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SOLVABLE GROUPS ADMITTING AN "ALMOST FIXED
POINT FREE" AUTOMORPHISM OF PRIME ORDER

BY

STEPHEN M. GAGOLA, JR.

1. Introduction and notation

In [9], Thompson has proved that a group admitting a fixed point free
automorphism of prime order is necessarily nilpotent. In this paper, we relax
somewhat the fixed point free hypothesis on the automorphism, but we do
assume that the group in question is solvable. The specific hypothesis con-
sidered is the following"

Hypothesis 1.1. P is a group of prime order p, N is a solvable group and P
acts on N as a group of automorphisms in such a way that for every prime
divisor r of IN I, JR, P] R holds for every P-invariant Sylow r-subgroup R
of N.

If p is not a Fermat prime (i.e., p is not of the form 1 + 2) then the group N
in the above hypothesis is necessarily nilpotent. This fact is a consequence of
results appearing in a paper of E. Shult [8], although it is not explicitly stated
there. A complete proof is given here.
The interesting case, occupying the bulk of this paper, is when p is a Fermat

prime. In Section 4 we show that if p >_ 17, then N has a nilpotent normal
2-complement, equivalently, N/F(N) is a 2-group, where F(N) is the Fitting
subgroup of N. For the remaining Fermat primes (3 and 5), N/F(N)need not
be a 2-group, but some of its structure is determined. In particular, the possible
prime divisors of the order of N/F(N) are determined (see Theorem 4.2(c)).
Whenever one group A acts on another group B as a group of automor-

phisms, the usual semidirect product AB may be constructed, and this idea is
used implicitly throughout this paper. One frequent occurance of this is the
case when B is an F[A]-module for some field F. Another obviously is A P
and B N in the situation of hypothesis 1.1. Notice that this hypothesis is an
example of a coprime action, as NI is necessarily prime to p.
The notation used throughout this paper is standard we hope, and we use [3]

and [5] as general references for the standard group theoretical results needed.
We also use [2] as a general reference for representation theory.

If G is a finite group, Irr (G) denotes the set of irreducible (complex) charac-
ters of G, and for Z 6 Irr (G), let det Z Irr (G) denote the linear character
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defined by

(det ;t)(9)= det 3(9
where 3 is any representation affording Z. If N < G, we sometimes view charac-
ters of GIN as characters of G with N in their kernels (and similarly with Brauer
characters).

2. Some preliminary lemmas and needed facts

LEMMA 2.1. Let G be a 9roup of theform PR where P] p is a prime, and
R JR, P] is a nontrivial r-groupfor some prime r p. Assume Z(R) is cyclic, P
acts trivially on Z(R), and that every characteristic abelian sub#roup of R is
contained in the center ofR. Then R is extra special, and if r is odd, exp (R) r.

Proof. See Lemma 1.2 of [4].

Let V be an irreducible F[G]-module over a field F of characteristic q. Then
A Endrt (V) is a division ring finite dimensional over F, and if E is a
maximal subfield of A (necessarily containing F) then V may be viewed as an
irreducible E[G]-module. Since EndEtG (V)= E. lv, the module V is abso-
lutely irreducible as an E[G]-module. By a "Brauer character of V" we shall
always mean a Brauer character of V viewed as an E[G]-module. It need not be
uniquely determined, but this does not matter for our purposes. Notice that the
degree of a Brauer character associated with V is < dimF V, with equality iff F
is a splitting field for V.

Part (a) of the following lemma is implied by Theorem 3.1 and Corollary 3.2
of [81

LEMMA 2.2. Suppose PS is a 9roup where P has prime order p > 2, and
S [S, P] is a nontrivial s-oroup where s is a prime (differentfrom p). Let V be an
F[PS]-module where the characteristic of F is q =/= s, p. Finally assume
[V, P] V. Then:

(a) If [V, S] {0}, then s 2 and p is a Fermat prime.
(b) If PS is faithful and irreducible on V, then dimF V p- 1, and S is an

extra special 2-group oforder 2(p 1)2. Moreover, the F[PS]-module V is unique
up to isomorphism, and so is the 9roup PS.

Proof (Sketch). Notice that if [V, S] 4:0 then Cps(U) is properly contained
in S for any irreducible submodule U of V which is contained in IV, S]. Thus,
the hypothesis of (b) are satisfied with PS replaced by PS/Cps(U) and V
replaced by U, and so (b)implies (a).

Assume now the hypothesis of (b) is satisfied. Let E EndFtPSl (V)so that E
is a finite field containing an isomorphic copy of F and view V as an E[PS]-
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module. Let U V (R)E K where K is a finite extension of E such that K is a
splitting field for all subgroups of PS.
By standard arguments (Clifford’s Theorem and Mackey’s Theorem) it is

easy to establish that Us is irreducible and Uso is homogeneous for all So < PS
with So - S. By Lemma 2.1 then, S is extra special of order s2a/ say.

If is the Brauer character of U then b e Irr (PS)as qX PSl. Also
[U, P] U implies (bp, 1p)p-- 0. NOW the characters of PS may be computed
(see Satz 17.13 on p. 574 of [5]) and in particular, qe mp + 6p where p is the
regular character of P, # e Irr (P) and d; + 1. Since (dpp, 1p)p 0, it follows
that m 1, # 1p and 6 1. Thus Cp p 1p.

Hence, s" (1)= p- 1. Since p > 2, p- 1 is even, forcing s 2 and
p 1 + 2", a Fermat prime. Also IS 22a+ 1= 2(p- 1)2.

