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1. Introduction

Let G
_
C be a plane domain which supports nonconstant bounded analytic

functions, and let s G. For n 0, 1, 2,... define

A An(, G) sup {I f")()[ f Bn(G), Ilfll },

where Bn(G)is the space of functions analytic and bounded in G, and [If[I o
denotes the supremum norm. A point s G such that for each f Bn(G),

A,

is called a Riemann-Lebesgue center (R.L.C.) of G. The name "Riemann-
Lebesgue center" is an allusion to the well-known Riemann-Lebesgue lemma,
which implies that 0 is a R.L.C. of the unit disc {z: [z < 1}.

In this paper we shall be concerned with certain problems about R.L.C.’s
from the point of view of "hard" analysis. However, the idea of R.L.C. arose in
conversation with Stephen D. Fisher with reference to different topologies on
function spaces. The latter are dealt with in a paper of Rubel and Ryff [2]. A
number of particular topics are considered in greater detail in the papers listed
by Rubel and Ryff in their bibliography. The results of the present paper do
not, unfortunately, seem to have any applicability to the problem of different
topologies on function spaces, so we present them for their intrinsic interest.

2. Statement of results

THEOREM 1. Let D {z 6 C" zl < 1} and

A, A,(; O)= sup {I f’"’()l "fs Bn(O), lifll <- 1},

where 0 < Il < 1. iff Bn(D), then

lim inf 1/"()1 =0;
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and there is an f Bn(D) such that

lim sup ft’)()[ > O.
?1.. A?

COROLLARY. The origin is the only R.LC. of D.

THEOREM 2. Let fl satisfy 0 < fl < /2 and G be a domain satisfying

D_ G
_
D w {z C: [arg (-z)[ < fl}.

Then the origin is a R.LC. of G.

THEOREM 3. Let G
_
C be a bounded domain, G, A

_
G, and OG c OA be

nonempty and finite, where A {z C:[z- ([< 1}. Suppose that from each
point ofOG tgA emanates a half-line lying in the complement ofG. Then ( is not
a R.LC. of G.

THEOREM 4. If n 0, 1, 2,..., or n No, then there is a domain G which
contains precisely n R.L.C.’s.

3. Proof of Theorem 1

We shall indicate the idea of the proof ofthe first part ofTheorem I after the
following lemma.

LEMMA 5. Suppose that 0 < fl < 1 and let An A.(fl, D). There is a constant
A > 1 such that

1 n! n!
Xx/%(1-fir <An<Ax/%(l_fir (n>l).

Proof The precise values of the A. for odd n have been given by Macintyre
and Rogosinski [1], but for even n the precise values of the A, do not appear to
be known.

Iff Bn(D)is extremal for A. consider g (z- fl)f Then

9(.+ x)(fl)= (n + 1)f(")(fl)
and so

1 Ig("+’)(fl)l < (1 + fl)
A.+,

n + 1 II011 . + 1

If g Bn(D and is extremal for A,+ consider
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Then g("+’)(fl)= (n + 1)f(")(fl)and so

A.+,-- Ig"+"(fl)l [Ifll(n + 1) [f("(fl)[ <
fll

Hence

2
l_fl(n+ 1)An.

1 fl A.+, A,,+,
2 n+i<-A"<-(l+fl) n+l

so that from the known values of the Ak for k odd one gets estimates for the Ak

with k even. The lemma follows from the results of Macintyre and Rogosinski
and the preceding inequalities.
Let f Bn(D) with I[fllo 1 and assume fl, where 0 < fl < 1. For posi-

tive integers n define

d d(n) min {[ f((fl) l/A: v n, n + 1, 2n}.
If o, , are suitably chosen of unit modulus, then

f(.+o(fl)= f(.+o(fl) (n+l)d (3.1)
v=O An+v v=O An+v

In the left hand sum of (3.1) use

f(,+o() (n + v) fl f (z) dz

and the estimates of Lemma 5 and it follows that

A (1- )"+ fl f(z) dz > (n + 1)d.
=o z=, (-)"++

Hence, since lit 1,

fo i d
(3.2)

1 2. ((1 fl) dO>2 (e’ + -(1=o )" +

The first part of Theorem 1 follows by finding a suitable upper estimate for the
left hand side of (3.2) and the next few lemmas contain results that are appro-
priate for such an estimate.

