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ON THE LOCAL THEORY OF TOEPLITZ OPERATORS

BY

KEVIN F. CLANCEY AND JOHN A. GOSSELIN

There are several local theories for Toeplitz operators acting on the usual
Hardy space H2 of the unit circle [1], [6], [7] and [14]. The approach in these
theories is to associate with a global operator a local operator for each subset
of some partition of the maximal ideal space M.(R) of L. A typical result says
that if for each subset in the partition the local operator is invertible, then the
global Toeplitz operator is Fredholm. Obviously the nature,of the partition is
crucial and the above result has been established for various partitions ofM
The problem of understanding the local operators for a fixed element in the
partition remains and this is the main concern here.

In one of these local theories [6] the local operator is an element in a quotient
C*-algebra which does not have an obvious representation on a Hilbert space.
The work in [4] gives some explanation of these local operators for the case of
an element in the partition of Mo over the unit circle. In this paper further
explanations and refinements are provided.
The arguments below are made easier because the authors have allowed

themselves the luxury of the recent description by S. Y. Chang [2] and D. E.
Marshall [10] of the closed algebras between H and L. The introduction of
these algebras into the local picture provides further interpretations of invertib-
ility of the local operators back on the unit circle.
The authors are indebted to I. Gohberg for first calling attention to these

local problems.

1. Preliminaries

Let L denote the Banach algebra of essentially bounded Lebesgue measur-
able functions on the unit circle T and let M(R) denote its maximal ideal space.
No notational distinction will be made betweenf 6 L viewed as a function on
T or its Gelfand transform as a continuous function on M. The notation H
will be used for the algebra of bounded analytic functions on the unit disc
considered as a subalgebra of L and C will stand for the algebra of continuous
functions on T. A subset S of Moo is called a peak set for H in case there is an
f e H such thatfequals one on S and f is less than one off S. The set S will
be called a weak peak set for H in case it is an intersection of peak sets. Ifthe
set S is a weak peak set for H, then the restriction algebra H Is is a closed
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subalgebra of L Is. The reader is referred to [8] for many of the basic properties
of H and L and to [9] for additional properties of function algebras.

Let S be a weak peak set for H. We denote by H the set

(tk L" b Is n Is}.
It is easy to verify that H is a closed subalgebra of L containing H. Re-
cently, in answer to a question of R. G. Douglas, S. Y. Chang [2] and D. E.
Marshall [10] have given a description of the closed algebras which satisfy
H c L. In fact, let be such an algebra and Z {’qb is inner,

6 }. The result of these authors is"

THE CHANG-MARSHALL THEOREM. Let / be a closed algebra satisfying
H /c L. Then /equals the smallest closed algebra generated by H and

It follows that whenever S is a weak peak set for H, then the algebraH is
the smallest closed algebra generated by H and the collection 2s of functions, where b is inner and Hs, The inner functions b invertible in H are
those inner functions which are constant on the support of every representing
measure for a homomorphism ofH, whenever this support set is a subset of S.

Actually the full strength of the Chang-Marshall theorem is not required for
the purposes of this paper. The algebra H Hs / Js, where Js is the ideal in
L consisting of functions vanishing on S. Axler [1] established the equivalent
of the Chang-Marshall theorem for algebras of the form H+ Js. The
techniques employed by Axler are simpler than those found in [2] and [10].
The authors would like to thank R. Younis and the referee for the observa-

tion in the preceding paragraph.
In the later sections we will be discussing the localization of Toeplitz opera-

tors to closed subsets S of M,. In addition to being weak peak sets these
closed subsets all share an additional property which we now describe. The
weak peak set S will be said to have property (,) in case:

(,) b inner, in Hs, implies b is constant on S.

