SMOOTHNESS OF THE FREE BOUNDARY IN THE STEPHAN PROBLEM WITH SUPERCOOLED WATER

BY

ROBERT JENSEN¹

Introduction

In [3], van Moerbeke studied an optimal stopping problem and related it to a Stephan problem with supercooled water. Later, Friedman [1] generalized this result somewhat and simplified the proof.

In this paper we consider the same problem. As Friedman, we study the problem as a variational inequality: find u = u(x, t) for $(x, t) \in \mathbf{R} \times (0, T)$ such that

$$u \ge 0$$
 a.e.,

(0.1)
$$(u_t - u_{xx})(v - u) \ge -(v - u)$$
 a.e. for any $v \ge 0$,
 $u(x, 0) = h(x)$.

Under some general conditions this problem has a unique solution. By obtaining a new estimate on the Lipschitz smoothness of the free boundary we greatly simplify the conditions needed to prove that the free boundary of this problem is C^{∞} . In fact, we shall only require that h'(x) changes sign once. In [1] and [3] the crucial condition is that h'' changes sign twice. Our proof will be based on an entirely new idea.

In Section 1 we state some results from [1] and prove some necessary facts for the application of the techniques of Section 2. Section 2 contains the essential "a priori" estimate. We study $-(u_t/u_x)(x, t)$ where u is the solution of (0.1). This can be interpreted as the derivative of the level curves of u when written as functions of t. We are able to bound this fraction uniformly on certain subsets of Rx(0, T). This gives a Lipschitz bound on the free boundaries.

1. Preliminary results

We shall study the variational inequality: find u = u(x, t), $(x, t) \in \mathbb{R} \times (0, \infty)$, satisfying

- (1.1) u, u_x, u_{xx}, u_t are bounded functions,
- $(1.2) \quad u \geq 0,$
- (1.3) $(u_t u_{xx})(v u) \ge -(v u)$ a.e. for any $v \ge 0$,
- (1.4) u(x, 0) = h(x).

Received April 20, 1977.

 \bigcirc 1978 by the Board of Trustees of the University of Illinois Manufactured in the United States of America

¹ Sponsored by the United States Army.

We make the following assumptions.

(1.5) h(x) is continuous for $x \in \mathbf{R}$, h(x) = 0 for $x \notin (x_1, x_2)$ $(-\infty < x_1 < x_2 < \infty)$. (1.6) $h \in C^2([x_1, x_2])$. (1.7) There exists a point $x^* \in (x_1, x_2)$ such that h'(x) > 0 if $x \in (x_1, x^*)$,

h'(x) < 0 if $x \in (x^*, x_2)$, h''(x) - 1, h''(x) - 1

(1.8)
$$\lim_{x \uparrow x_2} \frac{h''(x) - 1}{h'(x)} \text{ and } \lim_{x \downarrow x_1} \frac{h''(x) - 1}{h'(x)}$$

both exist.

The next results are found in [1].

(1.9) [1, Theorem 1.1] There exists a unique solution u, of (1.1)–(1.4) and it has compact support.

(1.10) [1, Theorem 2.2] Let $\Omega \equiv \{(x, t) | u(x, t) > 0\}$. Then there are two functions $S^{-}(t) \leq S^{+}(t), t \in [0, T^{+}]$, such that S^{-} is upper semicontinuous and S^{+} is lower semicontinuous and

$$\{(x, t) \mid 0 \le t < T^+, S^-(t) < x < S^+(t)\} = \Omega.$$

LEMMA 1.1. Let η be a regular value of $u_x(x, t)$, $\eta \neq 0$. Then any connected component of $u_x(x, t) = \eta$ can be written as

(1.11)
$$\begin{aligned} x &= x_{\eta}^{-}(t), \quad 0 \le t \le \tau_{\eta} \\ x &= x_{\eta}^{+}(t), \quad 0 \le t \le \tau_{\eta} \end{aligned}$$

where $x_{\eta}^{\pm} \in C^{\infty}((0, \tau_{\eta})) \cap C([0, \tau_{\eta}]), x_{\eta}^{-}(t) < x_{\eta}^{+}(t)$ if $t < \tau_{\eta}$ and $x_{\eta}^{-}(\tau_{\eta}) = x_{\eta}^{+}(\tau_{\eta}).$

Proof. Let $(x(\rho), t(\rho))$ for $\rho \in [a, b]$ be a smooth curve with $(x'(\rho), t'(\rho)) \neq 0$ and such that

(1.12)
$$u_x(x(\rho), t(\rho)) = \eta.$$

We shall show that $t'(\rho)$ vanishes exactly once (at a maximum of $t(\rho)$); this will prove the lemma. Suppose $t'(\rho_0) = 0$, then by differentiating (1.12),

(1.13)
$$u_{xx}(x(\rho_0), t(\rho_0))x'(\rho_0) = 0.$$

Without loss of generality we may parameterize the curve, $(x(\rho), t(\rho))$, so that

(1.14)
$$x = \rho$$
 for ρ near ρ_0 .

