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Introduction

A system, or more exactly a C2-system, is a pair of complex vector spaces V
and W together with a system operation which is a C-bilinear map (e, v)- ev
of Cz x V into W. For a fixed basis of C, a system determines and is deter-
mined by a pair of linear transformations from V to W. See [3]. A homomor-
phism of a system (S, T) into a system (X, Y) is a pair (b, ,)of linear
transformations b: S X and : T Y such that ecks ,es for all e Cz and
sS.
The category of systems is equivalent to the category of modules over the

subring of M3(C) consisting of matrices of the form

0 0

and contains subcategories equivalent to the category of modules over C[], the
ring of complex polynomials in one variable. Systems in these subcategories are
called nonsingular systems. See [1]. Many concepts and theorems in the theory
of modules over C[] carry over to the catgory of systems.

In this paper we prove:

(1) A system of bounded height (defined below) is a direct sum of finite-
dimensional indecomposable systems. The nonsingular analogue of this is
Kulikov’s well-known theorem on bounded modules. See [5, Theorem 6].

(2) Systems of bounded height are pure injective.
(3) A torsion system, (X, Y) has the property that every mixed system

(U, 27) with (X, Y) as torsion part splits if and only if (X, Y) is a direct sum of a
divisible system and a bounded system.
An analogous result for abelian groups is Baer’s characterization of torsion

cotorsion groups [4, Theorem 100.1].
In the light of the above results and others in the literature it is interesting

that an easy but important result in the theory of modules over C[(] fails to
hold for systems, namely: The intersection of pure subsystems in a torsion-free
system is not necessarily pure.

This will be shown by means of a simple example.
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I. Preliminaries

This section is for the convenience of the reader and may be skipped by those
familiar with our references.

DEFINITION 1.1. (a) A system is a pair of vector spaces (V, W)together
with a system operation which is a C-bilinear map (e, v)--, ev of C2 x V into
I4/’. (V, W) is said to be finite-dimensional if dim V / dim W < .

(b) A system (V, W) is nonsingular if there exists e C2 such that the map
v- ev is an isomorphism of V onto W.
A system (V, IV) is ordinary if V W and there is an e C2 that acts like the

identity on V. (Every nonsingular system is isomorphic to an ordinary system
[1, p. 281].)

DEFINITION 1.2. (a) A system (V, W) is said to be torsion-free in case all
the linear transformations v- ev, 0 =p e C2, are injective.

(b) Let (a, b) be a basis of C2. 0 C w {c} is said to be an eigenvalue
of a system, (V, W), if .bov= 0 for some 0 =p v V. (bo b Oa if 0 ; if
O= ,bo=a).
For any system (V, W) there exists a smallest subsystem t(V, W), of (V, W)

such that (V, W)/t(V, W)is torsion-free [1, p. 3.24]. (V, W)is said to be torsion
if t(V, W) (V, W).

(c) Let X, Y be subsets of V, W respectively. There exists a smallest subsy-
stem, (Vt, W), of (V, W) with X Vt, Y W such that (V, W)/(V, Wt)is
torsion-free. (V, Wt) is called the torsion-closure of (X, Y) and is denoted by
tc(v,w)(X, Y). A subsystem (X, Y), of (V, W) is said to be torsion-closed if
(X, Y)is the torsion-closure of (X, Y)i.e., if (V, W)/(X, Y)is torsion-free.

(d) g system, (V, W), is said to be of rank I if (V, W) tc(v,w)(dp, w) for all
0 :p w W [2, p. 433 and Lemma 2.2].

(eJ A system, (V, W), is said to be a divisible system if eV W for all
0 ee C2.

Observe that the definition of eigenvalue depends on the choice of basis of
C2. However, the property of having no eigenvalues is not so dependent be-
cause a system is torsion-free if and only if it has no eigenvalues. In any case, a
change of basis of (22 involves a Moebius transformation of the parameters
giving the eigenvalues [1, p. 282]. As a result we conclude that the number of
eigenvalues of a system is an invariant of the system.

DEFINITION 1.3. Let (V, W) be a system, v V, w W.