It is not difficult to verify that any closed antisymmetric set for H has
property (,). Recall that a subset S of M,(R) is said to be an antisymmetric set for
H in case every function in H which is real valued on S is constant on S. In
Section 3 further examples of sets possessing property (,)are described.
There are two expressions which describe the local distance from a function u

in L to H on a weak peak set S. These are the quantities"

dists(u,H)= inf Ilu-hlls and dist(u,Hs)= inf Ilu-hlloo.
h H hH

These distances can readily be seen to be equal.
The following extension result will be used in the study of local invertibility

of Toeplitz operators in the next section.
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PROPOSITION 1. Let S be a weak peak setfor H which has property (,). Let u
be in L. Assume u 1 on S and dists (u, H) = dist (u, H) < 1. Then there
is a unimodular in L such that ?t u on S and dist (, H) < 1.

Proof. It can be assumed that ul 1 a.e. The hypothesis states that there
is a function h in H satisfying ]lu- h[l < 1. The Chang-Marshall Theorem
implies that h can be assumed of the form h g where g is in H and b is an
inner function with in HI. The fact that S has property (,)means that is
some constant 2 of modulus one on S. Set bu, then u on S and

glloo < 1. This ends the proof.

2. Restricted invertible Toeplitz operators

Iffis an element in L, then T will denote the Toeplitz operator with symbol
f acting on the Hardy space H" of the unit circle. For the basic properties of
Toeplitz operators we refer the reader to [6] or [13].

Let S be a closed subset of M,. The Toeplitz operator T. will be called an
S-restricted invertible operator in case f= # on S where # is in L and T is
invertible. A similar definition is made for S-restricted left-invertible (right-
invertible) operators. The following proposition is a local analogue of a result
of Rabindranathan [11] (See, also Sarason [13]).

PROPOSITION 2. Let S be a weak peak setfor H which has property (.). Let u
be a function in L which is unimodular on S. The following are equivalent:

(i) The operator T is S-restricted left-invertible.
(ii) dists (u, H)= dist (u, H)< 1.

Proof. The result of Rabindranathan [11] shows the equivalence of (i) and
(ii) when S M..
We first show (i) implies (ii). The assumption (i) implies that there is a v in L

such that To is left-invertible and such that v u on S. Replacing v by v lv I- 1, if
necessary, we can assume that v is unimodular. The result of Rabindranathan
implies dist (v, H) < 1. Clearly,

dists (u, H)= dists (v, H) < 1.

The proof that (ii) implies (i) uses Proposition 1. Indeed, assuming (ii), there
is a. unimodular extension of u from S to ML such that dist (t, H(R)) < 1. The
easy half of Rabindranathan’s result implies that Tis left-invertible and, there-
fore, T is S-restricted left-invertible. This completes the proof.
A similar result is true for the case where the operator T is S-restricted

invertible. We first establish the following"

LEMMA 1. Let S have property (,). Then for u in L

dist (u, (H)- ) dists (u, (H)- ).
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Proof It follows from the Chang-Marshall Theorem that the collection

Q {h" h (H)- , , b inner b 1 on S}
is dense in (n)-a.

Let e > 0 be arbitrary. Choose a function ,hb Q such that

[[u hl[(R) _< dist (u, (H)-)+ e.

Then

Ilu hlls -< Ilu h[[ _< dist (u, (H)-) + e.

This shows dists (u, (H)-1) < dist (u, (H)-I). Now let h be a function in
(n) such that

Ilu hlls <- dists (u, (H(R)) )+ e/2.
There is a clopen V containing S such that

u h v -< dists (u, (H)- ) + e.

The function fi U:tv + 1 Zv agrees with u on S and ’= hjtv + 1 Zv be-
longs to (H)- 1. Clearly,

dist (fi, (H)-) <  ’11 -< dists (u, (H)-) + e.

It is not difficult to check that dist (u, (n) x)= dist (fi, (n) ) and this
gives the inequality dist (u, (H)- ) < dists (u, (H)- x) completing the proof.

PROPOSITION 3. Let S be a weak peak setfor H(R) which has property (,). Let u
be a function in L which is unimodular on S. Then thefollowin9 are equivalent.

