgroup of G containing $\quad \mathbf{F}(G)$ and satisfying $\quad \mathbf{K}(G) / F(G)=O_{2}(G / F(G))$. (Notice $\left.\mathbf{K}(G)=O_{2,2^{\prime}}(G).\right)$

Finally, define Q_{8} to be the quaternion group of order $8, D_{8}$ the dihedral group of order 8 , and $D_{8} \gamma Q_{8}$ the central product of these groups.

Theorem 4.3. Let P and N satisfy Hypothesis 1.1 and assume $l(N) \leq 3$.
(a) If $l(N)=1$ then N is nilpotent.
(b) If $l(N)=2$ then p is a Fermat prime and $N / \mathbf{F}(N)$ is a subdirect product of isomorphic extra special groups, each having order $2(p-1)^{2}$. In particular, N has a normal 2-complement which is nilpotent, and the class of $N / \mathbf{F}(N)$ is 2.
(c) If $l(N)=3$ then $p=3$ or 5 , and $\mathbf{K}(N) / \mathbf{F}(N)$ is the normal 2-complement for $N / \mathbf{F}(N)$. The group $\mathbf{K}(N) / \mathbf{F}(N)$ is the direct product of special q-groups for odd primes q in π_{p}. If $p=3, N / \mathbf{K}(N)$ is a subdirect product of groups isomorphic to Q_{8} while for $p=5, N / \mathbf{K}(N)$ is a subdirect product of groups isomorphic to $D_{8} \gamma Q_{8}$. In particular, $N / \mathbf{K}(N)$ and $\mathbf{K}(N) / \mathbf{F}(N)$ each have class 2, and $N / \mathbf{F}(N)$ is a π_{p}-group.

Proof. Part (a) is a triviality.
Assume that $l(N)=2$. Suppose $O_{2},(N)=1$. Then $F(N P)=F(N)$ is a 2-group which implies (since $N / \mathbf{F}(N)$ is nilpotent) $N / \mathbf{F}(N)$ has odd order. Let Q be a P-invariant Sylow q-subgroup of N for some odd q dividing $|N|$. Now, by Lemma 2.4 applied to the group $Q F(N)$ with $r=2$ we get the contradiction $Q \subset \mathbf{C}(\mathbf{F}(N)) \subseteq \mathbf{F}(N)$. Hence, $O_{2^{\prime}}(N) \neq 1$, and by induction, $N / O_{2^{\prime}}(N)$ has a normal 2-complement. Thus, N itself has a normal 2-complement which is nilpotent by Theorem 4.2(b). By part (a) of that same theorem, p must be a Fermat prime. As $F(N P)=F(N)$, the conclusion is unaffected if $\phi(N P)$ is factored out, so we may assume $\phi(N P)=1$. Thus $\mathbf{F}(N)=A \times B$ where A and B are abelian groups, $|A|$ is odd, and B is a 2-group. The hypotheses of Corollary 2.3 are now satisfied in the action of $P N / F(N)$ on A, and case (b) follows.

Suppose now $l(N)=3$. Then, N cannot have a nilpotent normal 2complement, so by Theorem 4.2, p is 3 or 5 . As $l(N / F(N))=2$, it follows from case (b) that $N / F(N)$ has a nilpotent normal 2-complement, which is therefore $\mathbf{K}(N) / \mathbf{F}(N)$. Now $\mathbf{K}(N) / O_{2}(N)$ is isomorphic to a P-invariant Hall 2complement (say H) of N, and so is nilpotent. As $O_{2}\left(N / O_{2}(N)\right)$ is trivial, $\mathbf{K}(N) / O_{2}(N)$ is the Fitting subgroup of $N / O_{2}(N)$. Clearly, $l\left(N / O_{2}(N)\right)=2$, and so $N / \mathbf{K}(N)$ is a subdirect product of extra special groups of order $2(p-1)^{2}$. The only extra special group of this order which admits a nontrivial automorphism of order p is Q_{8} when $p=3$ and $D_{8} \gamma Q_{8}$ when $p=5$. It remains to determine the structure of $\mathbf{K}(N) / \mathbf{F}(N)$.

Define F by the equation $F / O_{2}(N)=F\left(N / O_{2},(N)\right)$. Since the Hall 2complement H for N is nilpotent, $F / O_{2^{\prime}}(N)$ must be a 2-group. Now $F \supseteq F(N)$ and so $F \cap \mathbf{K}(N)=\mathbf{F}(N)$. Define F_{2} by $F_{2} / F=\mathbf{F}(N / F)$. Clearly, F_{2} / F contains $\mathbf{K}(N) F / F$, and as F_{2} / F must have odd order, we have $F_{2} / F=\mathbf{K}(N) F / F$ so $F_{2}=\mathbf{K}(N) F$. If $F_{2}=N$ then $N / \mathbf{F}(N)$ is isomorphic to the direct product of
$\mathbf{K}(N) / \mathbf{F}(N)$ with $F / \mathbf{F}(N)$ and so is nilpotent, contradicting $l(N)=3$. Thus $F_{2}<N$, so that $l\left(N / O_{2}^{\prime}(N)\right)=3$. Also, $F_{2}=\mathbf{K}(N) F$ so

$$
F_{2} / F=\mathbf{K}(N) F / F \cong \mathbf{K}(N) /(\mathbf{K}(N) \cap F)=\mathbf{K}(N) / \mathbf{F}(N)
$$