(a) A chain ((vl, v2, Vm-1), (Wl, W2, Wm))is said to be oftype IIImif
av wl, av wi bye_ 1, 2, rn 1, bvm_ Wm. If m 1, the chain is

(b) A chain ((v l, v2,..., v,), (wl, w2, w,))is said to be of ty:pe II"$ if
bov O, avi wi bo v + 1, 1, m 1, av, w,.
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Let V’ and W’ be the respective spans of the vi’s and w;s. The subsystem,
(V’, W’), of (V, W) is called the subsystem spanned by ((v), (w)). In case the v’s
and w]s form bases of V’ and W’ respectively (V’, W’) is itself called a subsy-
stem of type III or lI"d depending on the type of chain which spans it.

Remark 1.4. (a) In [1, p. 282] the types are defined in a way that makes it
obvious that being of type III is independent of the choice of a basis of C2.
However, a change of basis of C2 changes a system of type II"d to one of type
11" (same m) with q related to 0 by a Moebius transformation; see the remark
following 1.2. The equivalence of our definition of the types to that in [1] is the
content of [1, Proposition 2.6].

(b) Systems of type III are torsion-free and of rank one [2, Lemma 2.2].
(c) A subsystem of a system of type 111 is isomorphic to

(v,, (v., w.)
for some positive integer, n, where (V, W) is of type IIIm’, m < m for all 1,
2, n. The decomposition, follows from [1, Theorem 4.3] and (b) above and
the inequality holds because = m, < m.

For a fixed positive integer m and a basis (a, b) of C, the chains of type III
in a system (U, Z) form a vector space, denoted in [1] by CIIIm(a, b; U, Z).

It has a subspace, IIIm(a, b; U, Z), consisting of all chains of type III in
(U, Z) which are sums of two type III chains,

((x, xam_,), (yX, y)) and ((x, x2_ x), (Y, y2)),
2such that y] bx for some Xo U and y2 ax2 for some x U. The quo-

tient space Cilia(a, b; U, Z)/IIIm(a, b; U, Z) is denoted by QIII(a, b;
v,z).

Given a chain ((xl,... Xm), (Yt,..., Y,)) in (U, Z) the subsystem of (U, Z)
spanned by the chain is the smallest subsystem (X, Y)satisfyin9 x x, xm X
and y,..., y, Y.

2. Bounded systems

LEMMA 2.1. Let (U, Z) be a torsion-free system and (V, W) a torsion-closed
subsystem of (U, Z). If (X, Y) is a rank 1 subsystem of (V, Z) not contained in
(V, W) then (V, W) c (X, Y)= O. In particular, distinct torsion closed rank 1
subsystems of (U, Z) intersect trivially.

Proof Suppose (V, W) (X, Y) # 0. By torsion-freeness this implies that
W c Y # 0. Let 0 4: Y W c Y. Since (X, Y) has rank 1,

(X, Y)= tCtx,v(d?, y).

But tC{x,r)(qb, y) - tqv,z)(d?, y) tC{v,w)(4), y) - (V, W). The last equality comes
from the fact that (V, W)is torsion-closed and [2, 2.1(e)]. So (X, Y)

_
(V, W), a

confradiction.
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DEFINITION 2.2. (a) [3, p. 736] A subsystem (S, T) of (U, Z)is said to be
pure in (U, Z) provided for every intermediate subsystem (X, Y), (S, T)
(X, Y) (U, Z) such that (X, Y)/(S, T) is finite-dimensional, (S, T) is a direct
summand of (X, Y).

(b) A system (S, T) is said to be pure injective if it is a direct summand of
any system containing it as a pure subsystem.

We shall now derive a corollary to 2.1.

COROLLARY 2.3. In a torsion-free system ofrank at most two the intersection
of pure subsystems is again pure.

Proof. Torsion-free systems of rank I are purely simple, i.e., have no proper
pure subsystems [2, p. 433].
Now pure subsystems of a torsion-free system are torsion-closed by [2,

2.1(g)]. So if (U, Z) has rank 2, nontrivial pure subsystems have rank 1 by [2,
2.4]. Therefore in this case the corollary follows from Lemma 2.1.

