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SMOOTHNESS OF THE FREE BOUNDARY IN THE
STEPHAN PROBLEM WITH SUPERCOOLED WATER

BY

ROBERT JENSEN

Introduction

In [3], van Moerbeke studied an optimal stopping problem and related it to a
Stephan problem with supercooled water. Later, Friedman [1] generalized this
result somewhat and simplified the proof.

In this paper we consider the same problem. As Friedman, we study the
problem as a variational inequality: find u u(x, t)for (x, t) 6 R x (0, T)such
that

u >_ 0 a.e.,

(0.1) (u- Uxx)(V- u)> -(v u) a.e. for any v >_ 0,

u(x, O)= h(x).
Under some general conditions this problem has a unique solution. By obtain-
ing a new estimate on the Lipschitz smoothness of the free boundary we greatly
simplify the conditions needed to prove that the free boundary of this problem
is C. In fact, we shall only require that h’(x) changes sign once. In [1] and [3]
the crucial condition is that h" changes sign twice. Our proof will be based on
an entirely new idea.

In Section 1 we state some results from [1] and prove some necessary facts
for the application of the techniques of Section 2. Section 2 contains the essen-
tial "a priori" estimate. We study (u,/u)(x, t) where u is the solution of (0.1).
This can be interpreted as the derivative of the level curves of u when written as
functions of t. We are able to bound this fraction uniformly on certain subsets
of Rx(O, T). This gives a Lipsehitz bound on the free boundaries.

1. Preliminary results

We shall study the variational inequality" find u u(x, t), (x, t) R x (0, ),
satisfying

(1.1) u, u, uxx, ut are bounded functions,
(1.2) u >_ 0,
(1.3) (u,- uxx)(v u) > -(v u) a.e. for any v _> 0,
(1.4) u(x, O)= h(x).
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We make the following assumptions.

(1.5) h(x) is continuous for x eR, h(x)=O for x (x,xz)

(1.6) h C([xl, x2]).
(1.7) There exists a point x* (x, x2) such that h’(x) > 0 if x (x,, x*),

h’(x) < 0 if x 6 (x*, xz),

(1.8) lim
h’(x)

and lim
h’

both exist.

The next results are found in [1].

(1.9) [1, Theorem 1.1] There exists a unique solution u, of (1.1)-(1.4) and it
has compact support.

(1.10) [1, Theorem 2.2] Let t2 {(x, t)lu(x, t)> 0}. Then there are two
functions S-(t) < S / (t), t 6 [0, T/], such that $- is upper semicontinuous and
S / is lower semicontinuous and

{(x, t)[O _< t < T+, S-(t)< x < S+ (t)} f.

LEMMa 1.1. Let rl be a regular value of ux(x, t), rl O. Then any connected
component of u(x, t)= rl can be written as

(1.11) x’-x(t), O<t<%
x=x;(t), O<t<

++(t)/ft < z and x; (z,) x, (%).where x C((O, %)) c C([O, %]), x, (t)<

Proof. Let (x(p), t(p))for p [a, b] be a smooth curve with (x’(p), t’(p)) 0
and such that

(1.12) Ux(X(p), t(,))=

We shall show that t’(p) vanishes exactly once (at a maximum of t(p)); this will
prove the lemma. Suppose t’(po)= O, then by differentiating (1.12),
(1.13) u.(x(po), t(Po))x’(po)= O.

Without loss of generality we may parameterize the curve, (x(p), t(p)), so that

(1.14) x p for p near Po.

So for x near Xo Po we have, from (1.12) and (1.13),
ux(x, t(x))= r/, and Ux(Xo, t(Xo))= O.

Differentiating the first equation above twice and evaluating at x Xo gives

(1.15) uxxx(Xo, t(Xo)) + Ux,(Xo, t(Xo))t"(Xo)= O.
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We have, in f, ux,- uxx 0 (since, by (1.3), u,- uxx -1 in f). Further-
more, since r/is a regular value of u, Vu(xo, t(Xo)) v 0 but Uxx(Xo, t(Xo))= O.
Therefore u,(Xo, t(Xo))40. By this and (1.15)we see 1+ t"(Xo)= 0 or
t"(Xo) 1. We conclude that t(Xo) is a local maximum whenever t’(Xo} 0. It
follows easily that t(p) is a smooth curve with at most one local maximum and
no local minimums and t’(p)vanishes only at the local maximum. Finally, there
must be one local maximum of t(p). Indeed, if not we could parameterize t(p) so
that it is monotone increasing and t(0) 0, Then, there is a largest number p*
below which t(p) is defined. We have (x(p), t(p)) approaching df\{(x, t) lt 0}
as p/p* but u ux 0 on this set which is obviously impossible since r/ 0.