So for x near $x_0 = \rho_0$ we have, from (1.12) and (1.13),

$$u_x(x, t(x)) = \eta$$
, and $u_{xx}(x_0, t(x_0)) = 0$.

Differentiating the first equation above twice and evaluating at $x = x_0$ gives

(1.15)
$$u_{xxx}(x_0, t(x_0)) + u_{xt}(x_0, t(x_0))t''(x_0) = 0.$$

624

We have, in Ω , $u_{xt} - u_{xxx} = 0$ (since, by (1.3), $u_t - u_{xx} = -1$ in Ω). Furthermore, since η is a regular value of u_x , $\nabla u_x(x_0, t(x_0)) \neq 0$ but $u_{xx}(x_0, t(x_0)) = 0$. Therefore $u_{xt}(x_0, t(x_0)) \neq 0$. By this and (1.15) we see $1 + t''(x_0) = 0$ or $t''(x_0) = -1$. We conclude that $t(x_0)$ is a local maximum whenever $t'(x_0) = 0$. It follows easily that $t(\rho)$ is a smooth curve with at most one local maximum and no local minimums and $t'(\rho)$ vanishes only at the local maximum. Finally, there must be one local maximum of $t(\rho)$. Indeed, if not we could parameterize $t(\rho)$ so that it is monotone increasing and t(0) = 0. Then, there is a largest number ρ^* below which $t(\rho)$ is defined. We have $(x(\rho), t(\rho))$ approaching $\partial \Omega \setminus \{(x, t) | t = 0\}$ as $\rho \not\sim \rho^*$ but $u = u_x = 0$ on this set which is obviously impossible since $\eta \neq 0$.

LEMMA 1.2. There is a unique continuous function n(t), $t \in [0, T^+)$ such that

(i)
$$u(n(t), t) > 0$$
 and

(ii)
$$\{(x, t) | 0 \le t < T^+, u_x(x, t) = 0$$

and
$$(x, t) \in \Omega$$
 = { $(x, t) | 0 \le t < T^+, x = n(t)$ }.

Thus (n(t), t) is the curve along which $u_x = 0$ and u > 0 on this curve.

Proof. Take $\{\eta_i\}_{i=1}^{\infty}$ a sequence of regular values of $u_x(x, t)$ such that $-\eta_i$ are also regular values and $\eta_i \ge 0$ as $i \to \infty$. Since $u = u_x = 0$ on the set $\partial \Omega \setminus \{(x, t) | t = 0\}$ it follows that for any t_0 such that $0 < t_0 < T^+$ if *i* is sufficiently large then

(1.16)
$$\eta_i, -\eta_i \in \{\delta \mid u_x(x, t_0) = \delta, x \in \mathbf{R}\}.$$

Let (x_0, t_0) be a point in Ω such that

$$(1.17) u_x(x_0, t_0) = 0.$$

Since u_x is analytic in x for t fixed we may assume without loss of generality that

(1.18)
$$u_x(x, t_0) > 0$$
 if $x_0 - \varepsilon < x < x_0$
 $u_x(x, t_0) < 0$ if $x_0 < x < x_0 + \varepsilon$

for some $\varepsilon > 0$.