Remark 2.4. (a) Unlike the situation for modules over C[(] in an arbitrary
torsion-free system the intersection of pure subsystems is not necessarily pure.
Since a subsystem of a finite-dimensional system is pure if and only if it is a
direct summand [1, Theorem 5.5], this is shown by the following example of a
finite-dimensional system with two direct summands whose intersection is not
a direct summand: Let (a, b) be a basis of C2 and

(V, W)= (X, Y) (S, T) where (X, g)= (Xt, gx) (X2, g2)
with ((xx), (yx, Yz)), ((x2), (Y2, Y)) spanning (X , Yt)and (X2, Y2)respectively,
where ax y, bx Y’2, ax 2 Y2, bx 2 Yt3 with x i’s and y;s and y"s bases of
X and Y respectively; (S, T)is spanned by ((sx, s2), (tt, t2, ts)) where ast tt,
bs 2 as2, bs2 t3 with the s’s and ti’s bases of S and T respectively.

(V, W) is also equal to (X, Ya) (S, T) where (X x, Yx) is spanned by

+ + + + + +
@ ((xt- x2 + s2), (yt- Y2 + t2, Yz- Y + ts))

with a and b acting as above.

(X, Y) c (X t, Y)= (X c X, Y Yt)= (0, C(yz + y yt + Y2)).
By the uniqueness up to isomorphism of decomposition of a finite-

dimensional system into a direct sum ofindeeomposables [1, p. 309], the subsy-
stem (0, C(yh + y yt + y)) cannot be a direct summand in (V, W).

(b) It is easy to show that for (V, W) a nonsingular torsion-free system the
following property characterizes the nonsingular torsion-free systems of rank
not exceeding two"

(1) Any two distinct nontrivial pure subsystems of (V, W)have zero
intersection.
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However any singular system (V, W) (0, Cyl)@ (,V, W) where yt 4: 0and
(V, W) is purely simple of rank > 2, satisfies Property (1) even though
rank (V, W) > 3.

DEFINITION 2.5. Let (V, W) be a torsion-free system. An element w 6 W is
said to give a chain of type IIIm in (V, l/V) if there exists v 1, Vm- x, in V, w,
w2, Wm in W with w w such that ((v , v 2, Vm- ), (w , w2,..., Wm))is a
chain of type IIIm.

This definition depends on the choice of basis (a, b) ofC2. However, if (V, W)
is of type III then for any choice of basis of C2 there always exists a nonzero
element in W that gives a chain of type III. This follows Remark 1.4(a) and
our definition of type IIIm. The following is immediate"

Let (V, W)= I-Is (v, w), J an arbitrary indexino set. Then (wj)s, w W
#ires a chain of type IIIm if and only if each w does the same in (V, W)for all
jJ.

LEMMA 2.6. Let (V, W) be a torsion-free system and (X, Y) a subsystem
spanned by a type IIIm chain ((xx, x2, ..., Xm-1), (Yx, Y2, Ym))" Then (X, Y)is
of type III if and only if at least one of the xi’s or yi’s is not zero.

Proof Suppose at least one of the x[s or y[s is not zero. Let (S, T) be a
system of type IIIm spanned ,by a chain

in CliP’(a, b; S, T). Define linear maps 4: S X, qJ: T Y by the require-
ments 4(s) x, qJ(tj) yj. Then (4, qJ): (S, T)---} (X, Y)is an epimorphism of
systems. By assumption, (4, qJ) 4: (0, 0). Hence by [2, Lemma 3.1], (4, gJ)is a
monomorphism. Hence (X, Y) (S, T).

Conversely if all of the x[s and y’s are zero then (X, Y) would be the zero
system.
The remark following 1.2 and Remark 1.4(a) make the following definition

independent of the basis of C2.

DEFINITION 2.7. (a) A torsion system (X, Y) is said to be bounded if and
only if it satisfies the following conditions:

(i) (X, Y)has finitely many eigenvalues.
(ii) There exists a positive integer M such that (X, Y) has no subsystem of

any type II with m > M.

(b) A torsion-free system (V, W) is said to be of bounded height if and only
if there exists a positive integer M such that (V, W) has no subsystem of type
III with m > M. In this case we say that (V, W) is of bounded height not
exceeding M 1.
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(c) Let (X, Y) be the torsion part of a system (U, Z). (U, Z) is said to be of
bounded height if and only if (X, Y) is bounded and (U, Z)/(X, Y) is of
bounded height.

