ON THE MULTIPLICATIVE STRUCTURE OF THE DE RHAM COHOMOLOGY OF INDUCED FIBRATIONS

BY

V. K. A. M. GUGENHEIM¹

For a space X three types of "de Rham complex" over a field k will be considered in this paper:

(i) Classical de Rham theory; "space" means C^{∞} -manifold, k = the real numbers.

(ii) Sullivan "*PL*" de Rham theory; "space" means simplicial set or simplicial complex; cf. [1], [3], or [5], k = any field of characteristic 0.

(iii) Chen's de Rham theory of "differential spaces"; cf. [2] or [7], k = the real numbers.

In each case we denote by \mathcal{T} the category of "spaces" and by \mathcal{A} the category of nonnegatively graded commutative differential algebras. The de Rham complex is a contravariant functor $\Lambda^*: \mathcal{T} \to \mathcal{A}$ or $\mathcal{T}_0 \to \mathcal{A}_0$ where \mathcal{T}_0 , \mathcal{A}_0 are the appropriate pointed categories (i.e., with basepoint and augmentation respectively). The Stokes map is a transformation of functors $\rho^*: \Lambda^* \to C^*$ where C^* is the smooth normalized cochain functor; the word "smooth" having the empty meaning in case (ii). $\rho = H(\rho^*)$ is multiplicative (as follows from the existence of P_0^* below); and, in cases (i) and (ii), ρ is an isomorphism. In favorable cases the Eilenberg-Moore theorem applies, i.e., $H(B\Lambda^*X)$, where B is the "bar" construction, is the cohomology $H^*(\Omega X, k)$ of the loop-space ΩX . Since Λ^*X is commutative, $B\Lambda^*X$ has the structure of an algebra. We shall prove that if the Eilenberg-Moore theorem applies at all, this is precisely the cup-product structure of $H^*(\Omega X, k)$.

Chen has proved a theorem expressing $H^*(\Omega X, k)$ as $H(\int A^*)$ where $\int A^*$ is an "algebra of iterated integrals"; cf. [2] or [7]. If one wants to use the above result to prove that this is an isomorphism of *algebras*, one has to burden the theorem with an extra hypothesis which seems hard to verify, see the remark after Proposition 6. For this reason, we give a second proof of the multiplicativity of the appropriate map, which does *not* depend on the Eilenberg-Moore theorem; see Proposition 5 below.

We shall deal not merely with the loop-space, but with the general case of an

Received March 31, 1977.

¹ Supported in part by a National Science Foundation grant.

^{© 1978} by the Board of Trustees of the University of Illinois Manufactured in the United States of America

induced fibration. We introduce appropriate notations. Let the diagram

be a pull-back diagram in the category \mathscr{T}_0 . In case (iii) (Chen's theory) the space *E* is turned into a "differential space" by the requirement that $\alpha: U \to E$ is to be a "plot" if and only if $g'\alpha$, $g''\alpha$ are "plots" in X', X'' respectively; cf. [2] or [7].

Eilenberg and Moore, [4], have introduced a map, the dualization of which we denote by

$$\theta_c$$
: Tor_{*C**X} (*C**X', *C**X'') \rightarrow *HC***E* = *H**(*E*, *k*)

(or $\theta_c(X', X, X'')$); cf. [8] or [11] for the present cohomological case. The map θ_c is induced by the chain-map θ_c^* which is the compositions

 $B(C^*X', C^*X, C^*X'') \xrightarrow{a} B(C^*E, C^*E, C^*E) \xrightarrow{\varepsilon} C^*E.$

Here, B stands for the "two sided bar construction," cf. [8] or [9], a is induced by the maps g', g'' and f'g' = f''g'', and ε is the "augmentation map" $e_1[]e_2 \rightarrow e_1 \cup e_2$. In an entirely analogous way we define the map

$$\theta_{\Lambda}$$
: Tor _{$\Lambda * X$} ($\Lambda * X', \Lambda * X''$) $\rightarrow H \Lambda * E$

induced by a chain map θ_{Λ}^* .

Using the Künneth theorem and diagonal maps, Eilenberg and Moore introduced a natural product ϕ_c in Tor_{*C**X} (*C**X', *C**X'') (cf. [8] or [11] for the present, cohomological case) and they proved:

PROPOSITION 1. \cup ($\theta_c \otimes \theta_c$) = $\theta_c \phi_c$ where \cup is the cup-product.

Remark. Originally, ϕ_c was not defined by a chain map because one of the Eilenberg-Zilber maps used in its construction is in the wrong direction. Using maps in DASH, however, one can obtain a natural chain map

$$B(C^*X', C^*X, C^*X'') \otimes B(C^*X', C^*X, C^*X'')$$

$$\downarrow^{\phi_C^*}$$

$$B(C^*X', C^*X, C^*X'').$$

One begins with the case where X' = X'' is a point to obtain

$$\phi\colon B(C^*X\otimes C^*X)\to B(C^*X);$$

cf. 4.2 in [9]. Then one uses 3.7, and 3.5, of that paper and appropriate shuffle maps to obtain ϕ_c^* .