Again, from the character theory of PS, dp must be rational valued. Hence
tr (xv) GF(q) c_ F, where xv" U -, U is the linear transformation determined
by x PS. All Schur indices for finite fields are trivial, so F E and direr U
direr V p- 1, and V is unique up to isomorphism. Finally, there are two
extra special groups of order 2(p- 1)2 up to isomorphism, but only one of
these admits a group of automorphisms of order p. A Sylow p-subgroup of the
full automorphism group of this group has order p, and it readily follows that
the group PS is unique up to isomorphism.

COROLLARY 2.3. Let PS be a group where P has prime order p > 2, and
S [S, P] is a nontrivial s-groupfor some prime s p. Assume PS actsfaithfully
on a finite abelian group A having order prime to ps and which satisfies
[A, P] A. Then s 2, p is a Fermat prime and S is a subdirect product of
isomorphic extra special 2-groups, each having order 2(p- 1)2.

Proof Since the order of A is prime to ps, PS acts faithfully on A/dp(A)and
[A/ok(A), P] A/(A). Clearly, we may replace A by Ale(A)so as to assume
b(A) 1. Then, A is a completely reducible abelian group under PS and we
may write A V1-i-V2-i-"’-i-Vk where each V/ is an irreducible GF(qi)
[PS]-module for some prime qi different from p and s. Then, [V, P] V for all
i, and PS is faithful on [A, S]. It follows that S is a subdirect product of the
groups S/Cps(V) where ranges over all indices for which [V, S] V, and we
are done by Lemma 2.2(b).

LEMMA 2.4. Let P be a cyclic group ofprime order p, and let P act on a group
N satisfying O’(N)< Oq(N)< N. Assume

[N/O(N), P] N/Oa(N) and [Oa(N)/Oa"(N), P] O(N)/Oa"(N).

If q is odd, or if p is not a Fermat prime, then

O’(N) O(N) O’(N).
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Proof. In general, O"(N) < O(N) O’(N), and the lemma is unaffected if
O"(N) is factored out. Thus, we may assume O"(N) 1. Let R O(N) and
let (2 be a P-invariant Sylow q-subgroup of N. Then R is the unique Sylow
r-subgroup of N. If qb(R) # 1, then by induction, Qck(R)/ck(R) < Nick(R). Hence
[(2, R] _< b(R), and so [(2, R] 1, proving the lemma. Thus, we may assume
b(R) 1 so that R is a vector space over GF(r). For odd p, the hypotheses of
Lemma 2 are satisfied with S (2 and R V. Thus, if [(2, R] 4= 1 then q 2
and p is a Fermat prime, a contradiction, and we are finished in this case. Thus,
we may assume p 2. If O(N) > 1, then by induction Q/O(N) is normal in
N/O(N) and hence Q < N. Thus, we may assume O(N)= 1. Hence, PQ is
faithful on R. Now, P inverts some element x 4= 1 of (2 and so P acts without
fixed points on (x)R. By Thompson’s theorem [9], (x)R is nilpotent, which
contradicts that (x) is faithful on R. (Actually, since p 2, a more elementary
argument can be used to prove directly that (x)R is abelian.)

3. Representation theory

This section contains some technical results from representation theory
which will be useful for the next section.

LEMMA 3.1. Let G be a group of theform PR where P has prime order p and
R [R, P] is a nontrivial r-groupfor some prime r (necessarily differentfrom p).
Let U be an F[PR]-module where F is a finite field of characteristic r. Then,
[RU, P] RU if and only/fhomm,s (U, F)= {0}.

Proof. In general, we have [RU, P] JR, P][R, P, U][U, P]. Since
JR, P] R, this simplifies to [RU, P] R[R, U][U, P]. The last two factors are
contained in U. Thus, [RU, P] RU is equivalent to [R, U][U, P] U. In
additive form, this may be written as U [U, R] + [U, P]. Notice, [U, R] is
the radical of U when viewed either as an F[R]-module or as an F[PR]-module,
and the equation is equivalent to the statement that U does not have the
principal F[PR]-module as a homomorphic image, i.e., homvte (U, F)= {0}.

LEMMA 3.2. Let V be an irreducible F[G]-module and Wan irreducible F[H]-
module where H is a subgroup of G. Assume F is afinitefield which is a splitting
field for all subgroups of G. Assume also that the Brauer characters of V and W
may be lifted to ordinary irreducible characters, say ;t and 2 respectively, and that
(n, 2)n 0. Then W is a homomorphic image of Vn.

Proof. Let the characteristic of F be q. Then, F is obtained from the prime
subfield by adjoining a primitive ruth root of unity, where q , m. Moreover,
since F is a splitting field for all the cyclic subgroups of G, it follows that the
exponent of G divides qm for some a. Let K denote the algebraic number field
obtained by adjoining a primitive qmth root of 1 to the rationals. Hence, K is a
splitting field (in characteristic 0) for all subgroups of G. Let R be the localiza-
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tion of the algebraic integers of K relative to some prime ideal containing q,
and let denote the unique prime ideal of R. Then R/g F, and we may
regard R/ F. As R is a P.I.D., ;t is realizable in R, and we choose an R-free
R[G]-module, say Xo which affords ;t. Let X Xo (R) R K, and regard Xo - X.
Thus, X is an irreducible K[G]-module affording ;t. Since ;t is a lift of the Brauer
character affording V, the F[G]-module Xo/Xo is isomorphic to V.
By hypothesis, (;in, 2)n 4: 0, so that 2 is a constituent of n. Since Xn is

completely reducible, it follows that Xn contains a maximal K[H]-module, say
M, such that X/M affords 2. Let Mo M Xo. Then Mo is an R-pure R[H]-
submodule of Xo, and the quotient Xo/Mo is a free R-module. (This construc-
tion of Mo in Xo is the same idea appearing in Theorem 1 of [10]). Now,
Xo/Mo affords 2, and it follows that the F[H]-module (Xo/Mo)/e(Xo/Mo)is
isomorphic to W, as 2 is a lift of the Brauer character for W. Thus, Xo/Xo
maps onto W, and since V Xo/Xo, we have homn (Vn, W)4: {0}.