(i)
(ii)

The operator Tu is S-restricted invertible.
dist (u, (HF)- 1) dists (u, (H)- 1) < 1.

Rabindranathan [11] has shown the equivalence of (i) and (ii) for the case
S M..The proof of the proposition follows from this result and is similar to
the proof of Proposition 2. We omit the details.

3. Partitions of Mo
Let B denote a closed self-adjoint subalgebra of L. There is a natural map-

ping n from ML(R) to M the maximal ideal space of B, where n(,)= , 1. The
mapping n is continuous and surjective (see [6, page 48]). Hence
is a partition of M(R) into nonempty disjoint closed subsets. This partition will
be referred to as the partition of M,oo over the subalgebra B. The sets in such a
partition are obviously the sets of constancy for the functions in B.

In the later sections of this paper we shall be particularly interested in the
partitions of M,(R) over C and over QC (H + C) c (n + C)-. The latter
algebra is referred to as the algebra of quasi-continuous functions on T. For the
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case B C, Mnis homeomorphic to T, and the partition element n- x(2), 2 T,
is often denoted by X. It is referred to as the fiber ofMoo over the point 2 T
(see [8, page 161]).

Since there are real valued H + C functions which are discontinuous at
2 1 (see [12]) it follows that the partition of M(R) over QC is a proper
refinement of the partition over C. One further refinement of the partition over
QC is the partition of M(R) into maximal antisymmetric sets for H + C. It is
easy to verify that each maximal antisymmetric set for H + C is contained in
one of the fibers n-(o), o Mo.c. A nontrivial example in an unpublished
note of D. Sarason shows that the partition of Mz into maximal antisymme-
tric sets for H + C is a proper refinement of the partition of Mz(R) over QC.
We remark that for each of the above partitions, the partition elements are

weak peak sets for H + C. Each fiber Xx is actually a peak set for H(R) since
the function e(z)= 1/2[1 + [z] peaks on X. It is well known ([9, page 162] for
example) that maximal antisymmetric sets for H + C are weak peak sets for
H + C. Finally, let n- (o), o Mec, denote an element of the partition over
Mec. If V is any neighborhood of o in Mec, then there is an elementfin QC
satisfying 0 <f< 1,f(o) 1, andf= 0 on Mo.c\V. Considered as an element
in L this function will equal one on n-(o) and be zero on sets of the form- (), Mo.c \V. This shows - (o) is a weak peak set for n + C.

It follows that if S is a maximal antisymmetric set for H + C, a fiber Xa,
2 T, or of the form n-(o), o Mo.c, then H + C Is H [s is a closed
subalgebra of L Is. Actually, this forces S to be a weak peak set for H (see [9,
page 192]). In particular we may consider the algebras H. The notations H
(respectively, no will be used in case S equals X, 2 T (respectively, n- (o),
o Mac).

If 2 belongs to T, then it is well known that an inner function is invertible in
H if and only if it is constant on X. Thus X has property (,). Actually, the
result corresponding to the Chang-Marshall Theorem for the algebrasH was
obtained by Davie Gamelin and Gamett [5]. For the partition over QC we
have the following:

PROPOSITION 4. Let o be in Mec. Then n-(o) has property (,).

Proof The maximal ideal space ofHo is homeomorphic to the collection of
homomorphisms 7 of H + C whose representing measures/r are either point
masses or supported in n- (o). Let b be an inner function satisfying Ho.
Then b(,) =/: 0, for all Mn(R) /c with supp/, = n- (o). There exists a neigh-
borhood U of o in Mo.c such that b() =/: 0 for any in Mn/c with supp tr =
n- (), U. Assuming the existence of such a neighborhood, the proof may
be completed as follows. Choose an element f in QC such that 0 <f <_ 1,
f(o) 1 andf()= 0, U. Thenf 1_()e H + C 1-()for all e Mc.
Since each maximal antisymmetric set for H(R) + C is contained in a single
element of the partition over QC, function fb belongs to H + C by Bishop’s
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Theorem (see [9, page 39]). It follows that fb belongs to QC and, therefore,
b 1_ {o fb 1_o is constant,
We now discuss the existence of the neighborhood U. Let