It follows that both the section $\mathbf{K}(N) / \mathbf{F}(N)$ and the length $l(N)$ are unaffected if $O_{2},(N)$ is factored out. We may assume then that $O_{2},(N)=1$, and then $\mathbf{K}(N) / \mathbf{F}(N)=\mathbf{F}(N / \mathbf{F}(N))$. Clearly, $\phi(N P)$ may also be factored out, so that $\mathbf{F}(N)=\mathbf{F}(N P)$ is an elementary abelian 2-group. Also, $\mathbf{F}(N P)$ is complemented in $N P$ by a group G which we may assume contains $P H$ (recall that H is a P-invariant Hall 2-complement for N). Thus, $H \triangleleft G$ and $G=P S H$ where S is a P-invariant Sylow 2-subgroup of G.

Set $U=\mathbf{F}(N P)=\mathbf{F}(N)$. Then $\mathbf{C}(U)=U$, so U may be regarded as a faithful $G F(2)[G]$-module. Furthermore, $\mathbf{C}(U)=U$ also implies that $l(S Q U)=3$, where Q is the unique Sylow q-subgroup of H for any prime $q||H|$. We may therefore assume $H=Q$ is a q-group. Since $[S U, P]=S U$, it follows that $U=[U, S]+[U, P]$ where U is denoted additively. All of the hypotheses of Theorem 4.1 are now satisfied, so $q \in \pi_{p}$ and Q has exponent q and class 2. Thus $Q^{\prime}=\phi(Q) \subseteq Z(Q)$.

Suppose $Q^{\prime}<Z(Q)$. Now $Z(Q)$ is elementary abelian, and since $[Q, P]=Q$, P is fixed point free on Q / Q^{\prime}. By Maschke's theorem, there exists a $P S$-invariant subgroup Q_{0} of $Z(Q)$ such that $Q_{0} \cdot Q^{\prime}=Z(Q)$ and $Q_{0} \cap Q^{\prime}=1$. It follows that Q_{0} admits P fixed point freely and that the hypotheses of Theorem 4.1 are satisfied in the action of $P S Q_{0}$ on U. By part (b) of that theorem, Q_{0} must be nonabelian, and this contradiction proves that $Q^{\prime}=Z(Q)$. Thus Q is special and Theorem 4.3 is now completely proved.

5. Concluding remarks

It is interesting to consider whether Hypothesis 1.1 implies that $l(N)$ is bounded. Because of Theorem 4.2, only the primes $p=3$ and $p=5$ need be considered. The fact that $N / \mathbf{F}(N)$ is completely determined when $l(N)=3$ suggests that a bound is possible. The author suggests that $l(N) \leq 4$.

If $p=3$ and $q \in\{5,7,11,13,23\}$, a $\{2, q\}$-group N may be constructed satisfying hypothesis 1.1 but $l(N)=3$. This shows that Theorem 4.2 is no longer valid if any prime is removed from π_{3}. (Similarly, neither 2 nor 3 may be removed from π_{5}. It appears likely that the other two primes in π_{5} can't be removed). The group $P N$ has the form PSQU where the hypotheses of Corollary 3.4 hold for the group $G=P S Q$ acting on the $F[G]$-module U. Using [1], the source for the module U may be computed. The action of P on $U /[U, S]$ is then determined, and replacing U by $U \otimes_{F} L$ if necessary (where L is a module for $P S Q U / S Q U$), the module U then satisfies $\operatorname{hom}_{F[P S]}\left(U_{P S}, F\right)=\{0\}$. Then $[S U, P]=S U$ by Lemma 3.1, and Theorem 4.2 is false if q is removed from π_{3}. I am indebted to Professor T. R. Berger for pointing out to me the relevance of Dade's important work in [1].

It is an open question whether Theorem 4.2 remains true if the solvability assumption is removed from hypothesis 1.1.

References

1. E. C. Dade, Une extension de la theorie de Hall et Higman, J. Algebra، vol. 20 (1972), pp. 570-609.
2. L. Dornhoff, Group representation theory, Part B, Marcel Dekker, New York, 1972.
3. D. Gorenstein, Finite groups, Harper and Row, New York, 1968.
4. T. O. Hawkes, On the automorphism group of a 2-group, Proc. London Math. Soc. (3), vol. 26 (1973), pp. 207-225.
5. B. Huppert, Endliche Gruppen I, Springer-Verlag, New York, 1967.
6. I. M. IsaAcs, Characters of solvable and symplectic groups, Amer. J. Math., vol. XCV (1973), pp. 594-635.
7. ——, Lifting Brauer characters of p-solvable groups, Pacific J. Math., vol. 53 (1974), pp. 171-188.
8. E. E. Shult, On groups admitting fixed point free abelian operator groups, Illinois J. Math., vol. 9 (1965), pp. 701-720.
9. J. G. Thompson, Finite groups with fixed point free automorphisms of prime order, Proc. Nat. Acad. Sci. U.S.A., vol. 45 (1959), pp. 578-581.
10. -, Vertices and Sources, J. Algebra, vol. 6 (1967), pp. 1-6.

Michigan State University
 East Lansing, Michigan