In an analogous way the exterior product leads to a product ϕ_{Λ} in $\operatorname{Tor}_{\Lambda * X}(\Lambda^* X', \Lambda^* X'')$ induced by the chain map ϕ_{Λ}^* which is the composition

$$B(\Lambda^*X', \Lambda^*X, \Lambda^*X'') \otimes B(\Lambda^*X', \Lambda^*X, \Lambda^*X'')$$

$$\downarrow^{\gamma}$$

$$B(\Lambda^*X' \otimes \Lambda^*X', \Lambda^*X \otimes \Lambda^*X, \Lambda^*X'' \otimes \Lambda X'')$$

$$\downarrow^{\mu}$$

$$B(\Lambda^*X', \Lambda^*X, \Lambda^*X'')$$

where γ , again, is defined by the evident shuffles and μ is induced by the (commutative!) product.

Analogously to Proposition 1, one easily proves the following result by making an appropriate diagram.

PROPOSITION 2. $\Lambda(\theta_{\Lambda} \otimes \theta_{\Lambda}) = \theta_{\Lambda} \phi_{\Lambda}$ where Λ denotes the exterior product.

In [1], [6], and [7] it was proved that the natural map

$$\rho^* \colon \Lambda^* X \to C^* X$$

could be "extended" to a natural map

$$P_0^*: \Lambda^* X \Rightarrow C^* X$$

of DASH, i.e., a map of coalgebras $B(\Lambda^*X) \rightarrow B(C^*X)$.

Thus, our pull-back diagram leads to a commutative diagram

$$\begin{array}{c} \Lambda^* X' \leftarrow \Lambda^* X \to \Lambda^* X'' \\ \left\| \begin{array}{c} P_{0^*} \\ C^* X' \leftarrow C^* X \to C^* X'' \end{array} \right\|_{P_{0^*}} \end{array}$$

of DASH. Using Theorem $3.7.2_*$ of [9] we thus obtain a natural map

$$\mathbf{P}_0: \operatorname{Tor}_{\Lambda * X} (\Lambda^* X', \Lambda^* X'') \to \operatorname{Tor}_{C*X} (C^* X', C^* X'')$$

namely $\mathbf{P}_0 = \operatorname{Tor}_{P_0}(P_0, P_0; 0, 0)$ in the notation of that theorem.

PROPOSITION 3. If $\rho = H(\rho^*)$ is the morphism induced by the Stokes map, $\theta_c \mathbf{P}_0 = \rho \theta_{\Lambda}$.

Proof. We consider the diagram

606

in which P_0^* denotes the chain-map inducing P_0 . The construction of this map from P_0^* is explained in the proofs of 3.5, and 3.7.2, of [9]. The important fact is that this chain-map itself is natural, and hence ① is commutative.

We next prove that (2) is chain-homotopy commutative: First, observe that ε and ε' are homology-isomorphisms and have the homology inverse *i* and *i'* (dotted arrows) given by $e \rightarrow e[$]1 where $e, 1 \in \Lambda^* E$ or $C^* E$. Now, using the explicit definition of \mathbf{P}_0^* in [9], we see that $\mathbf{P}_0^*(e[$]1) = $\rho^* e[$]1. Hence, $\mathbf{P}_0^* i' = i\rho^*$. Hence, $\rho^* \varepsilon'$ and $\varepsilon \mathbf{P}_0^*$ are chain homotopic, and we are done.

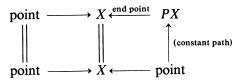
PROPOSITION 4. If θ_C : Tor_{C*X} (C*X', C*X") \rightarrow H*(E, k) is a monomorphism (e.g., the "Eilenberg-Moore theorem" applies) then the morphism

$$\mathbf{P}_0: \operatorname{Tor}_{\Lambda * X} (\Lambda^* X', \Lambda^* X'') \to \operatorname{Tor}_{C^* X} (C^* X', C^* X'')$$

is multiplicative.

Proof. This is immediate from Proposition 3 since θ_{Λ} , ρ and θ_{C} are multiplicative.

The most important special case arises when X' is a point, X'' = PX the path-space and $E = \Omega X$ the loop space. Then one considers the commutative diagram of spaces



which induces the commutative diagram

where the vertical morphisms are multiplicative due to the naturality of the chain-maps inducing the products; also they are homology isomorphisms. Hence we obtain as a corollary of Proposition 4:

PROPOSITION 5. The morphism $P_0 = H(P_0^*)$: $HB(\Lambda^*X) \to HB(C^*X)$ is multiplicative.