Choose curves $x_{-\eta_i}^-(t)$, $x_{\eta_i}^+(t)$ as in (1.11) with

$$x_{-\eta_i}^-(t_0) \searrow x_0 \text{ as } i \to \infty, \qquad x_{\eta_i}^+(t_0) \nearrow x_0 \text{ as } i \to \infty.$$

Clearly, for $0 < t < t_0 x_{-n}^-(t)$ is decreasing in *i* and $x_n^+(t)$ is increasing in *i*. Let

$$x^{-}(t) = \lim_{i \to \infty} x^{-}_{-\eta_i}(t), \qquad x^{+}(t) = \lim_{i \to \infty} x^{+}_{\eta_i}(t).$$

We have that $x^{-}(t)$ is upper semicontinuous and $x^{+}(t)$ is lower semicontinuous. Furthermore, $x^{-}(t) \ge x^{+}(t)$ and

(1.19)
$$u_x(x^{\pm}(t), t) = 0 \text{ if } 0 \le t \le t_0.$$

In particular $u_x(x^{\pm}(0), 0) = 0$; so $x^{\pm}(0) = x^*$ and $x^{-}_{-\eta_i}(0) \to x^*$ and $x^{+}_{\eta_i}(0) \to x^*$. Using this and the maximum principle we conclude that

(1.20)
$$\lim_{i\to\infty}\sup_{\Omega_i}|u_x|=0$$

where $\Omega_i \equiv \{(x, t) | 0 \le t \le t_0, x_{\eta_i}^+(t) \le x \le x_{-\eta_i}^-(t) \}$. Therefore,

$$u(x, t) = 0$$
 for $0 \le t \le t_0, x^+(t) \le x \le x^-(t)$.

Since u(x, t) is analytic in x for t fixed we conclude that $x^{-}(t) = x^{+}(t)$ and so the curve $x^{+}(t)$ is continuous. Given t_{0} , if there exists another curve say $x = \hat{x}(t)$ ($0 \le t \le t_{0}$) along which $u_{x} = 0$, then by the above proof $\hat{x}(0) = x^{+}(0) = x^{*}$ and therefore $\hat{x}(t)$ will have to intersect one of the curves $x = x_{\pm \eta_{i}}(t)$. This is clearly impossible since $u_{x} \ne 0$ on the curves $x = x_{\pm \eta_{i}}(t)$.

Since t_0 can be taken arbitrarily close to T^+ this proves the existence and uniqueness of the curve n(t) with the properties stated in Lemma 1.2.

LEMMA 1.3. $(d/dt)(u(n(t), t)) \leq -1$ (in distribution sense).

Proof. Let $0 < t_0 < T^+$; by the proof of Lemma 1.2 there exist curves

$$n_j(t) \in C^0([0, t_0]) \cap C^\infty((0, t_0))$$

which converge to n(t) monotonically and such that $u_x(n_j(t), t) = \mu_j$, where $\mu_j \to 0$ as $j \to \infty$. For any smooth ψ with support in $(0, t_0)$

$$-\int_{0}^{t_{0}} u(n_{j}(s), s) \frac{d}{ds} \psi(s) ds$$

= $\int_{0}^{t_{0}} \frac{d}{ds} (u(n_{j}(s), s)) \psi(s) ds$
= $\int_{0}^{t_{0}} (-1 + u_{xx}(n_{j}(s), s)) \psi(s) ds + O(\mu_{j}).$

Letting $j \to \infty$ and using $u_{xx}(n(s), s) \le 0$ we get

$$-\int_0^{t_0} u(n(s), s) \frac{d}{ds} \psi(s) \, ds \leq \int_0^{t_0} - \psi(s) \, ds,$$

and the proof is complete.

Let $\{\delta_i\}_{i=1}^{\infty}$ be a sequence of regular values of u(x, t) such that $\delta_i \ge 0$ as $i \to \infty$. Set $\Gamma_i \equiv \{(x, t) \mid u(x, t) = \delta_i\}$.

LEMMA 1.4. If (x, t), $(y, \tau) \in \Gamma_i$ and $u_x(x, t) = u_x(y, \tau) = 0$ then x = y and $t = \tau$. (That is, the curve x = n(t) meets the curve Γ_i in at most one point. Further, since $u_x(x, t) > 0$ if x < n(t) and $u_x(x, t) < 0$ if x > n(t) it is clear that Γ_i consists of two components $x = S_i^-(t)$ and $x = S_j^+(t)$.)

Proof. Since $u_x(x, t) = u_x(y, \tau) = 0$ we have x = n(t) and $y = n(\tau)$. By Lemma 1.3, $s \to u(n(s), s)$ is a strictly monotone function. Thus $t = \tau$ and the proof is complete.

We shall denote by τ_i the unique value of t which gives $u(n(\tau_i), \tau_i) = \delta_i$. Thus $(n(\tau_i), \tau_i)$ is the "top" of the curve Γ_i .