The next technical lemma is the first indication that, in the situation of
Hypothesis 1.1, exceptional sets of primes will have to be considered in case p is
3or5.

LEMMA 3.3. Let G be a 9roup of theform G PSQ, where P is a cyclic 9roup
of prime order p, and p is a Fermat prime. Assume Q [Q, P] is a normal
q-suboroup ofG and that Q is an extra special q-oroup oforder q and exponent q.
Also, assume that S IS, P] is an extra special 2-group of order 2(p- 1)2 and
that PS is faithful and irreducible on Q/Z(Q). Let 2 be a nonprincipal irreducible
character ofG with kernel SQ, and let Z be afaithful irreducible character ofPSQ
whose restriction to Q is irreducible, and which is canonical for Zo.. Then
(7.es, 2kes)es 4: Ofor 0 < k < p 1 unless p 3 and q {5, 7, 11, 13, 23} or unless
p 5 and q {3, 7, 11}.

Proof Since ;to is irreducible, it follows that Z(Q)= Z(G). Moreover, if
Z(S)= (s), then s inverts Q/Z(Q)and centralizes Z(Q). It follows that
I {y Q [y y-} is a set of coset representations for Z(Q)in Q, and ob-
viously, PS permutes I.

Let X be a K[PSQ]-module affording ;t where K is a splitting field of charac-
teristic zero for ;t. Now, if p: G GL(X) is the corresponding representation
(i.e., vp(o)= vo for v X, 0 G) then G acts on Endr (X)as follows: for
f Endr (X)-and O G, fo= P(9)-XfP(O). The space Endr (X) may then be
viewed as a K[PSQ]-module in the natural way, and the character of this
module is ;t.

Since pe is irreducible, we know from the representation theory of Q that p(I)
is a basis for Endr (X). Thus, Endr (X) is a permutation module for PS.
Moreover, since 1 I is the only element fixed by P, P acts fixed point freely on
1 {1} and hence on p(1)- {p(1)}. Thus, except for 1, all point stabilizers are
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contained in S. Thus, we have

(Z)PS 1Ps + (ls,)PS

where the Si are subgroups of S (possibly with repetition).
Now, with 2 as in the statement of the lemma, we have, for any i,

1PS(1ps 2PS, st ]PS l st 2s, ls)si 0

as kcr 2 S
_

Si. Clearly (1ps- ,PS, 1ps)vs 1, and it follows that

(1PS 2ps, Z)PS 1.

But (1ps- , Z)PS ((1ps- 2)Z, Z)Ps. Write
p-1 p-1

j=0 j=0

where Irr (PS) is the unique faithful, rational character, and r/is a sum of
characters of the form/fl,s, where # is a linear character of $. Then (1 )r/= 0
so that

p-I p-I

((1ps-2Ps)ZPS, ZPS)PS aj(aj-aj_)+ E bj(bj-bj_)=l
j=o j=o

where all subscripts are read mod p. Hence,

P-
)2

P-
)2 2 aj(aj aj_ ) + bj(bj bj_lE (a-aj_ + (b-b_

j=o j-o j=o

We already know ZPS is rational valued, so a a2 ap and b b2

bp. Thus, the above equality yields either ao a (and [bo b 1)or
]ao- a I= 1 (and bo b). The lemma asserts that aoax :/: 0 except for
p 3, q {5, 7, 11, 13, 23} and p 5, q {3, 7, 11}.
To compute these inner products, we need to compute some values of ZPS.

We remark that I. M. Isaacs, in a different, more general context, has described
an algorithm for computing values of the canonical extension Z of ZQ. See [6].

Let x S be a noncentral involution (x exists only for p > 3). Now (x) 0
where Irr (PS) is the unique faithful, rational character. Thus, exactly half
of the "eigenvalues for (x)" are negative ones, and the other half are ones. As
is the Brauer character for Q/Z(Q),it follows that [CQ/za)(x)[ qtP-)/2. Since
(Z)PS is the permutation character of PS on Q/Z(Q), it follows that
Z(x)2 qtp-)/2 and so Z(x)= 6qtp- /4, where 6 is a sign. We use the fact that
det Z(x)= 1 to compute ft. Suppose p(x) has u eigenvalues equal to 1, and v
eigenvalues equal to -1. Then

7(x) u v 6qp- x)/4 and Z(1)= u + v q(P-)/2.
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As det Z(x)= 1 it follows that v is even. Solving for v yields

q(p- 1)/2 tq(p- 1)/4

2

Therefore, the numerator must be congruent to 0 mod 4. Now if p > 5, then
(p 1)/2 and (p 1)/4 are powers of 2, both >_ 2, and

q(p-1)/2 q(p-1)/4
_

1 mod 4.