LEMMA 2.8. A torsion-free system, (V, W), of bounded height not exceeding
M- 1 is a direct sum offinite-dimensional indecomposable subsystems of the
types III, rn < M.

Proof Every indecomposable finite-dimensional subsystem of (V, W)is of
type III by [1, Theorem 4.3] and by 2.7(b), m < M.

Choose chains (FJ), in CIII(a, b; V, W) representing a basis of
QIII’(a, b; V, W). Let (V, W) denote the subsystem of (V, W) spanned by
the chain F. By [1, Theorem 6.7], (V, W)is of type III" and

(2) (Vo, Wo)=-, (V, W)is a maximal pure direct sum of
finite-dimensional indecomposable subsystems.

Claim. (Vo, Wo)= (V, W).
We shall assume the contrary and derive a contradiction to (2). (Vo, W0)q:

(V, W)implies that Wo q: W because if Wo W, then (V, W)/(Vo, Wo)is iso-
morphic to (V/Vo, 0). The latter must be torsion-free because (Vo, Wo) is pure in
(V, W) [2, Lemma 2.1(g)]. This happens if and only if V Vo leading us to
(Vo, Wo)= (V, W). So let w W\Wo, and (X t, Yt)= (0, Cw). The subsystem
(Xt, Yt)is of type III and (Xt, Yt) c (Vo, Wo)= (0, 0). Assume that for an
integer 1 < m < M we have found (X,, Y) where (S, Ym) (V, W)is of type
III" and (Vo, Wo) c (X, Y)= (0, 0).

Let A denote a chain of type III spanning (X,,, Y). By the choice of
(F),, (F), A cannot be independent modulo III’(a, b; V, W).
Therefore, there exists a finite subset K of J such that

A A" Z jF ClII’(a, b; V, W), j C.

i.e., A ttx -,, +
where the chins are extendible to chains

((x:, (Y=o) and ((x=,, (yJff=,)+’

of ClII"+’(a, b; V, W). Let (X,+,, Y,+,), (X+,, Y+,) denote the subsy-
stems of (V, W) spanned by the latter. By 2.6 and the fact that A is not the zero
chain (since that would imply that (X,, Y,) (Vo, Wo)), at least one of
(X,+,, Y,+ ), (X+ ,, Y+ ,)is of type III"+ ’. We have

so (Vo, Wo) does not contain at least one of (X.+ , Y,+ ) and (X+ , Y+ ).
Say (Vo, Wo) does not contain (X,+,Y,+). By Lemma 2.1,
(Vo, Wo) (x..,, r..,)= 0.
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By induction we find that (V, W) contains a subsystem of type IIIvt+ 1,
contradicting (2). Therefore (Vo, Wo)= (V, W) as required.

THEOREM 2.9. A system (U, Z) of bounded height is a direct sum offinite-
dimensional indecomposable subsystems.

Proof. Let t(U, Z) denote the torsion part of (U, Z). By hypothesis it has
only finitely many eigenvalues, so by [1, p. 338], it corresponds to a module
over C[(]. Our definition of bounded system implies that the corresponding
module is bounded in the sense of modules over C[(]. See [5, p. 36 and p. 16] for
the definition. Such modules are direct sum of modules of the form
C[]/( 0)"C[], n a positive integer. These modules correspond to systems of
type II and such systems are indecomposable [1, Proposition 2.2]. We have

E: 0--, t(U, Z)--, (U, Z)-, (U, Z)/t(U, Z)--, O.

By Lemma 2.8, (U, Z)/t(U, Z) is a direct sum of systems of type IIIm.
Ext ((,, IIIm’, t(U, Z)) is isomorphic to I-i, Ext (IIIm,, t(u, Z)) which is 0 as
is readily seen by [1, Proposition 9.12] and the definition of purity. Therefore

(U, Z)- t(U, Z). (U, Z)/t(U, Z),
and by the first part of the proof, we are done.

Remark. The assumption on t(U, Z) in Theorem 2.9 can be relaxed by
using Kulikov’s theorem on primary C[]-modules. We considered only the
systems of bounded height in the sense of Definition 2.7 because these are the
systems which play a role in Theorem 3.5.