LEMMA 6. Given e > 0 there is an a a(e) > 0 so that

f= dO e 1

/, e’o- I" (1 ar
for all large n.

prooy or 01 g.,

e,O_ fl 2 (1 fl)2 + 4fl sin 0/2 2 (1 fl)z + 4flOa/n2.
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There is a ? > 0 such that

1
l+t

and so, for I0] < ,
( )< e-’ 0 < t <

(1 )----

1 1 4fl 02 1

Id-/l2 -< (1 -/)2 exp - (1 fl)e " (1 fl)e
e-’2, say.

Therefore, given > 0, for all large n,

f dO 2 f e -r’n02/2 dO
/vz IOl z eiO fl In (1 fl) /

and putting 0 # we obtain

e -e’n02/2 dO e- d.

Hence, given e > 0, if e e(e) > 0 is chosen so that

the lemma follows from the above estimates by setting .
LEUA 7. Given e > O, let (e) be the same as in mma 5. For all larffe n,

if (o, (, (, are unimodular numbers then

( ) o <
eiO +

Proof The integral on the left is bounded above by

=o /< Ioi< e’ B "++a (1 B)
e

_. :o ( n)"++’
from Lemma 6, noting that elan + v + 1 </(v 0,..., n).

LEMMA 8. Given fl (0 < fl < 1) there is an rl > 0 and afunction d/(O) analytic
for O[ < rl with 0(0) 0’(0) 0 such that

1 1 (-iO )eiO----fl 1--fl exp
1 fl + O(0) (I 01 < ,).

Proof It is easily checked that (0)defined by

[1- e,Ol<,-,O(0) log e,O_

for small 0 satisfies the requirements of the lemma.
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LEMMA 9.
set,

Let o, , be unimodular and 9(0) thefunction ofLemma 8 and

F(0)= ,, exp [ ivO )=o I 1 fl
+ vO(O)

G(0)= ve-iv/tl-#).
v=o

Given > O, for all large n

fl IF(0) ao < const, n TM.
01 _< q/v-

where const, denotes a constant which may depend on .
Proof From Lemma 8 we can write if(0)= cO2 + 2(0)( 01 < r/)for some

constant c, where 12(0) < const, l0 13 (I 0l q/2). Consider

e,(o)_ 1 e2(eV() 1) + e 1.

For > 0 given and all large n,

le’(e’)- 1)l _< const, viOl3 (101 < v =o, 1, 2, n).
Hence

ft (e-iv/(x-)dvZ(eVX() 1) dO <_ const, n2

O <- l,/-ff v=O

Also,

flOl<-,I,Ya v=O ve-ivlti-)(eCV2--1) dO

=l o1<_1

For k 1, 2,... and large n,

(vVke_ivO/(l_fl)o2k
v=O

(v vke- iv](1- fl) dO
=o IO1<_ 1,/-

< const. N//nk + t/4
/(1

(v vke- ivc

v=O

< const. v2kN v=O

1/2

2k< const. - nTM,

(3.3)

03 dO <_ const.

(3.4)

dO. (3.5)

04k dO) 1/2

d)
1/2

(3.6)



RIEMANN-LEBESGUE CENTERS OF PLANE DOMAINS 687

where we have assumed n large enough to ensure that /(1 fl)w/n < rr and
used Parseval’s relation.
Noting (3.3), the lemma follows from (3.4), (3.5), and (3.6).

LEMMA 10. Suppose o, x, , are unimodular and e > O. For all large n,

is)
eiO +

v=o fl)n v+ ao-< +

Proof Choose a a(e) so that Lemma 5 holds and assume n is large
enough to ensure that ///n < r/, where r/is the number of Lemma 7. Using
Lemma 8 we find, in the notation of Lemma 9, that

(e,(1-fl),,=o -n7
1 fl If(O) dOdO

(1 fl)"+ 10]<]vr
const, n x/4 1 (<
(1 )n+x + (1 )n+x IG(O) dO,

IOl <_ l-d

by the result of Lemma 9.
Using Schwarz’s inequality and then setting -0/(1 -/3) b we find that

fl [G(O)l dO<_const, n-/4(f vei* dck
o1<_1- /(1 tl),/ v=O

< const, n 1/4,

provided n is large enough to ensure that /(1- fl)x< r. This estimate
together with the preceding shows that

hi4(1 fl) dO < const. (3.7)
(eiO n-#+ (1 fly+01 _< /,/-a v=o

for all large n.
The lemma follows from Lemma 6 and (3.7).
From Lemma 10 and (3.2) it follows at once that d d(n) 0 (n a3) and

this gives the first part of Theorem 1 (and a little more).
In dealing with the second part of Theorem 1 again assume that fl, where