This proves 6 1. If p 5, then the numerator is congruent to 1 6q mod 4 so
q 6 (mod 4). Hence 6 is determined.

If x 4:1 is any element of PS which is not a noncentral involution, then (x)
acts Frobeniusly on Q/Z(Q), which implies that Z(X)2 co./z o)(x)l 1. Thus
z(x)-- + 1.

The case p > 17. In this case, all character values for ZPS are > 1 and we
have

ao (7.PS, 1ps)es
1

PSI xs z(x)

1

>-IPSl (z(1)-(IPSl- 1))

z(1) 1.

Now z(1)= q-)/2 and ]PS] (1 + 2) 22+a wherep 1 + 2,s > 4. Thus
ao will be greater than one if

q2-> 2.(1 + 2) 22+a.
This last inequality is implied by the inequality

q2-x > 2" 2s+l 22s+ 23s+3
which is equivalent to q > 2(3s+ 3)/2- a. Since p 1 + 2 is a Fermat prime, s is a
power of 2, and in our case s > 4. If s > 8, the fractional exponent in the last
inequality is less than 1 so that all odd primes q satisfy it. For s 4 the
exponent is 15/8 < 2, so all odd primes q > 22 4 satisfy the inequality. It
suffices now to compute ao for p 17 and q 3. In this case, S cannot be a
central product of 4 dihedral groups of order 8, as, in this group there are
28- 2’= 240 noncentral involutions (which could not be fixed point freely
permuted by an automorphism of order 17, as 17 does not divide 240). Hence, S
is the central product of three dihedral groups with one quaternion group. For
this group, the number of noncentral involutions is 17 14. Hence

1
ao > (38 + 17. 14.34- (17. 512- 17. 14- 1))> 1.

17. 512
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We have now shown that for p > 17, ao > 1 and hence ax > 1. The lemma is
now proved for p > 17.

The cases p 5 and p 3. The explicit values of 7.es are needed in order to
handle the cases p 5 and p 3.
For simplicity, write ((x)= z(k) if the order of x is k and k 2. Let Z(2)

denote the value Z(s) where s is the unique central involution of $, and let
denote Z(x) where x is a noncentral involution of $ (which exists for p 5, but
not when p 3). We already know Z(2’) 6q where 6 is the unique sign satisfy-
ing q 6 (mod 4). The values of ;tes at all other nonidentity elements are signs.
Let s be the central involution of S. If s has 1 as an eigenvalue with multiplicity
u on X, and -1 with multiplicity v, then

u v X(2), u + v X(1)= qP-1)/2.

Thus 2v= q-1)/2_ ;((2). Now, det ;(es= les, so v must be even, and
q{p- )/2 =_ X(2) (mod 4). This determines Z(2) as ;t(2) is a sign. In fact, for p 5,
2(2) -= q2 1 (mod 4), so 2(2) 1.
Now let x be an element of order 4. As x is a central involution, and (x) is a

sign, we have

X(4) Z(x)= Ux u2 + (v/2)i + (v/2)(-i)= Ux u2

where ux + u2 u (q’-x)/2 + Z(2))/2. Now, u2 must be even, as det X(x) 1.
But

q(p-1)/2 + ;((2)- 2;(4)
//2 4

and thus qtP-1)/2 + X(2)- 2X(4)= 0 (mod 8). This determines X(4) uniquely.
Notice that for p 5,

qt- x)/2 q2 1 (mod 8),

so ;t(2)= 1 and hence Z(4)= 1. The only elements remaining are those of
orders 2p and p. Now, since Z,s is rational valued, we have ;t(g) ;t(g) (mod p)
for any O 6 PS. Thus

X(2P)-- X(2)(mod p) and X(P) -= X(1)(mod p).

Thus ;t(2p) Z(2) and X(P)is the unique sign satisfying qt- 1)/2 X(P)(mod p).
We now tabulate these values below. Let 6, 64 and 6denote the unique signs

satisfying the congruences

6 _= q (mod 4), 6, qtp-1)/2 (mod 4), dip _= qtp-1)/2 (mod p).

Also, let e be the sign satisfying q + 6, 2e 0 (mod 8).
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Element of PS Value when p 5 Value when p 3

q2 q
2 (central) 34

2’ (noncentral) 64 (no such elements when p 3)
4

2p 64

We note that for p 5, S must be the central product of a dihedral group
with a quaternion group. Otherwise, S would have 12 elements of order 4,
which could not be permuted fixed point freely by an automorphism of order 5.
Hence, when p 5, S has 10 noncentral involutions, and 20 elements of order 4.
Also, there are 1/2(p 1)IS 64 elements of order p, and the same number of
order 2p. Thus

ao (Z,s, l,s),s
2,-g6(q + 1 + 106q + 20 + 64(1 + 6p))

x-6((q + 76)(q + 36)+ 64(1 +
It is easy to check that a (Zes, 2)es satisfies a ao when 6p= -1 and
ax ao- 1 when dip 1. Now

ao > ,6-((q 7)(q 3))> 1 when q > 19,

and hence it suffices to consider odd primes q less than 19 (and 4= 5). If q is 17
or 13 thenf=lso

ao > ,-((13 + 7)(13 + 3))> 1.

For the remaining primes (q 3, 7, 11) we tabulate the following.

q di 6v ao at

3 -1 -1 0 0
7 -1 -1 0 0

11 -1 0

This proves the lemma when p 5.
When p 3, S is the quatemion group of order 8, in which there are no

noncentral involutions, and 6 elements of order 4. In PS there are 8 elements of
order 3 and 8 of order 6. We have

ao (Zes, l,s)es -4(q + 6, + 6e + 86p + 86,).