F: Mnoo +c M2c
denote the restriction map. Then 1" is continuous and surjective
(Mnoo+c Me.(R)). The set F-t(o), for o Mec, is exactly the collection of
homomorphisms of H + C with representing measures supported in n- (o).
Using this fact and the continuity of F one obtains the desired neighborhood.
This ends the proof.

We now turn to factorizations of Blaschke products relative to these parti-
tions. We first consider the partition over C. Let 20 be in T and let b be an
arbitrary Blaschke product with zero sequence {z,}. Let U and V be open
subarcs of T with 20 U t.7 V. Let fl be an open rectangle of the unit disc
such that dfl c T U. Let b denote the Blaschke product with zero sequence
{z} fl and tk2 b. The function b2 is continuous at 2o and hence con-
stant on Xo, the fiber over ;to. We may assume that 2 1 on Xao and hence
b tk on Xo. Likewise b is continuous on the set T\V and therefore b is
constant on the fibers X, 2 V. We now show that a similar factorization is
possible for elements in the partition over QC with extra assumptions on b.

PROPOSITION 5. Let o be in Mec and assume o V with V open in Mec. If
dp is a Blaschke product with interpolating zero sequence {z}, then can be
factored as dp dp2 where dp equals dp on n-(o) and dp is constant on each set
-(), wherever V.

Proof. Let [H + C]* denote the dual space ofH + C. Choose an open U
with o U t.7 V. Let q/= F-(U) and F-(V). There is an open
subset g c [H + C]* with g c Mn+c /and

where the bar denotes closure in [H + C]*. Let denote the unit disc as a
subset of [H + C]* and set fl c . Let be the Blaschke product with
zero set {z,} c f and b2 b. We now show that b2 does not vanish on
Suppose , e ’ and b20’)= 0. Since the zeros of 2 are interpolating, there
exists a net {z} consisting of zeros of b 2 with z with z in In(R) + C]* (see
[8, page 206]). Then some zo is in t" which is impossible by construction. It
follows that b2 is constant on n-(o) and we may assume this constant value
is one. Similarly it follows that q is constant on n-() for V. This com-
pletes the proof.

4. Local Toeplitz operators

There are other techniques of localization for Toeplitz operators different
than the notion of restricted invertibility. One of these techniques, first in-
troduced in [6] (see, also [1] and [7]) will be developed further below.
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Let be the C*-algebra generated by all Toeplitz operators and J- the
algebra -/ where F is the ideal of compact operators on Hz. For S a closed
subset of ML(R) let a(S) be the smallest closed two sided ideal in " generated by
elements of the form T where f is in L and f vanishes on S. The quotient
algebra -/a(S) will be denoted by s and if T is in , then Ts will denote its
projection in -s. Forf L, the element T is called a local Toeplitz operator.
Axler [1] has observed that the basic identity Ilfll -- IIT ho ds forfin L.

DEFINITION. Let f be in L. The Toeplitz operator Ts will.be said to be
S-locally invertible in case is invertible in ’-s.
A definition similar to the preceding is made for S-local left-invertibility

(right-invertibility).
In this section we are concerned with the meaning of invertibility of T in

terms of Ty back on H2. We consider only the case where S is an element in the
partition over C or QC.

Let B be a closed self-adjoint subalgebra ofL that satifies C c B QC. The
notation n will continue to denote the natural surjection n: Mz(R) Mn. For the
case where S n-l(b) we will use the notation b for the algebra
-la(n-(b)) and for the local operator ,f L. The following restate-
ment of a result of Douglas [6] will play a role in the sequel.

