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ON NILPOTENT ALGEBRAS

BY

ERNEST L. STITZINGER

Let G be a group with normal subgroup H and let H’ be the derived group of
H. P. Hall has shown that if H and G/H’ are nilpotent, then G is nilpotent. This
result has led to investigations in several directions. In particular, Robinson has
provided a procedure which yields a variety of results of this type. On the other
hand, Chao has found the Lie algebra analogue to Hall’s result. It is the
purpose of this note to consider Robinson’s method in the area of nonassoci-
ative algebras. As consequences, generalizations of the result of Chao and of a
result of Ravisankar on characteristically nilpotent algebras are obtained as
well as analogues to some group theoretic results.
The construction will be developed for nonassociative algebras A over a

commutative ring tI) with identity and the algebras, will be unital O-modules.
For most of the consequences, an algebra D of operators on A will be used and
it will be necessary to restrict, to be a field. Furthermore, restrictions will be
placed on the manner in which the operators act on A for the following reason.
If A is the subalgebra ofA generated by all elements of A with at least n factors
(no matter how associated), then we want A to be D-invariant. The case when
D A has been investigated by Zwier [15] where classes of algebras with this
property are called 2-varieties. We shall require that the following identities be
satisfied. There exist i, fl 6 * such that

(1) (ab)d o(da)b + cx2(ad)b + % b(da) + x4 b(ad) +
+ %(bd)a + xTa(db)+ a8a(bd)

and

(2) d(ab) flt(da)b + fl2(ad)b + f13 b(da) + fl,,b(ad) + fl,(db)a
+ fl6(bd)a + flTa(db)+ fl8a(bd).

for all a, b A, d D. If D A satisfies (1) and (2), then Anderson [2] has noted
that A is in a 2-variety. Earlier, Albert [1] considered such algebras and called
them almost alternative. They include Lie, associative and alternative algebras
as well as (?, di)-algebras introduced by Albert and investigated many places
(see [9]). We mention also that 2-varieties are considered in [3].
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1. The construction
Let tI) be a commutative ring with identity and let ,4 be a unital tI)-algebra.

Let ,4 ,4 and let A" be the set of all O-linear combinations of all elements of
,4 which have at least n factors from .4. Set Fn An/A+ for each n. For each
positive integer n, let X (x, x} and letf=f(x, x,) be a multilinear
monomial in (X), the free nonassociative algebra over generated by X. Let
F F1 and, for 1, n, let F. The mapping from F x x F into Fn
given by (, an)-*f(a,..., an)+ A+ is clearly well defined. Since f is
multilinear, there exists a tI)-homomorphism t(f) from ()n F into Fn given by

x (R)’"(R) an f(ax, a,,) + A"+ 1.
For fixed n, A" is the sum of a finite number of homomorphie images of " F.
For this we letfvary over the possible multilinear monomials (and to obtain a
smaller number of summands we can demand that in each monomial, x comes
before x+ x, 1, n 1). Consequently we have:

LEMMA 1. Let A be a class of O-modules such that if B, C A, then every
homomorphic imaoe ofB (R) C is in A and A is closed underformino extensions. If
A is a nonassociative aloebra over , then A/A2 A implies that Ai/Ai+ Afor
each i. If, in addition, A is nilpotent, then A A.

Proof Each Fi Ai/A+ is a finite sum ofhomomorphic images of ()i F,
hence is an extension of elements in A and F A. IfA is nilpotent, then A A.

Example. Let A be a nilpotent ring and suppose that A/A2 satisfies the
descending chain condition on additive subgroups. This is equivalent to A/A2

being a finite direct sum of subgroups of type Z(pi), 1, oo, where the p’s
can vary [6, p. 110]. The tensor product of groups of this type remains of this
type and the descending chain condition is closed under extensions. Hence,
Lemma 1 applies and A satisfies the descending chain condition for subgroups.
Furthermore, if A/A2 satisfies the descending chain condition for left (right,
2-sided) ideals, then A/A2 satisfies the descending chain condition for
subgroups. It follows that A satisfies the descending chain condition for left
(right, 2-sided) ideals.

Example. Let A be a nilpotent ring such that A/A2 satisfies the ascending
chain condition for additive subgroups. This is equivalent to A/A2 being
finitely generated, a condition which meets the requirements in the lemma. It
now follows that A also satisfies this chain condition. As in the last example, the
chain condition on subgroups can be replaced by one on left (right, 2-sided)
ideals. This is the analogue of a result of Baer [4].

2. Applications

Throughout this section t} will be a field. Let A be a tI)-algebra and D be a
tI)-algebra of operators on A such that the identities (1) and (2) are satisfied.
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These conditions on A and D will be assumed throughout the remainder of the
paper.