200 STEPHEN M. GAGOLA, JR.

Thus, ao>(1/24)(q-23)> 1, when q>47, and hence ao, ax #0 when
q > 47. We remark that when 6p and 64 are of opposite signs, then ao al and
for 6p=6=1 we have a=ao-1, while for 6p=6=-1 we have
a ao + 1. The following table is easily worked out:

q 5 7 11 13 17 19 23 29 31 37 41 43 47

64 -1 -1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1 -1 -1

6p -1 -1 -1 -1 -1 -1 -1

ao 0 0 0 0 2 2 2

al 0 0 0 2 2 2

From the table, we have a ao 0 exactly when q (5, 7, 11, 13, 23, and this
completes the entire proof of Lemma 3.3.

COROLLARY 3.4. Let G have a normal series Q " SQ < PSQ where P is a
cyclic group of prime order p, S IS, P] is an extra special 2-group of order
2(p 1)2 and Q [Q, P] is an extra special q group oforder qP and exponent q
(where 2 q p). Assume PS actsfaithfully and irreducibly on Q/Z(Q). Let U be
a faithful irreducible F[G]-module where F is a finite field of characteristic 2
which is a splitting field for all subgroups of G. Assume UQ is irreducible. Then

hOmF[PS] (Ups, F)# {0}
unless p 3 and q {5, 7, 11, 13, 23} or unless p 5 and q {3, 7, 11}.

Proof. Let L be a faithful, irreducible F[PSQ/SQ]-module, regarded as an
F[PSQ]-module. Write

/ L(R)v L(R)v".(R) L (k times).
Then, U, U (R) L, U (R) L2, U (R) Lp- is a complete list of irreducible F[PSQ]-
modules whose restriction to Q is Uo. Notice

hom,s ((U (R) I2)es, F) homFes (Ues, (()^ (R) r),s)

homvs (Ues, Lf,k).
It follows that (U (R)/),s maps onto F for all k if and only if Us maps onto
(F @ L L2 @... L- )s. Notice that this last module is really just the regu-
lar F[PSQ/SQ]-module. It therefore suffices to prove that U,s maps onto
F @ L L2 ... Lv- unless p 3 and q {5, 7, 11, 13, 23} or unless p 5
and q z {3, 7, 11}. Clearly, we may replace U by any of the modules U (R) F g, SO

that we may assume U is the "canonical" extension of Ue. (This is the unique
extension of Ut2 to U satisfying det xv 1 for every x PS).
From now on, U is an irreducible F[G]-module with Uo irreducible and U

canonical for Ue. Let q be the Brauer character of U. By the Fong-Swan
Theorem, there exists an ordinary irreducible character 9 of G such that
agrees with b on elements of odd order. (For a proof of the Fong-Swan
Theorem, see Theorem 72.1 on p. 473 of [2]. There is a more conceptual,
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character theoretic proof of this theorem, given in [7]. In fact, because of the
specific nature of the group G PSQ, a separate argument may be given to
prove the existence of ;(, without appealing to the Fong-Swan Theorem.)

Clearly, the module L has a Brauer character which may be rifted to an
ordinary character of PSQ/SQ, say 2. Since ;( is the canonical extension of ;(e,
the previous lemma implies (ZPS, 2kps)PS 0 for 0 _< k _< p 1 except when
p 3 and q 6 {5, 7, 11, 13, 23 or when p 5 and q {3, 7, 11}. Thus, by
Lemma 3.2, Ups maps onto (F 0) L 0)"" 0) Lp- )Ps unless p 3 and q {5, 7,
11, 13, 23} or p 5 and q {3, 7, 11}, and this completes the proof of Corollary
3.4.

4. Main results

The first theorem of this section is a generalization of Corollary 3.4.

THEOREM 4.1. Let G be a 9roup oftheform G PSQ where PI p > 2 is a
prime. Assume Q [Q, P] " G is a q-group, and S IS, P] is a 2-group, where
2 :/: q :/: p. Assume also that Cps(Q)= 1. Let U be afaithful F[G]-module where
F is a finite field of characteristic 2, and suppose U [U, S] -4- [U, P]. Then"

(a) p 3 and q {5, 7, 11, 13, 23} or p 5 and q {3, 7, 11}.
(b) Q is a nonabelian 9roup of exponent q and class 2.

Proof The hypothesis U [U, S] + [U, P], which by Lemma 3.1 is equiv-
alent to homtPS (Ups, F)= {0}, is unchanged if we replace F by any finite
extension field, say E, and U by U (R) E. We may therefore assume that F is a
splitting field for all subgroups of G. We now prove (a) and (b) together by
induction on dimv U + GI.