LEMMA 1.5. $\{\tau_i\}_{i=1}^{\infty}$ is strictly increasing and $\tau_i \to T^+$ as $i \to \infty$.

Proof. The strict monotonicity follows from Lemma 1.3 since $u(n(\tau_i), \tau_i) = \delta_i$ and $\delta_i \searrow$. Let $\tau_0 = \lim_{i \to \infty} \tau_i$. If $\tau_0 < T^+$ then u(n(s), s) is strictly decreasing in (τ_0, T^+) which is impossible since $u(n(\tau_0), \tau_0) = 0$.

As stated previously Γ_i consists of two components $x = S_j^-(t)$ and $x = S_j^+(t)$. We have $S_j^+(t), S_j^-(t) \in C^{\infty}((0, \tau_i)) \cap C([0, \tau_i])$ and

(1.21)
$$S_i^+(t) \ge S_i^-(t),$$

(1.22)
$$S_i^+(\tau_i) = S_i^-(\tau_i)$$

$$(1.23) u(S_i^{\pm}(t), t) = \delta_i.$$

LEMMA 1.6. $|u_t/u_x|$ is bounded on

$$d\Omega_i \equiv (\Gamma_{i+1} \cup \{(x,0) \mid 0 < h(x) \le \delta_{i+1}\}) \cap \{(x,t) \mid 0 \le t \le \tau_i\}$$

by a positive constant B_i .

Proof. It is clear that u_t is bounded on Γ_{i+1} . We now consider u_x .

For $(x, t) \in \Gamma_{i+1}$ and $t \le \tau_i$, by Lemma 1.4, $u_x \ne 0$. Since this set is compact we have in fact $|u_x| \ge C > 0$ on this set. On $\{(x, 0) | 0 \le h(x) \le \delta_{i+1}\}, u_t/u_x$ is bounded by (1.8).

2. Smoothness of the free boundary

Set

$$\Omega_i^+ \equiv \{(x, t) \mid 0 < t \le \tau_i, S_{i+1}^+(t) < x < S^+(t)\},\$$

$$\Omega_i^- \equiv \{(x, t) \mid 0 < t \le \tau_i, S^-(t) < x < S_{i+1}^-(t)\},\$$

THEOREM 2.1. Suppose $S^{-}(t)$, $S^{+}(t) \in C^{\infty}((0, t_{0})) \cap C^{1}([0, t_{0}))$ and $t_{0} < \tau_{i_{0}}$. Then $|\dot{S}^{-}(t)| \leq B_{i_{0}}$ for all $t \in [0, t_{0})$ and $|\dot{S}^{+}(t)| \leq B_{i_{0}}$ for all $t \in [0, t_{0})$.

Proof. Since $\dot{S}^+ \in C^{\infty}((0, t_0))$ we get by differentiating $u(S^+(t), t) = 0$ that (2.1) $u_t(S^+(t), t) = 0.$

Let us define $w^{\varepsilon}(x, t)$ for $\varepsilon > 0$, $(x, t) \in \Omega_{i_0}^+$ by

$$w^{\varepsilon}(x, t) \equiv \frac{u_t(x, t)}{u_x(x, t) - \varepsilon} \quad \text{for } (x, t) \in \Omega^+_{i_0}.$$

Since $u_x(x, t) \leq 0$ for $(x, t) \in \Omega_{i_0}^+$, Lemma 1.6 implies that $|w^{\varepsilon}| < B_{i_0}$ on the part of the boundary of $\Omega_{i_0}^+$ which belongs to $d\Omega_{i_0}$. By (2.1), $w^{\varepsilon} = 0$ on $x = S^+(t)$ the remaining part of the boundary of $\Omega_{i_0}^+$. Therefore

(2.2)
$$\sup_{\mathscr{B}_{i_0}^+} |w^{\varepsilon}| \leq B_{i_0} \quad \text{where } \mathscr{B}_{i_0}^+ \equiv \partial \Omega_{i_0}^+ \cap \{(x, t) \mid 0 \leq t < t_0\}.$$