Example. Let A be any algebra and let D be an algebra of derivations
(acting on the right) of A. Let D act trivially on the left of A. Then A and D
satisfy (1) and (2).

Example. Let A D be any Lie, alternative or (, tS)-algebra. Then condi-
tions (1) and (2) are satisfied.

Letf=f(x,..., x) be as in the first section and let n(f) be the induced map
from ()n F into Fn. Since each d 6 D satisfies (1) and (2), d can be made to act
in the natural way (on both sides) of ()" F so that d commutes with n(f). This
action depends on (1), (2) and the multilinear monomialf. We now reconsider
the definition of A given in Lemma 1 to incorporate the action of D. We note
that by a module M we mean a D-module where D is a O-algebra and by
submodule or homomorphism we mean D-submodule or D-homomorphism.
We assume that each class of modules is closed under isomorphic images and
contains a zero module.

DEFINITION. Let 3 be a class of O-modules. Then M PD ifM has a series
of submodules of finite length whose factors belong to .

DEFINITION. A class Z of -modules is called tensorial if given D-modules
A and B in Z, then every D-homomorphic image of A (R) B is in Z for every
D-module A (R)B defined by (1) and (2) for all choices of 0, flj in these
identities.

Example. The class of trivial modules and the class of one dimensional
modules are tensorial.

DEFINITION. A class of C-modules 3 is called persistent if for every algebra
A which admits D as an algebra of operators with action prescribed by an
identity of type (1) and one of type (2) the following holds: If A/A2 , then
Ai/Ai+t for all finite i.

Note that by (1) and (2), each A is D-invariant.

LEMMA 2. If Z is tensorial and A/A2
_
Z, then Ai/Ai+ PZfor allfinite i.

If, in addition, A is nilpotent, then A

Proof. This follows by the .argument in Section 1.

Robinson [13] has shown that in group theory tensorial classes of modules
are persistent. This does not seem to be the case here, but it suffices for the
applications to show that if is tensorial, then PZ is persistent. We now turn to
this result, the key being the following lemma whose proof is the same as in
[13].
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LEMMA 3. If Z is tensorial, then PZ is tensorial.

Proof Let Z be tensorial, A and B be D-modules and A, B PZ. Let
T A (R) B and let O act on A (R) B according to (1) and (2). There exist series of
D-submodules

0=Ao_AI_"’_Am=A and 0=Bo_BI_’"_Bn=B

where each factor of successive terms is in Z. Let T be the subspace of T
generated by all a (R) b where a As, b Bk and j + k _< i. Each T is clearly a
D-submodule of T and 0 To T, _... _ T+, T. The map

(a+As, b+Bk)oa(R)b+ T, aAs+,,bBk+,,j+k=i-1
is well defined and bilinear, hence there exists a -homomorphism from
As+ /As (R) BR+ i/Bk into T/+ ,/T and this mapping is a D-homomorphism and
by assumption, the image of this mapping ,is in Z. Since T + /T is a finite sum
of these images, T+,/T e PZ. Hence T PZ and any homomorphic image of
T is in PZ.

THEOREM 1. If Z is tensorial, then PZ is persistent.

Proof. By Lemma 3, PZ is tensorial. If A/A2 PZ, then by Lemma 2,
Ai/Ai+ P(PZ) for each i. Clearly P(PZ)= PZ and PZ is persistent.

COROLLARY. IfZ is tensorial and A is nilpotent, then A/A2
_
PZ implies that

APZ.

Example. Let D be a -algebra and let . be the class of all trivial D-
modules. If M is a D-module in P3, then D acts nilpotently on M. Let A be a
nilpotent algebra on which D acts with action satisfying (1) and (2). If
A/A2 P,, then A e P by the corollary. In particular, if D is an algebra of
derivations of A, then the result holds. Suppose further that A is a characteristic
ideal in B and that D is a collection of derivations of B which act nilpotently on
the vector space B/A2. Then D acts nilpotently on A. In particular we have the
following generalization of a result of Ravisankar [12]. Recall that A is charac-
teristically nilpotent if A P3 where 3 is the class of all trivial D-modules
where D is the derivation algebra of A.

COROLLARY. Let B be a nonassociative algebra with nilpotent characteristic
ideal A. Suppose that the derivation algebra ofB acts nilpotently on the vector
space B/A2. Then B is characteristically nilpotent.

If we let 3 be the class of all one dimensional D-modules, then we obtain a
similar result about characteristically supersolvable algebras.