Since O2(G)= 1, G acts faithfully on U/J(U) where J(U)is the radical of U.
If J(U):/: {0}, we are done by induction, so assume J(.U)= {0}. Hence, U is
completely reducible, and we may write U U ... + U where the U are
simple F[G]-modules. If Q

_
C(U) for some i, then G is faithful on U/U and

induction applies again. Thus, we may assume Q q C(U) for all i. Suppose
S
_

CG(Ui) for some and let ( G/CG(Ui). Then ( =/( acts faithfully on U
with [(, P--] ( and [U, P--] U. The hypotheses of Lemma 2.4 are satisfied
with N QU and r 2. By that lemma, Q centralizes Ui, which is a contradic-
tion. Thus, S q Co(U) for all i. Since 02(G/Co(U,)) for all i, it follows that
PSCo(U)/C(U,) acts faithfully on QC(Ui)/Co(U) for all i. If/> 1, then
induction applies and (a) follows. From (b), QCo(U,)/Co(U,) is a nonabelian
q-group of exponent q and class 2, for each i. Since Q is a subdirect product of
these groups, the same is true of Q itself.
Thus, we may assume l= 1, i.e., U is an irreducible F[G]-module. If Use

reduces, then U- Y for some irreducible F[SQ]-module Y. Then
U,s "= Y PS "= (Ys)PS, and

homvt,s (Ups, F) - homvt,sl ((Ys)Ps, F) - homvts (Ys, F)# {0},
a contradiction. Hence, Use is irreducible.
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Suppose Uo is not homogeneous. Then, by standard arguments, U is induced
from a proper subgroup of the form PSo Q where So is a P-invariant subgroup
of S. We may assume that PSo Q is a maximal subgroup ofPSQ so that So < $,
and P acts irreducibly on S/So. Write U Ves where V is an
F[PSo Q]-module.

Set S [So, P], and assume [V, PSi] < V. Now, So SCso(e),and Cso(P)
normalizes PSi. Hence, So normalizes PS and also [V, PS ]. Thus [V, PS ] is
an F[So]-submodule of V. Clearly, the F[So]-submodules of V which contain
IV, PSx] are stabilized by P and hence are F[PSo]-submodules. Let W be a
maximal F[So]-submodule of V containing [Y, PSx]. As char F 2, it follows
that V/W is the principal F[eSo]-module, and homteSo (V, F) :/= {0}. However,
U~V soU ~(Ve )eSandPS So

{0} homm,s (Uvs, F)-- homrtes] ((Vpso)PS, F)- hOmFtPSo] (Vpso, F)
/ {ol.

This contradiction proves that [V, PSi] V.
Let PS, Q PS /C,s,o(v). Since PS Q " PSo Q and V is an irreducible

F[PSo Q]-module, it follows that V,,st is completely reducible, and hence
O(PS Q)= 1. From this, it follows that PS acts faithfully on (. If g 1,
then the hypotheses of Lemma 2.4 are satisfied with N V and r 2, so
centralizes V. But then ( 1, so centralizes V U, as Q - . This contra-
diction proves g =/= 1 so that induction applies in the group PS Q (with U
replaced by V,,s,). Thus, (a) is satisfied, and C,,s,(V)/C,,s,(V) is a q-group
of exponent q and class 2. Since the core of C,,s,(V)is trivial, Q itself has
exponent q and class 2.
We are now led to the case in which U is homogeneous. Since SQ/Q is a

2-group, this implies U is irreducible in fact.
Suppose Uo is not homogeneous for some normal subgroup o of G con-

tained in Q. Choose o with ]Qol as large as possible with this property.
Choose a homogeneous component of Uo in such a way that PS is contained
in its inertia group. IfPSQ is the inertia group of this module, then U - yO for
some F[PS]-module. Let PSQ be a maximal subgroup of G containing
PSQ, and let Y yeSO.,_. Hence Y2 U and Q - G. Now

Ut2 (Y2)t; It2---((Y2){32)2

so Uoo ((Y2)o,_)o {o" Hence Uoo reduces into I" Qo distinct conjugates. By
maximality of o, and 0 - , - Q2 it follows that Oo 2 (and Y2 Y).

Let be a nontrivial orbit of PS on /0, and choose Xo 0. Since P
acts fixed point freely on /0, the stabilizer of in PS is some subgroup of S,
say So. Then, So acts on XOo by conjugation, and since So isa 2-group, So must
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centralize some element of xQo. We may assume that x is centralized by So.
Clearly Y (R) x is an F[So]-submodule of Y, and (Y (R) x)’s is a direct summand
of Y I’s from Mackey’s theorem. Since Y I’s - U,s, this implies

homFtes ((Y (R) x)’s, F)= {0}.
But

homvt,s ((Y (R) x)Ps, F) homvts0 ((Y (R) X)so, F) {0}.
This contradiction proves that Ueo is homogeneous for all normal subgroups
Qo of G contained in Q.

In particular, every characteristic abelian subgroup of Q is contained in
Z(Q). Also, Uzto, is homogeneous, so Z(Q) is cyclic and is contained in Z(G).
By Lemma 1 (with r q), Q is extra special of exponent q, and (b) follows. It
remains to prove (a).
Choose Qx -Q with Z(Q) Qx <G such that PS acts irreducibly on

Q/Z(Q). Now, Q is nonabelian as every normal abelian subgroup of G con-
tained in Q is necessarily contained in Z(Q). Thus Q’ Q’ Z(Q). Now P acts
fixed point freely on Q /Q’, so [Q , P] Q . If [s, Q ] 1, then Q normalizes
SU and Lemma 2.4 applies with N Q SU and r 2. But then Q centralizes
SU

_
U which contradicts that Q is faithful on U. Hence Cps(Q) < S.

Let Gx PSQx. Notice that O2(G1)= C/,s(Q1), and ifJ(U) denotes the radi-
cal of O when viewed as an F[G]-module, then C(U/J(U))= O2(G)=
C,s(Qx). Thus, Ga/O2(Gx) acts faithfully on U/J(U)and the hypotheses of the
lemma are satisfied with G replaced by G and U replaced by U/J(U). If
Q < Q then induction applies, and (a) follows.