0 < fl < 1. If one observes from Lemma 6 that whenf Bn(D) the integral for
f(")(fl) round [z 1 is dominated by the contribution from an arc about z 1
that shrinks to z 1 as n o, then it is not surprising that a "gliding hump"
construction leads to a function ofthe kind sought. We shall not go into details
of the construction apart from giving in the next lemma the basic result
required. Note that this result and its proof make it clear that one can ensure
that fs Bn(D)with Ilfll(R) 1 and

lim sup 1.
O0 All
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LEMMA 11. Given tr > 0, e (0 < e < rt), e’ (0 < e’ < 1) and N N there is a

function f Bn(D and (0 < 6 < e) such that

(i) f 1,
(ii) [ft(/)[ > (1 e’)A, for some n > N,
(iii) f(e’)[ < afore < 101 and for [01 <_b.

Proof We shall give a descriptive account of the construction off(z).
If > 0 is small then 1 (1 z) will be small on z 1 outside some arc

about z 1 and near to 1 on another such arc. Now
(Z fl)m+lhlz) zm

is extremal for Azm + and the dominant arc of the integral for hzm+ )(fl) round
z 1 will be within that where 1 (1 z) is near to 1 for all large m. Hence

the (2m + 1)st derivative of (1 -(1- z)V)h(z) at fl will be near azm+ for
"small" and rn "large." This leads to a function satisfying (i) and (ii).

If 7’> 0 the function (1- (1- z)r)(1- z)V’h(z)will have the preceding
properties and in addition will be small on zl 1 when z is "very near" to 1
provided 7’ is sufficiently small. Hence one sees thatfsatisfying (i), (ii), and (iii)
can be constructed.

4. Proof of Theorem 2

A number of lemmas are required. In what follows we assume that 0 <//<
rt/2, D {z: [z[ < 1} and that

0 D vo {z C: [arg (-z)l </}.

LEMMA 12. Ifn N, k Z such that 2 k /n <_ n/2 fl and e2nik/n, then

le Z-*l < 1/e for z 0 {z: Izl > 1}.

Proof Forz=rewithrt-<0<r+fl,
Re (z r cos (0 + 2tk/n)

and

and

0 + 2nk/n < r + + 2rrlkl/n < rr + fl + /2- fl 3n/2,

0 + 2nk/n > fl 2nlkl/n >_ (/2 fl)= n/2.
Hence Re (z < 0 in G c {z: z[ > 1}, and so the result follows.

LEMM 13. If n 6 N, N [], M g [N/Z], and e2i/" for
v -m, M, then for lzl 1,

e,t;-1) < const. 2 e- 2v2

-M 0
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Proof. For -rr < (k < rr it is easy to see that = e-2 sin2 (,/2) has a
maximum at (k 0 and decreases as increases from 0 to rr. Therefore for
Izl _<1,

M M

-M v=O

For v O, M,

=2exp -2nsin2

g/

1vN MN [[v/-n-)/2][x/-ff]
n-n n -2

and hence, using

we find that for [z < 1,

sin 4) >-4) O< 4) <

e.(;-l) <2 exp -2n ---M v=O

M

2 ., e- 8v2N2/n.
v=O

Since N2/n []2/n > 1/4, the lemma follows.

We now give the proof of Theorem 2.
Let n N and N [. Choose M N as large as possible with

2riM n

Then M > cx/-n--for all large n, where c c(fl)> 0 and M < IN/2]. From
Lemmas 12 and 13 it follows that

M

e"(;z-) < const. (z G).
V" --M

If, for z in D, ZS-M e"(vz-1)= =o a z, then

e-" (2M + 1)n"e-"
n n-M

from Stirling’s formula. Hence, for some e > O, B, 2 e, where

N sup {If(O)l/n’f (), Ifl }.