DEFINITION. Let 3 be a class of @-modules. The class of algebras 3 is
defined to consist of all algebras A with a normal series of finite length which
when regarded as A-modules belong to
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THEOREM 2. Let 3 be a class ofmodules and let H be a nilpotent ideal in the
algebra A where the identities (1) and (2) hold in A. Assume that A/H2 ,.
Then A provided that:

(1) ., is tensorial.
(2) If B is a D-module belonging to 3 and Bo is a D-submodule ofB, then Bo

belongs to 3.

Proof. Assume that A/H2 3,. Then the A-module H/H2 PX. Hence
H s P3 by the corollary to Theorem 1. Hence A 3.

Let 3 be the class of all trivial modules. Then 3 is the class of all nilpotent
algebras. When (1) and (2) are the identities obtained from the Jacobi identity,
the theorem gives (in a slightly generalized form) Chao’s theorem for Lie
algebras [5]. We can also obtain a version for alternative algebras, (, di)-
algebras and for almost alternative algebras by varying (1) and (2). For
example we have:

COROLLARY. Let A be an almost alternative algebra and H be a nilpotent
ideal of A. If A/H2 is nilpotent, then A is nilpotent.

Let 3 be the class of one dimensional modules. Then is the class of
supersolvable algebras. Then Theorem 2 yields the following.

COROLLARY. Let A be an almost alternative algebra and H be a nilpotent
ideal of A. If A/H2 is supersolvable, then A is supersolvable.

3. Local classes

Just as in group theory, there are some results on local classes and the
development parallels that of Robinson [13]. Consequently full proofs of the
following are not necessary. We begin by mentioning some results on finitely
presented algebras. For results on free algebras see [11, Chapter 1]. Let be a
commutative ring with 1: all algebras will be unital O-modules. Let A be a
O-algebra. Then A is the homomorphic image of a free algebra F. If A is finitely
generated, then F may be assumed to have a finite number of generators. Hence
we have an exact sequence

O- R F o_. A--* O.

This sequence is called a finite presentation of A if F is finitely generated by
{a, a} and if there exist a finite collection {p , p,} of elements in F such
that the kernel of 0 is the smallest ideal in F which contains {p , p,}. Then
A is said to be finitely presented by the generators {a , a} subject to the
relations {p, p,}. The following results parallel the group case (see [14, p.
31-33]). The group theoretic analogue of the first theorem was obtained by B.
H. Neumann in [10]. The next two theorems are analogous to group theoretic
results shown by P. Hall in [7].
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THEOREM A. IfA is finitely presented, thenfor anyfinite collection ofgenera-
tors there exist a finite number of relations,

THEOREM B. IfA is finitely generated and N is an ideal in A such that A/N is
finitely presented, then N is finitely generated as an A-module.

THEOREM C. The class offinitely presented algebras is closed with respect to
forming extensions.

COROLLARY D. Finitely generated nilpotent algebras and supersolvable
algebras are finitely presented.

DEFINITION. If X is a class of modules, then the class LX is defined as
follows. Let M be a D-module. M e L if given finite subsets F

_
M and

G
_

D, there exists a subalgebra Do
_
D and Do-module Mo contained in M

such that F
_
Mo, G

_
Do, and Mo X.

LEMMA 4. Let 3 be a class of p-modules where p is a field. Then L3 is
tensorial if the following conditions are satisfied:

(1) X is tensorial.
(2) IfM is a D-module belonging to and Do is a subalgebra ofD, then M

regarded as a Do-module belongs to .
Proof. See [13, p. 229].

THEOREM 3. Let be a class of P-modules where is a field. Let H be a
nilpotent ideal in the aloebra A where (1) and (2) are satisfied in A. Assume that
A/H2 L(). Then A L(3) if the followin are satisfied:

(1) is tensorial.
(2) If B is a D-module belonging to , Do is a subal0ebra ofD and Bo is a

Do-module contained in B, then Bo .
(3) Finitely generated algebras in are finitely presented.

Proof Let A/H26 L(:). Then H/H2 regarded as an A-module is in
L(P3). Now L(PX) is tonsorial by Lcmma 3 and Lcmma 4. Hence
H e P(L(P3)) by Lcmma 2. Hence there exists a series H H1- H2 __._

H, 0 of A-modules such that Hi/Hi+ L(P). The remainder of the
proof follows the proof of [13, Theorem 3] using this series in place of the lower
central series of H.

If is the class of trivial modules, then L() is the class of locally nilpotent
algebras. Hence"

COROLLARY. IfA is almost alternative and ifH is a nilpotent ideal ofA such
that A/H2 is locally nilpotent, then A is locally nilpotent.
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If . is the class of 1-dimensional modules, then L(a33) is the class of locally
supersolvable algebras. Hence there is a locally supersolvable analogue to the
above corollary.
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