Proof. We have only proved Proposition 5 on the hypothesis that θ_c (point, X, PX) is a monomorphism. In fact, however, we can omit this hypothesis. Quite independently one can prove that the diagram

is homotopy commutative in the category of coalgebras; cf. 3.2 in [9]. First, one examines the corresponding diagram in the unpointed categories, replacing P_0^* by P^* and B by **B** (cf. [7]). Then, calling the two compositions involved U and V, let $\overline{U} = \tau U$, $\overline{V} = \tau V$ where $\tau: B(C^*X) \to C^*X$ is the twisting function. Then we have to find

$$\overline{W}$$
: $B(\Lambda^*X) \otimes B(\Lambda^*X) \to C^*X$

such that $\overline{W}[] = 1$ and $D\overline{W} = \overline{U} \cup \overline{W} - \overline{W} \cup \overline{V}$ (cf. 3.2.1_{*} in [9]). This can now be accomplished by the same acyclic models argument by which the existence of P was established in [1], [6]. We omit further details.

I have been unable to obtain an analogous proof of Proposition 4 without hypothesis on θ_c . The difficulties are of the kind described in Section 9 of [10].

We now apply this result to a theorem of Chen; we are in the context (iii) so that C^*X is the "smooth" cochain functor, which we shall denote by C_s^*X for the moment, so that C^*X can stand for the usual singular functor. Now suppose:

(i) $A^* \subset \Lambda^* X$ is a subalgebra such that $\rho^* | A^* \colon A^* \to C^*_s X$ is a homology isomorphism, and such that $dA^0 = A^1 \cap d\Lambda^0 X$.

(ii) The restriction map $C^*X \to C^*_s X$ is a homology isomorphism (e.g., X is a C^{∞} -manifold).

(iii) $\theta_c(\text{point, } X, PX)$ is an isomorphism for C^* , i.e., the Eilenberg-Moore theorem applies.

Then we consider the following sequence of chain maps: (cf. [7] for I_0 and (A^*)

$$\int A^* \xleftarrow{I_0} B(A^*) \xrightarrow{P_0^*} B(C_s^*X)$$

$$B(C^*X) \xleftarrow{B(R, C^*X, C^*PX)} \xrightarrow{\theta_{C^*}} C^*\Omega X.$$

Each morphism induces an isomorphism of *algebras* in homology and hence we have:

PROPOSITION 6 (Chen's Theorem). Under the above hypotheses $H(\int A^*)$ and $H^*(\Omega X, R)$ are isomorphic as algebras.

Remark. Note that in the above we used the full strength of Proposition 5 as stated. If we had relied on Proposition 4 we would have needed the following additional hypothesis:

(iv) $\theta_c(\text{point}, X, P_s X)$ for C_s^* is a monomorphism into $HC_s^*\Omega_s X$, where $P_s X$, $\Omega_s X$ are the "smooth" path and loop-space respectively.

Alternatively we could *replace* (iii) by (iii)_s, namely, θ_c (point, X, P_sX) for C_s^* is an isomorphism into $H^*(\Omega_s X, R)$.

But then, our result would be about $\Omega_s X$ and not about ΩX . The relationship between $\Omega_s X$ and ΩX appears to be obscure. If (iii), (iii), are both true, $H^*(\Omega X, R)$ and $H^*(\Omega_s X, R)$ are isomorphic algebras.

REFERENCES

- 1. A. K. BOUSFIELD AND V. K. A. M. GUGENHEIM, On PL de Rham theory and rational homotopy type, Mem. Amer. Math. Soc., vol. 179 (1976), pp. 1–94.
- KUO-TSAI CHEN, Iterated integrals of differential forms and loop-space homology, Ann. of Math., vol. 97 (1973), pp. 217–246.
- 3. P. DELIGNE, P. GRIFFITHS, J. MORGAN, AND D. SULLIVAN, Real homotopy theory of Kahler manifolds, Inventiones Math., vol. 29 (1975), pp. 245-274.
- S. EILENBERG AND J. C. MOORE, Homology and fibrations I, Comm. Math. Helv., vol. 40 (1966), pp. 199-236.
- 5. E. FRIEDLANDER, P. GRIFFITHS, AND J. MORGAN, Homotopy theory and differential forms, Seminario di Geometria, 1972 (Firenze) (mimeographed).
- 6. V. K. A. M. GUGENHEIM, On the multiplicative structure of the de Rham theory, J. Differential Geometry, vol. 11 (1976), pp. 309-314.
- 7. ——, On Chen's iterated integrals, Illinois J. Math., vol. 21 (1977), pp. 703-715.
- 8. V. K. A. M. GUGENHEIM AND P. J. MAY, On the theory and applications of differential torsion products, Mem. Amer. Math. Soc., vol. 142 (1974), pp. 1–94.
- 9. V. K. A. M. GUGENHEIM AND H. J. MUNKHOLM, On the extended functoriality of Tor and Cotor, J. Pure Appl. Algebra, vol. 4 (1974), pp. 9–29.
- 10. H. J. MUNKHOLM, The Eilenberg-Moore spectral sequence and strongly homotopy multiplicative maps, J. Pure Appl. Algebra, vol. 5 (1974), pp. 1-50.
- 11. L. SMITH, Homological algebra and the Eilenberg-Moore spectral sequence, Trans. Amer. Math. Soc., vol. 129 (1967), pp. 58–93.

UNIVERSITY OF ILLINOIS AT CHICAGO CIRCLE CHICAGO, ILLINOIS