THEOREM 1. Let B be a self-adjoint subalgebra ofL satisfying C B c QC.
Then Obt a(n-X(b))= (0)and for T - the mapping b- IIT[[ is an upper-
semi-continuous function on MB.

The above theorem .implies"

COROLLARY 1. Let B be a self-adjoint closed subaloebra of L satisfying
C B QC. Supposef L andfor each b in MB the local Toeplitz operator Ty
is invertible, then the operator Ts is Fredholm on H2. Similarly, iffor each b in M
the local Toeplitz operator Ty has a left-inverse (right-inverse), then Ty is left-
Fredholm (ri9ht-Fredholm) on H2.

The following result was obtained in the case B C in [4].

PROPOSITION 6. Assume B C or B QC and let bo be afixed point in Ma.
Let f L. Thefollowing are equivalent.

(i)
(ii)

The operator Tf is restricted -(bo)-left-invertible (right-invertible).
The local Toeplitz operator Tf is left-invertible (right-invertible).

Proof If either (i) or (ii) holds, then f cannot vanish on n-X(bo). It can
therefore be assumed that If[ 1 a.e. The equivalence of statements (i) and
(ii) for the case of left-invertibility implies the equivalence for the case of
right-invertibility as can easily be seen by taking adjoints. It is clear that (i)
implies (ii).
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Assume that [fl 1 a.e. and o has a left-inverse/o for some L in o.
From the semi-continuity of I1(I LT )Otl it follows that there is a neighbor-
hood U of bo in Mn such that is left-invertible for b U.

Let 0 < e < 1/2. A result of Ziskind [15] implies that there is a O in H and a
finite product of interpolating Blaschke products tk such that Ilf-g/ll <
Using Proposition 5, for the case B QC, or the remark preceding Proposition
5, for the case B C, we can factor b tk z where b b on n- X(bo) and
is constant on each set of the form n-(b) where b U.

Setf= t2f and note that 1137’- gl Iloo < e. This forces

Io(t) >- a.e.

and therefore T_, is a left-inverse for T. For b U we have _a= c(b)T,
where c(b)denotes the constant value of t on n-(b). Thus c(b)_ is a
left-invers6 for t and this left-inverse has norm at most (1- )-. The
inequality II[T < < 1/2 insures that has a left-inverse for b U.
For b 6 U, the local Toeplitz operator equals i and hence is left-
invertible. Corollary 1 implies that T is a left-Fredholm Toeplitz operator.

If T is not left-invertible, then TI is actually Fredholm. This follows because
of a result of Coburn (see, e.g., [6]) which shows that one of the kernels of T or

T is trivial. Let n be the index of T. Set x"(O)= en and g xnf. The
Toeplitz operator T is invertible. Every continuous function is constant on
n-(o) and by modifying g by a constant, if necessary, one can assume
g =f=f on n-l(bo). This completes the proof.

5. Two-sided invertibility

We are now in a position to prove the following theorem which shows that
the various notions of local invertibility are equivalent. We remark that for the
case of a fiber Xa, S. Y. Chang has given an independent proof along the lines of
classical function theory that statements (i) and (ii) are equivalent. Further R.
G. Douglas has observed the equivalence of (iii) and (iv) follows from his work
in [7]. The equivalence of (iii) and (i) is the main contribution here.

THEOREM 2. Let B be one of the algebras C or QC and let bo be afixed point
in Ma. Let f belong to L and assume that f is unimodular on n-(bo). The
following are equivalent.

(i) The operator TI is -(bo)-restricted invertible.
(ii) The operator Ty is n-(bo)-restricted
(bo)-restricted right-invertible.