Since

$$\left(-\frac{\partial^2}{\partial x^2}+\frac{\partial}{\partial t}\right)(w^{\varepsilon}(x,\,t)(u_x(x,\,t)-\varepsilon))=0,$$

we find that

$$(u_x(x, t) - \varepsilon)(-w_{xx}^{\varepsilon}(x, t) + w_t^{\varepsilon}(x, t)) - 2u_{xx}(x, t)w_x^{\varepsilon}(x, t) = 0,$$

or equivalently

$$-w_{xx}^{\varepsilon}-2\left(\frac{u_{xx}}{u_{x}-\varepsilon}\right)w_{x}^{\varepsilon}+w_{t}^{\varepsilon}=0.$$

Therefore we may apply the maximum principle to w^{ε} and use (2.2) to conclude that

$$\sup_{\Omega_{i_0}^+ \cap \{(x,t)|0 \le t < t_0\}} |w^{\varepsilon}(x,t)| \le B_{i_0}.$$

Letting $\varepsilon \to 0$ we get

(2.3)
$$\sup_{\Omega_{i_0}^+ \cap \{(x,t) \mid 0 \le t < t_0\}} \left| \frac{u_t}{u_x} \right| \le B_{i_0}$$

Now, for $j > i_0$, $(S_j^+(t), t) \in \Omega_{i_0}^+$ for $0 \le t < t_0$. Therefore, by (2.3), $|\dot{S}_j^+(t)| \le B_{i_0}$ for $0 \le t < t_0$. It is also clear that $S_j^+ \to S^+$ as $j \to \infty$ for $0 \le t < t_0$. It then follows that $|\dot{S}^+(t)| \le B_{i_0}$ for $0 \le t < t_0$. By similar reasoning we get $|\dot{S}^-(t)| \le B_{i_0}$ for $0 \le t < t_0$.

THEOREM 2.2. $S^+(t), S^-(t) \in C^{\infty}((0, T^+)).$

Proof. By [2] we get:

(2.4) If $\sup_x |u_{xt}(x, t_1)| < K$ then there is an ε depending only on K such that $S^+(t)$ and $S^-(t)$ are in $C^{1,\alpha}(\alpha > 0)$ in $[t_1, t_1 + \varepsilon]$.

By [4] it then follows that $S^{\pm}(t) \in C^{\infty}((t_1, t_1 + \varepsilon))$. Thus, for $t_1 = 0$,

$$S^+(t), S^-(t) \in C^{\infty}((0, \varepsilon])$$
 for some $\varepsilon > 0$.

Since $u_{xt}(S^{\pm}(t), t) = -\dot{S}^{\pm}(t)$ and $|\dot{S}^{\pm}(t)| \le B_{i_0}$ for $0 \le t \le t_{i_0}$ (by Theorem 2.1) the maximum principle applied to u_{xt} gives the a priori bound

$$|u_{xt}(x, t)| \le K_1, S^-(t) < x < S^+(t) \text{ and } t_1 \le t \le t_1 + \varepsilon,$$

with K_1 depending only on K and B_{i_0} .

We can now proceed step by step (start with $t_1 = 0$) to show that $S^+(t)$, $S^-(t)$ are in $C_{\infty}((0, t_0])$. Since t_0 can be any number smaller than T^+ , the proof is complete.

COROLLARY 2.3. Theorem 2.2 is still valid on $(0, T^+)$ if we replace (1.6), (1.7) and (1.8) by

 $(1.6)^* \quad h \in C^2([x_1, x_2]),$

 $(1.7)^*$ h' changes sign once.

Proof. Under these assumptions it is proved in [1] that for some $\varepsilon > 0$,

 $S^- \in C^{\infty}((0, \varepsilon))$ and $S^+ \in C^{\infty}((0, \varepsilon))$.

Apply Theorem 2.2 to the problem with initial data given by $u(x, \varepsilon/2)$ on $[S^{-}(\varepsilon/2), S^{+}(\varepsilon/2)]$.

REFERENCES

- 1. A. FRIEDMAN, Parabolic variational inequalities in one space dimension and smoothness of the free boundary, J. Functional Analysis, vol. 18 (1975), pp. 151–176.
- Free boundary problems for parabolic equations I: Melting of Solids, J. Math. Mech., vol. 8 (1959), pp. 499–518.
- 3. P. VAN MOERBEKE, An optimal stopping problem for linear reward, Acta Math., vol. 132 (1974), pp. 111–151.
- 4. D. G. SCHAEFFER, A new proof of the infinite differentiability of the free boundary in the Stephan problem, J. Differential Equations, vol. 1 (1976), pp. 266–269.

UNIVERSITY OF CALIFORNIA LOS ANGELES, CALIFORNIA