A PROBLEM IN TRIGONOMETRIC APPROXIMATION THEORY

BY

HARRY DYM

This note is written to supplement the paper of Seghier [4]. The notation is accordingly chosen to conform to that paper. It is reviewed briefly for the sake of completeness: $e_c = e_c(x) = e^{icx}$ and $H_{(ab)}$ denotes the closed linear span of the functions e_t : $a \le t \le b$ in $L^2(R^1, f(x) dx)$ where $f(x) = g(x)\overline{g}(x)$, a.e. $x \in R^1$, and $g[\overline{g}]$ is an outer Hardy function of class $H^{2+}[H^{2-}]$; P[Q] denotes the orthogonal projection of $L^2(R^1, dx)$ onto $H^{2+}[H^{2-}]$ and M_c denotes the Hankel operator $M_c = Q(e_{2c}g/\overline{g})P$. The symbol $(,)[(,)_f]$ denotes the standard inner product in $L^2(R^1, dx)[L^2(R^1, f(x) dx)]$.

THEOREM. If f^{-1} is locally summable, then

(1)
$$H_{(-\infty a)} \cap H_{(-a \infty)} = \bigcap_{\varepsilon > 0} H_{(-a-\varepsilon a+\varepsilon)} \text{ for every } a \ge 0.$$

If also $||M_c|| < 1$ for some $c \ge 0$, then

(2)
$$H_{(-\infty a)} \cap H_{(-a \infty)} = H_{(-a a)} \text{ for every } a > c.$$

Discussion. Identity (1) was first proved by Levinson-McKean [2] in the special case that f is even and a = 0. (2) was first proved by Seghier in an unpublished preliminary version of [4] under the auxiliary assumption that $||M_0|| < 1$.

Proof of theorem. Identity (1) is an immediate consequence of Theorem 2.1 of Dym [1] and the identification of $\bigcap_{\varepsilon>0} H_{(-a-\varepsilon a+\varepsilon)}$ with the space of entire functions of exponential type $\leq a$ which are square summable on the line relative to the measure f(x) dx; see Pitt [3] for a proof of the latter.

Now suppose in addition that $||M_c|| < 1$ for some $c \ge 0$ and fix a > c. Then, in view of (1) and the self-evident inclusion $H_{(-a a)} \supset \bigcap_{\varepsilon > 0} H_{(-c-\varepsilon c+\varepsilon)}$, it follows that

$$H_{(-a a)}^{\perp} \subset (H_{(-\infty c)} \cap H_{(-c \infty)})^{\perp}$$

= $\overline{H_{(-\infty c)}^{\perp} + H_{(-c \infty)}^{\perp}}$
= $H_{(-\infty c)}^{\perp} + H_{(-c \infty)}^{\perp}$
= $(\overline{e_c g})^{-1} H^{2+} + (e_c g)^{-1} H^{2-}$

 \bigcirc 1978 by the Board of Trustees of the University of Illinois Manufactured in the United States of America

Received August 3, 1977.

The passage from line 2 to line 3 uses the fact that the cosine of the angle between the indicated two spaces is equal to $||M_c||$ and that $||M_c|| < 1$. The inclusion derived to this point implies that each function $\psi \in H^{\perp}_{(-aa)}$ can be expressed in the form

$$\psi = (e_c g)^{-1} \theta_1 + (\overline{e_c g})^{-1} \theta_2$$

for some choice of $\theta_1 \in H^{2-}$ and $\theta_2 \in H^{2+}$. Now

$$(\psi, e_u)_f = ((e_c g)^{-1} \theta_1 + (e_c g)^{-1} \theta_2, e_u)_f$$

= $(\theta_1, g e_{u+c}) + (\theta_2, \overline{g} e_{u-c})$
= 0

for $|u| \leq a$, and if either $-a \leq u \leq c$ or $-c \leq u \leq a$, then both terms in the next to the last line vanish separately. Therefore $(\theta_1 e_{a-c}, ge_t) = 0$ for $0 \leq t \leq a + c$. In fact the latter equality prevails for all $t \geq 0$ since $\theta_1 \in H^{2-}$ and $g \in H^{2+}$ and so, as g is an outer function, it serves to prove that $e_{a-c}\theta_1 \in H^{2-}$, and hence that

$$(e_c g)^{-1} \theta_1 \in (e_a g)^{-1} H^{2-} = H^{\perp}_{(-a \infty)^{-1}}$$

Much the same sort of argument serves to prove that $(\overline{e_c g})^{-1} \theta_2 \in H_{(-\infty a)}^{\perp}$. Thus

$$H_{(-a a)}^{\perp} \subset H_{(-\infty a)}^{\perp} + H_{(-a \infty)}^{\perp} \subset \overline{H_{(-\infty a)}^{\perp} + H_{(-a \infty)}^{\perp}} = (H_{(-\infty a)} \cap H_{(-a \infty)})^{\perp}$$

which is to say that

$$H_{(-a a)} \supset H_{(-\infty a)} \cap H_{(-a \infty)}$$

Since the opposite inclusion is self-evident the proof is complete.

REFERENCES

- 1. H. DYM, Trace formulas for a class of Toeplitz-like operators, Israel J. Math., vol. 27 (1977), pp. 21-48.
- N. LEVINSON AND H. P. MCKEAN, Weighted trigonometrical approximation on R¹ with application to the germ field of a stationary Gaussian noise, Acta Math., vol. 112 (1964), pp. 99–143.
- 3. L. D. PITT, On problems of trigonometrical approximation from the theory of stationary Gaussian processes, J. Multivariate Anal., vol. 2 (1972), pp. 145-161.
- A. SEGHIER, Prediction d'un processus stationnaire du second ordre de covariance connue sur un intervalle fini, Illinois J. Math., vol. 23 (1978), pp. 389-401 (this issue).

THE WEIZMAN INSTITUTE OF SCIENCE REHOVOT, ISRAEL