Therefore, we may assume Q Q, which means that PS acts faithfully and
irreducibly on Q/Z(Q). By Lemma 2.2, S is extra special of order 2(p 1)2, and
Corollary 3.4 now applies to this minimal situation.

THEOREM 4.2. Let P and N be 9roups satisfyin9 hypothesis 1.1. Then:

(a)
(b)
(c)

where

and

If p is not a Fermat prime, then N is nilpotent.
1fiN is odd, then N is nilpotent.
If p is a Fermat prime, then N has a nilpotent normal rtp-complement

r3 {2, 5, 7, 11, 13, 23}, {2, 3, 7, 11}

tp {2} for every Fermat prime p >_ 17.

Proof First assume that the hypothesis of (a) or (b) is satisfied. If every Hall
{q, r}-subgroup of N is nilpotent, then so is N itself. We may replace N by a
P-invariant Hall {q, r}-subgroup so as to assume that N itself is a {q, r}-group.
Clearly, we may assume that N is neither a q-group nor an r-group. Let U be a
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minimal normal subgroup of NP contained in N. Without loss, we may assume
that U is an r-group. By induction, N/U is nilpotent, so that 1 Oq’r(N)<
Oq(N) < N, and the hypotheses of Lemma 2.4 are satisfied. By that lemma then,
O(N) Or(N)= 1 and N is nilpotent.

It remains now to prove part (c). Assume that p is a Fermat prime and that N
is a minimal counterexample to part (c). Let H be a P-invariant Hall 2-
complement in N. By part (b), H is nilpotent. If N has a normal
rp-complement, say K, then K

_
H and K is nilpotent. Thus, N does not have a

normal rp-complement.
If O,,,,(N) :/: 1, then N/O,,,,(N) has a normal n-complement, and we’re done.

Let r:(N) denote the prime divisors of IN I, If r:(N)___ rp we are done, as the
identity subgroup is then a normal n-complement. Let q e n(N), q rp and let
No be a P-invariant Hall {2, q}-subgroup of N. We may assume that
Q No c H is the Sylow q-subgroup of H. Hypothesis 1.1 holds for the action
of P on No, so if No<N then Q is normal in No. Also Q<H so
Q <a HNo N. But then Q

_
O,,,,(N) 1, a contradiction. Hence No N and

N is a {2, q}-group with O,,,,(N)= O,(N)= 1.
The Fitting subgroup F(NP) of NP must be a 2-group. If the Frattini sub-

group qb(NP) is nontrivial, then N/dp(NP) has a normal 2-complement, which
must be Q(NP)/(nP). Hence Q(NP) N. Thus

[Q, F(NP)]
_

Qck(NP) c F(NP) (NP).
As C(F(NP)/(NP)) F(NP)/(NP), this proves that Q c__ F(NP), a contra-
diction. Thus, (/)(NP) 1 so that U F(NP)is an elementary abelian 2-group.

Since N/U is not a counterexample to part (c), N/U has a normal
rp-complement, which must be QU/U. Hence QU < NP.

Let G Nm,(Q). By the standard Frattini argument, NP G. U. Let
C G U Cv(Q). Since U is abelian, C < U and hence C < NP. If C =/= 1
then N/C is not a counterexample to part (c), so that N/C has a normal
rip-complement (which is QC/C). Thus QC <NP, and so IV, Q, Q]_
[QC c u, Q] [c, Q] 1. But this implies that Q C(U)= U, a contradic-
tion. Thus, C 1 and G is a complement for U in NP.

Notice that if S is a P-invariant Sylow 2-subgroup of G, then G PSQ.
Furthermore, U may be regarded as a GF(2)[G]-module. Since [SU, P] SU
and IS, P] S it follows that [U, S] + [U, P] U. The hypotheses ofTheorem
4.1 are now satisfied, and this forces either p 3 or 5 and q e np. Either case is
a contradiction, and the proof of Theorem 4.2 is now complete.
Theorem 4.1 is also useful in classifying all solvable groups N satisfying

Hypothesis 1.1 and having small nilpotent (or Fitting) length. In fact, the
structure of N/F(N) is completely determined. In order to state the result
explicitly, we need some notation. Define l(G) to be the nilpotent length for any
solvable group G, and define K(G) to be the characteristic subgroup of G
containing F(G) and satisfying K(G)/F(G)=O2,(G/F(G)). (Notice
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Finally, define Q8 to be the quaternion group of order 8, D8 the dihedral
group of order 8, and D8 7Q8 the central product of these groups.

THEOREM 4.3. Let P and N satisfy Hypothesis 1.1 and assume l(N) < 3.

(a) If I(N)= 1 then N is nilpotent.
(b) If I(N) 2 then p is a Fermat prime and N/F(N) is a subdirect product of

isomorphic extra special groups, each having order 2(p 1)2. In particular, N has
a normal 2-complement which is nilpotent, and the class of N/F(N) is 2.

(c) If l(N) 3 then p 3 or 5, and K(N)/F(N) is the normal 2-complement
for N/F(N). The group K(N)/F(N) is the direct product of special q-groups for
odd primes q in rcp. Ifp 3, N/K(N) is a subdirect product ofgroups isomorphic
to Q8 while for p 5, N/K(N) is a subdirect product of groups isomorphic to

D8 YQ8. In particular, N/K(N) and K(N)/F(N) each have Class 2, and N/F(N) is a
gp-lroup.

Proof. Part (a) is a triviality.