LMMA 1.2. There is a unique continuous function n(t), t [0, T/) such that

(i) u(n(t ), t) > 0 and

(ii) {(x, t)IO < < T+, ux(x, t)= 0

and (x, t) f} {(x, t)l0 <t < T+, x n(t)}.

Thus (n(t), t) is the curve alon# which ux 0 and u > 0 on this curve.

Proofi Take {r/i}F= a sequence of regular values of u(x, t) such that r/ are
also regular values and rhx,0 as ioo. Since u=u=0 on the set
cOf\{(x, t)lt 0} it follows that for any to such that 0 < to < T/ if/ is
sufficiently large then

(1.16) rh, -r/, 6 {6 lux(x, to)= 6, x R}.
Let (Xo, to) be a point in f such that

(1.17) ux(xo, to)= O.

Since u, is analytic in x for fixed we may assume without loss of generality
that

(1.18) ux(x, to) > O ifxo-e<X<Xo
Ux(X, to) < 0 if Xo < x < Xo + e

for some e > 0.
Choose curves x-,,(t), x +,,(t) as in (1.11) with

x-.,(to)XXo as oo, x +,, (to).Xo as
/ (t) is increasing in i. LetClearly, for 0 < t < to x ,,(t) is decreasing in and

x-(t) lim x-,,(t), x + (t) lim x,,+ (t).

We have that x- (t) is upper semicontinuous and x / (t) is lower semicontinuous.
Furthermore, x-(t) > x / (t) and

(1.19) u(x+/-(t), t)= 0 if 0 < t < to.
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+ X*.In particular u,(x + (0), 0) 0; so x + (0) x* and x ,(0) - x* and x, (0) +
Using this and the maximum principle we conclude that

(1.20) lim sup [ux 0

+where ,= {(x, t)10 _< _< to, x,,(t) <_ x <_ x-_,,(t)}. Therefore,

u(x,t)=O forO_<t<_t0, x + (t) _< x _< x- (t).

Since u(x, t) is analytic in x for fixed we conclude that x- (t) x + (t) and so
the curve x+(t) is continuous. Given to, if there exists another curve say
x (t) (0 < t < to) along which ux 0, then by the above proof (0)=
x+.(0)= x* and therefore (t) will have to intersect one of the curves
x x +,(t). This is clearly impossible since u 4= 0 on the curves x x +/-(t).

Since to can be taken arbitrarily close to T+ this proves the existence and
uniqueness of the curve n(t) with the properties stated in Lemma 1.2.

LEMMA 1.3. (d/dt)(u(n(t), t)) < -1 (in distribution sense).

Proof Let 0 < to < T+; by the proof of Lemma 1.2 there exist curves

(t) c([o, to]) c((o, to))
which converge to n(t)monotonically and such that u(n(t), t)=/, where
#j--} 0 as j- oo. For any smooth with support in (0, to)

.((s), silO(s/es

(.(sI, sIIO(sI es

(- + (n(st, sIIO(I es + o(.

Letting j c and using ux(n(s), s) < 0 we get

((s), s)O(s)s <_ O(s)s,

and the proof is complete.
Let {6}= be a sequence of regular values of u(x, t) such that 6N0 as .

Set ri {(x, t)lu(x, t)= 6,}.

LEMMA 1.4. If (X, t), (y, Z) Fi and u(x, t)= ux(y, z)= 0 then x y and
t z. (That is, the curve x n(t) meets the curve Fin at most one point. Further,
since Ux(X, t) > 0 ifx < n(t) and u(x, t) < 0 x > n(t) it is clear that F, consists

of two components x S; (t) a x Sf (t).)