> const. > 0,
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However, by the Riemann-Lebesgue lemma, for any f Bn(G), f(")(O)/n! 0
(n ) and so the origin is a R.L.C. of G.

5. Proof of Theorem 3

The form of this theorem is to a large extent due to its use in the Proof of
Theorem 4. It will be clear from our arguments that much greater generality is
in fact possible.

LEMMA 14. Assume the hypotheses of Theorem 3 are satisfied and define
B, sup {]f(")()l/n!: fe BH(G), ][f[] _< 1}.

There are constants c > 0, d > 0 such that B, > c/n (n 1, 2,...).

Proof Suppose that 0 e OG c OA and the negative real axis lies in the
complement of (3 and that d, where -n < 4) < n. Choose > 0 to satisfy
(n + 14)[)< n/2 and then 9(z)= exp {-(ze-iy} with 9(ei4’) e -x is in
B,(G) and II011 1. We shall establish the lemma by showing that for some
constants c > 0, d > 0.

Consider for n N,
n! -a (n= 1, 2, ...).

0("’(e’) 1 f O(z) dz.
n! 2--- _A (Z- ei4’)

To estimate this integral we consider 9 restricted to and cut the plane along
the half-ray arg z + 4. We next continue the restriction of g to into this
cut plane and distort the path of integration, 0, so that it wraps itself along
both sides of arg z + . Hence we find that

g" e * )n (- l ye-i"n f e "
r +s nl y+(r" xsin n

dr

By considering above as + it follows easily that for some c > 0, d > 0,

(")(e’*) > (n 1, 2, ).n -The following is an outline of the proof of Theorem 3.
There is a rectifiable contour 1" in (7 about ( through the points of cG 0A

such that any point of F apart from these latter points is at a distance greater
than 1 from (. Suppose f, Bn(G), [[f, [[oo 1 is extremal for B, of Lemma 14
and consider

f(,")() 1 f f,(z) dz.
n! 2u-- Jr (z
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From Lemma 14 it follows that the integral on the right is dominated by the
contribution from arcs containing the points of cOG c A which shrink to these
points as n o.
Hence one can use a "gliding hump" argument based on the result for the

present situation which is analogous to that of Lemma 11, with h(z) of that
lemma replaced by fro(z) for some m. From the hypotheses that G is bounded
and complementary to half-fines emanating from OG c3A it follows that suit-
able factors similar to those in Lemma 11 exist in the present case.

6. Proof of Theorem 4

If n 0, take G to be the inside of a triangle and use Theorem 3.
If n N let N {Px, P,} be a regular n-gon of side 1 and for k 1, n

let

Ak= {Z 6 C: Z-Pkl <1/4}
and define G (),= Ak) w N. From Theorem 2 it follows that P , P, are
R.L.C.’s of G and from Theorem 3 it follows that any other point of G is not a
R.L.C.

If n No let Do {z: z < 1} and let D , D2, be small discs centered on
c3Do such that if G )=o Dk then for any point of G apart from the centers of
Do, D, the conditions ofTheorem 3 are satisfied. Since the center of each Dk
is a R.L.C. of G, from Theorem 2, it follows that G has precisely No R.L.C.’s.

7. Concluding remarks

The following result is perhaps true. Let G be a domain supporting noncon-
stant bounded analytic functions and suppose that no point of OG is a remov-
able singularity for all functions in Bn(G). Let ( G and A be the largest disc
centered on lying in G. If the linear measure of c3G c OA is 0, then ( is not a
R.L.C. of G.

In the above notation one might also consider whether or not ( is a R.L.C. of
G when the linear measure of c3G c c3A is positive. It seems somewhat unlikely
that this condition would be sufficient to ensure that ( is always a R.L.C. of G.
But it might be the case that is a R.L.C. of G if 3G cA contains an arc of OA
of positive length which separates G from its complement. Perhaps the simplest
case to consider first of all would be the one similar to that ofTheorem 2 when
fl satisfies r/2 < fl < zr.

Finally there is the question of how many R.L.C.’s a domain can possess. Is
Theorem 4 best possible? If the answer is no, then what conditions does the set
of R.L.C.’s satisfy?

Added in proof. A natural question that arises is whether, for every domain G,
every point ( G must be a weak R.L.C. in the sense that

f"()l/A, o.
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