(iii) The local Toeplitz operator Ty is invertible.
(iv) dist_to)(f, (H) )= dist (f, (Ho)- )< 1.

left-invertible and

Proof. Statements (i) and (iv) are equivalent by Proposition 3. The equiv-
alence of (ii) and (iii) is provided by Proposition 6. Statement (i) trivially
implies (ii). The proof will be complete when it is shown that (ii) implies (iv).
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Assume T. is both n- (bo)-restdcted left-invertible and n- (bo)-right-invert-
ible. It follows from Proposition 2 and the Chang-Marshall Theorem that there
is an h in H and an inner function 4) which equals one on n-(bo) such that
IIf- hll < 1. Let h qg be the faetorization of h into a product of an outer
function g and an inner function k. The inequality II1 fckkgll o < 1 shows that
0 (L)-x and hence belongs to (H)-x. Moreover, the local Toeplitz
operator

T,o TT
is invertible. Since o and o are invertible, then o is invertible. In particu-
lar, Proposition 2 implies dist (, Ho < 1 and so i H. The function
h ffg is in (no)- x. This ends the proof.

6. Conclusion

The results in [4] establish the equivalence of invertibility of the local opera-
tor T), 2 T, and a local factorization of the symbolfat 2. This notion of local
factorization was first defined in [3]. Theorem 2 yields a simpler (but less direct)
argument to establish that the invertibility of the local operator T) implies the
desired local factorization.
The results in Proposition 6 and Theorem 2 can be established in ease

n-(bo) is replaced by a maximal antisymmetric set for H + C. The argu-
ments in this ease use a suitable variation of Proposition 5 and the transfinite
induction approach to maximal antisymmetric sets. The transfinite method is
explained in [1].

Finally we note that the proof of the extension property (Proposition 1)
depends on property (,). The authors do not know whether this proposition
can be extended to the case where S is an arbitrary weak peak set for H. There
are examples of function algebras A c C(X) and subsets S c X where A Is is
closed and the extension property fails. These examples do not have the strong
logmodularity behavior of the algebras discussed in [1].

REFERENCES

1. S. AXLER, Subaloebras of L, Thesis, University of California, Berkeley, 1975.
2. S. Y. CHANG, A characterization ofDouolas subaloebras, Aeta Math., vol. 137 (1976), pp. 81-89.
3. K. CLANCEY AND I. GOHB.RG, Local and olobalfactorizations ofmatrixfunctions, Trans. Amer.

Math. Soc., vol. 222 (1977), pp. 155-167.
4. , Localization of sinoular inteoral operators (preprint).
5. A. M. DAVlE, T. W. GAMELIN, AND J. GARNETT, Distance estimates and pointwise bounded

density, Trans. Amer. Math. Soe., vol. 175 (1973), pp. 37-68.
6. R. G. DOUGLAS, Banach aloebra techniques in operator theory, Academic Press, New York,

1972.
7. ., Local Toeplitz operators (preprint).
8. K. HOFFMAN, Banach spaces of analytic functions, Prentice-Hall Series in Modern Analysis,

Prentice-Hall, Englewood Cliffs, New Jersey, 1962.
9. G. M. LEmown’z, Lectures on complex function aloebras, Scott, Foresman, Glenview, Illinois,

1970.



458 KEVIN F. CLANCEY AND JOHN A. GOSSELIN

10. D. MARSHALL, Subalgebras of L containing H, Acta Math., vol. 137 (1976), pp. 91-98.
11. M. RABINDRANATHAN, On the inversion of Toeplitz operators, J. Math. Mech., vol. 19 (1969), pp.

195-206.
12. D. SARASON, Algebras offunctions on the unit circle, Bull. Amer. Math. Soc., vol. 79 (1973), pp.

286-299.
13. -, Lecture notes on Toeplitz operators, University of Kentucky, 1970.
14. I. B. SIMONENKO, Some general questions in the theory ofRiemann boundary problems, Izv. Akad.

Nauk SSSR, vol. 32 (1968), Math. USSR Izv., vol. 2 (1968), pp. 1091-1099.
15. S. ZISKIND, Interpolating sequences and the Shilov boundary of H(A), J. Functional Analysis,

vol. 21 (1976), pp. 380-388.

UNIVERSITY OF GEORGIA
ATHENS, GEORGIA