A STEPHAN PROBLEM WITH SUPERCOOLED WATER 627

Proofi Since u,(x, t) u(y, z) 0 we have x n(t) and y n(z). By
Lemma 1.3, s--, u(n(s), s) is a strictly monotone function. Thus z and the
proof is complete.
We shall denote by z the unique value of which gives u(n(z), ) 6. Thus

(n(z), )is the "top" of the curve F.
LEMMA 1.5. {Zi}ioo__ is strictly increasing and zi -} T+ as -+ .
Proofi The strict monotonicity follows from Lemma 1.3 since

u(n(z,), z,)= gi, and 6i. Let Zo lim,-.oo zi. If Zo < T+ then u(n(s), s)is strictly
decreasing in (Zo, T/) which is impossible since u(n(zo), Zo)= O.
As stated previously F consists of two components x Sj- (t) and x Sf (t).

Wehave S. (t), Sf (t) C((O, z,)) C([0, z,]) and

(1.21) S(t) 2 S/(t),
(1.22) S+

(1.23) u(S: (t), t)

LEMMA 1.6. U/Ux is bounded on

di (ri+
by a positive constant B.

Proof It is clear that u is bounded on F+ x. We now consider Ux.
For (x, t) 6 F/ and t < , by Lemma 1.4, ux 4 0. Since this set is compact

we have in fact lull >_ c > 0 on this set. On {(x, 0)10 < h(x) < gi,+ x}, u,/uis
bounded by (1.8).

Set

2. Smoothness of the free boundary

t,+ {(x, t) lo < _< ,, s,++(t) < x < s+ (t)},
t- {(x, t) lo < _< z,, s-(t) < x < s+x(t)}..

THEOREM 2.1. Suppose S-(t), S + (t) C((0, to)) C1([0, tO)) and to < ,o"
Then I-(t)l m,ofO a [0, to)and I+(t)l B,ofO all [0, to).

Proofi Since + C((0, to))we get by differentiating u(S + (t), t)= 0 that

(2.1) u,(S + (t), t) O.

Let us dee (x, t) for e > 0, (x, t) by

u,(x, t) for (x, t) ,.w(, t) u(, t)-
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Since Ux(X, t) <_ 0 for (x, t)6 f,+o, Lemma 1.6 implies that [w[ < B,o on the
part of the boundary of f,+o which belongs to dfo. By (2.1), w 0 on x S + (t)
the remaining part of the boundary of f+o. Therefore

(2.2)

Since

+sup _< Bo where o c3fio m {(x, t)10 _<t < to}.
to

we find that

t)- o.

(u(x, t)- e)(-w(x, t) + w;(x, t)) 2u(x, t)w(x, t)= O,

or equivalently

--Wxx
Ux

Wx

Therefore we may apply the maximum principle to w and use (2.2) to conclude
that

sup w(x,
to+ {(x,t)lOt<to}

Letting e 0 we get

(2.3) sup
u,

lifo+ c{(x,t)lO<t<to} -x ni"

Now, for j > io, (Sf (t), t) f+o for 0 <_ < to. Therefore, by (2.3),
[g)(t)[ <_ Bo for 0 <_t< to. It is also clear that Sf--} S + as j oo for
0 _< < t o. It then follows that I+ (t)[ _< B for 0 <_ < to. By similar reason-
ing we get g-(t)l <_ B,o for 0 <_ t < to.

THEOREM 2.2. S + (t), S-(t) C((O, T+)).

Proofi By [2] we get"

(2.4) If SUpx Uxt(X, t)l < K then there is an e depending only on K such
that S + (t) and S-(t) are in Cx’( > 0)in It1, t + e].

By [4] it then follows that S+/-(t) C((tx, tx + e]). Thus, for tx 0,

S + (t), S-(t) C((0, ]) for some e > 0.

Since ui(S+/-(t), t)= -fi+/-(t)and [g+(t)[ _< BofOr 0 <_ _< to (by Theorem 2.1)
the maximum principle applied to ut gives the a priori bound

]Uxi(X,t)] <_ K,S-(t)<x <S+(t) and tl_<t_<t+e,

with K depending only on K and Bo.
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We can now proceed step by step (start with 0) to show that S + (t), S- (t)
are in Coo((0, to]). Since to can be any number smaller than T+, the proof is
complete.

COROLLARY 2.3.
and (1.8) by

Theorem 2.2 is still valid on (0, T+ ifwe replace (1.6), (1.7)

(1.6)* h C2([x, x2]),
(1.7)* h’ changes sign once.

Proof Under these assumptions it is proved in [1] that for some e > 0,

S- C((0, e)) and S + C(R)((0, e)).
Apply Theorem 2.2 to the problem with initial data given by u(x, e/2) on
[S (e/2), S + (e/2)].
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