Assume that I(N) 2. Suppose 02,(N) 1. Then F(NP) F(N)is a 2-group
which implies (since N/F(N) is nilpotent) N/F(N) has odd order. Let Q be a
P-invariant Sylow q-subgroup of N for some odd q dividing [N[. Now, by
Lemma 2.4 applied to the group QF(N) with r 2 we get the contradiction
Q c C(F(N))_ F(N). Hence, 02,(N) 1, and by induction, N/OE,(N)has a
normal 2-complement. Thus, N itself has a normal 2-complement which is
nilpotent by Theorem 4.2(b). By part (a) of that same theorem, p must be a
Fermat prime. As F(NP)= F(N), the conclusion is unaffected if dp(NP)is
factored out, so we may assume qb(NP) 1. Thus F(N) A x B where A and
B are abelian groups, [A is odd, and B is a 2-group. The hypotheses of
Corollary 2.3 are now satisfied in the action of PN/F(N) on A, and case (b)
follows.
Suppose now /(N)= 3. Then, N cannot have a nilpotent normal 2-

complement, so by Theorem 4.2, p is 3 or 5. As l(N/F(N))= 2, it follows from
case (b) that N/F(N) has a nilpotent normal 2-complement, which is therefore
K(N)/F(N). Now K(N)/O2(N)is isomorphic to a P-invariant Hall 2-
complement (say H) of N, and so is nilpotent. As 02(N/O2(N)) is trivial,
K(N)/O2(N) is the Fitting subgroup of N/O2(N). Clearly, I(N/O2(N))= 2, and
so N/K(N) is a subdirect product of extra special groups of order 2(p 1)2. The
only extra special group of this order which admits a nontrivial automorphism
of order p is Qa when p 3 and DavQa when p 5. It remains to determine the
structure of K(N)/F(N).

Define F by the equation F/O2,(N)= F(N/O2,(N)). Since the Hall 2-
complement H for N is nilpotent, F/O2,(N must be a 2-group. Now F

_
F(N)

and so F K(N)= F(N). Define F2 by f2/f F(N/F). Clearly, F2/F con-
tains K(N)F/F, and as F2/F must have odd order, we have F2/F K(N)F/F so
F2 K(N)F. If F2 N then N/F(N) is isomorphic to the direct product of
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K(N)/F(N) with F/F(N) and so is nilpotent, contradicting l(N)= 3. Thus
F2 < N, so that I(N/O2,(N))= 3. Also, F2 K(N)F so

F2/F K(N)F/F - K(N)/(K(N) F)= K(N)/F(N).
It follows that both the section K(N)/F(N) and the length l(N) are unaffected if
O2,(N) is factored out. We may assume then that O2,(N)= 1, and then
K(N)/F(N) F(N/F(N)). Clearly, dp(NP) may also be factored out, so that
F(N) F(NP) is an elementary abelian 2-group. Also, F(NP) is complemented
in NP by. a group G which we may assume contains PH (recall that H is a
P-invariant Hall 2-complement for N). Thus, H < G and G PSH where S is a
P-invariant Sylow 2-subgroup of G.

Set U F(NP) F(N). Then C(U) U, so U may be regarded as a faithful
GF(2)[G]-module. Furthermore, C(U)= U also implies that l(SQU)= 3,
where Q is the unique Sylow q-subgroup of H for any prime q ll HI. We may
therefore assume H Q is a q-group. Since [SU, P] SU, it follows that
U [U, S] + [U, P] where U is denoted additively. All of the hypotheses of
Theorem 4.1 are now satisfied, so q np and Q has exponent q and class 2. Thus
t/’= (t2)-
Suppose Q’ < Z(Q). Now Z(Q) is elementary abelian, and since [Q, P] Q,

P is fixed point free on Q/Q’. By Maschke’s theorem, there exists a PS-invariant
subgroup Qo of Z(Q) such that Qo" Q’ Z(Q) and Qo c Q’ 1. It follows that
Qo admits P fixed point freely and that the hypotheses of Theorem 4.1 are
satisfied in the action of PSQo on U. By part (b) of that theorem, Qo must be
nonabelian, and this contradiction proves that Q’= Z(Q). Thus Q is special
and Theorem 4.3 is now completely proved.

5. Concluding remarks

It is interesting to consider whether Hypothesis 1.1 implies that l(N)is
bounded. Because of Theorem 4.2, only the primes p 3 and p 5 need be
considered. The fact that N/F(N) is completely determined when l(N)= 3
suggests that a bound is possible. The author suggests that l(N) < 4.

If p 3 and q e {5, 7, 11, 13, 23}, a {2, q}-group N may be constructed
satisfying hypothesis 1.1 but l(N) 3. This shows that Theorem 4.2 is no longer
valid if any prime is removed from rt3. (Similarly, neither 2 nor 3 may be
removed from ns. It appears likely that the other two primes in n5 can’t be
removed). The group PN has the form PSQU where the hypotheses of Corol-
lary 3.4 hold for the group G PSQ acting on the F[G]-module U. Using [1],
the source for the module U may be computed. The action of P on U/[U, S] is
then determined, and replacing U by U (R)F L if necessary (where L is a module
for PSQU/SQU), the module U then satisfies hOmFtPSl (Ups, F)= {0}. Then
[SU, P] SU by Lemma 3.1, and Theorem 4.2 is false if q is removed from n3. I
am indebted to Professor T. R. Berger for pointing out to me the relevance of
Dade’s important work in [1].
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It is an open question whether Theorem 4.2 remains true if the solvability
assumption is removed from hypothesis 1.1.
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