3. Mixed systems

We need some facts on pure injective systems that can be proved directly or
deduced from results in [6]. The author in [6] speaks of purity with respect to a
family of objects in an abelian category. In her terminology, purity as we have
defined it is o-purity where o is the family of finite-dimensional systems.

PROPOSITION 3.1. (a) A direct product of pure injective systems is pure
injective.

(b) A direct summand of a pure injective system is pure injective.

PROPOSITION 3.2. Let m be any fixed integer.

(a) Let J be an infinite indexing set and (V, W) a system of type i-Is IIIm

(I-IJ ii,, for a fixed 0). Then (V, W)is a system of type ]So IIIm ([Zo II’)
where card (Jo) 2card (J)"

(b) Let J be any indexing set. Then systems of type j IIIm (s IF’d) are
pure injective.

Proof (a) Let (X, Y) be a given system of type IIIm and y a nonzero
element of Y. The system .tqx.v)(ck, Y) is, by 1.4(b) and 1.2(d) equal to
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(X, Y) hence is of type IIIm. Therefore by Lemma 2.6, y gives a chain of
type III, < m. By 1.4(c) .an.d the remark following 2.5, a similar statement
holds for subsystems of (X, Y). Since (V, W) is of type I-I iii", we conclude
from the last statement and the remark following 2.5 that (V, W) is of bounded
height not exceeding rn- 1. Therefore by Lemma 2.8 it is a direct sum
of subsystems of type III with nk < m. By the remark following 2.5 any non-
zero element, w, in W that gives a chain of type III" is contained in a sum
of range spaces of components of (V, W) in the direct sum decomposition with
nk m. Let W I-I Cw be the vector subspace of W, where 0 - w gives a
chain of type IIW in (Vj, V) (such w]s exist for each j J by the remark
following the definition in 2.5). Note also that if w gives a chain of type III in
any system so does t.w for any C). Wx is isomorphic to
Hom (]9 s C, C) ( C)* hence W has dimension 2card ts) (see N. Jacobson,
Lectures in algebra, vol. 2, page 247, Theorem 2). Any element in a basis of W
gives a chain of type III in (V, W) by the next to last sentence in brackets and
2.5. Hence there are at least 2cd ts) linearly independent elements, w, in W
giving chains of type III". Hence nk m for 2cd ts) components in the direct
sum decomposition, again by the remark following 2.5. We now prove that
nk m for all the components by showing that (V, W) cannot have a direct
summand of type III with < m.

Suppose F ((v, vt-a), (w, w)) CIIIt(a, b; V, W) spans such a
summand. Let (V, W)= 1-Is V, w)where V, W) is of type lli" for allj J.
The projection nj: V V is defined by ns((vh)hs) d; p: W W is defined
similarly and

(v, w)-.
is a system epimorphism and (, pi)F Fj is a chain in CIIIt(a, b; V, W).
Since (Vj, Wj) is indecomposable, F 111(a, b; V, W) by [1, Theorem 6.6].
It is easy to see that this implies that F Ill(a, b; V, W)which is a contra-
diction again by [1, Theorem 6.6]. By [1, p. 338, a system of type II"d is isomor-
phic to an ordinary system which in turn corresponds to a C[] module. In that
case the conclusion that (V, W) is of type (2Card(d)II"d follows from [5,
Theorem 17.2], cardinality considerations and the analogue of the remark
following Definition 2.5 for order of an element in 1-Is c[]/( o’c[] at the
irreducible polynomial 0.

(b) If card (J) < oo, (b) follows from [1, Theorem 5.5]. So we may assume or
is an infinite set. A system (V, W) of type s II1" is isomorphic to a direct
summand of a system of type so 111 where card (Jo) 2(s). The latter is
isomorphic to a system of type I-Is 111 by 3.2(a), which is pure injeetive by [1,
Theorem 5.5] and Proposition 3.1(a). So (V, W) is pure injeetive, by 3.1(b).
Replace 11I by lI"d throughout to get the proof for (V, W) of type (s 11"d.
THEOREM 3.3. A system of bounded heioht is pure injective.

Proof Let (U, Z) be a system of bounded height. By the proof of 2.9,

(v, t(v, (v, z)/t(v, z).
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It is enough., by Proposition 3.1, to show that each component is pure injective.
t(V, Z)= oc t(V, Z)o, where t(U, Z)o is the smallest subsystem of t(U, Z)
such that t(U, Z)/t(U, Z)o does not have 0 as an eigenvalue [1, Proposition
9.19]. Since t(U, Z) is bounded t(U, Z)o 0 except for finitely many 0. Since
t(U, Z)o is bounded, it is a system of type ,=1 (@ J (II0). Each @j..(II’) is
pure injective by 3.2(b). Hence by Proposition 3.1(a), t(U, Z)o is pure injective.
(U, Z)/t(U, Z) can be shown to be pure injective in a similar fashion using 2.8,
3.2(b) and 3.1(a). This completes the proof of Theorem 3.3.

DEFINITION 3.4. (a) A mixed system, (V, W), is a system with the property
that both t(V, W) and (V, W)/t(V, W) are nonzero.

(b) A mixed system is said to split if the torsion part is a direct summand.
(c) A splitting criterion is a condition on a torsion module, T, such that

every sequence 0 - T- G - G/T- 0 with G/T torsion-free splits.

In any torsion theory in an abelian category one may ask for a splitting
criterion for mixed objects in the category. Our last result gives such a criterion
for the category of systems.

THEOREM 3.5. A torsion system (X, Y) has the property that every mixed
system (U, Z) with (X, Y) as torsion part splits if and only if (X, Y)is a direct
sum of a divisible system and a bounded system.

Proof We have E: 0 (X, Y) (U, Z) (U, ZF(X, Y) O. By [1, Pro-
position 9.12], (X, Y) is pure in (U, Z). Suppose

(X, Y)= (X 1, Y)4-(X2, y2),

where (X, Y) is divisible and (X2, y2) is bounded. By [1, Theorem 9.15],
(X t, Y1) is pure injective and by Theorem 3.3, (X2, y2) is pure injective. There-
fore by 3.1(a), (X, Y) is pure injective, hence E splits.
For the converse, we have (X, Y)--(X t, yt) (X2, y2)where (X1, Yt)is

divisible and (X2, y2) is reduced, i.e., has no nonzero divisible subsystem [1,
Corollary 9.16]. Since

Ext ((V, W), (X’, Y’)-i-(X2, y2))

is isomorphic to

Ext ((V, W), (X’, Y1)))Ext ((V, W), (X2, y2))

and Ext ((V, W), (X, Ya)) 0 if (V, W)is torsion-free, by [1,9.12 and 9.15], it
is enough in the proof of the converse to assume that (X, Y) is reduced and
unbounded and prove that there is a torsion-free system (V, W) such that
Ext ((V, W), (X, Y)) :/: 0. We want to reduce to the case that (X, Y) is nonsing-
ular. (X, Y)= o c (X, Y)o. If there exists a 0 in that is not an eigenvalue,
i.e., (X, )o 0, then (X, Y) is nonsingular by [1, p. 338]. So we may assume
that every 0 t is an eigenvalue. In that case oc (X, Y)o is an unbounded
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and nonsingular direct summand of (X, Y). It is therefore sufficient to show
that

Ext ((V, W), E (X, Y)o): 0

for some torsion-free system (V, W). Since a nonsingular system is isomorphic
to an ordinary system, it suffices to treat the case of an ordinary system (X, X).
In [4, Theorem 100.1] it is shown that if a reduced torsion group G is not
bounded, then there is a nonsplitting mixed group, H, with G as torsion part.
The same result goes through for modules over C[] by replacing all the primes
that occur in the proof by appropriate irreducible polynomials in C[(]. So by
the correspondence between modules over C[(] and nonsingular systems we get
a nonsplitting exact sequence

0-+ (x, x)-+ (t:, v)-+ (v, 0

with (V, V) torsion-free.

Remark. It would be interesting to know what systems (V, W) have the
property that Ext ((V, W), (X, Y)) 0 for all torsion systems (X, Y). One can
prove the following partial result: Let (V, W) be a system with
Ext ((V, W), (X, Y))= Ofor all torsion systems (X, Y)then (V, W)is a sinoular
system with no nonsingular subsystem.
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