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1. Introduction

In this paper we characterize the conjugacy classes (in the ditteomorphism
group) of orientation reversing maps whose squares have prime order p > 2
on a compact surface. These results extend the author’s previous work [7], in
which the case p 2 was considered, and are analogous to the results of
Nielsen [3] and Gilman [2], where orientation preserving maps were consi-
dered. Our main theorem is the following.

THEOREM 1.1. Let X be a smooth compact sur[ace o[ genus n and let
gi" X-->X, 1, 2 be two orientation reversing maps with the property that g
and g both have prime order p. Then gl and g2 are conjugate in the group of
diffeomorphisms ofX if and only if (1) g and g are conjugate, (2) X(gl) and
X(g2) are diffeomorphic, and (3) g is conjugate to gz.
We remark that necessity is trivial. To prove sufficiency we may replace

condition (1) by (1)" g g. The map g[’ is an orientation reversing map of
order two, and the conjugacy class of such a map is determined by the
topological type of the quotient space, (see e.g., [1, pp. 57-58]), so that (3) is
equivalent to (3)’:

X/(g)- X/(gz).

Here means homeomorphic. Also, if g g f, then each gi induces an
orientation reversing map gf of order two on X’= X/(f). It is clear that
X’/(gf) X/(gi) and that (2) may be replaced by (2)’: g is conjugate to g.
Finally, it is not difficult to construct examples which show that conditions
(1), (2) and (3) are independent.
The notation which we use is much the same as that used in [7]. For

completeness we review it here. Let X be a smooth compact surface of
genus n and let g" X---X be an orientation reversing map such that f g2
has prime order p > 2. Let 7r: X-->X’= X/(f) denote the (possibly branched)
covering. The surface X’ has genus m and g induces an orientation
reversing involution g’ on X’.

If Y is a Riemann surface with an automorphism h then we say that h is
embeddable if there is a conformal map d" Y---R3 such that dh d-x is the
restriction of a rotation. Riiedy [4] has given necessary and sufficient
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conditions for an automorphism to be embeddable, and using his result we
prove in [6] that if X is given a conformal structure so that f and g are,
respectively, conformal and anticonformal, then f is embeddable. Thus by
[4] f has an even number 2a of fixed points. We may now calculate m, the
genus of X’, from the Riemann-Hurwitz formula, and we get n-1
p(m-1)+a(p-1). Let a(f) denote the angle of the rotation of f. If we
normalize by requiring that O<a(f)<27r then we must have
27ri/p, ] 1, 2 p- 1. It is not hard to show, using the Chinese remainder
theorem, that in proving 1.1 it suffices to consider only a(f)= 27rip.
We prove 1.1 by considering separately three cases. Case one is g’ has

fixed points and X’/(g’) is orientable; case two is g’ has fixed points and
X’/(g’) is not orientable; and case three is g’ has no fixed points. We remark
that in the third case X’/(g’} must be non-orientable [5].

2. Case 1: X’/(g’) is orientable and g’ has fixed points

In addition to proving Theorem 1.1 in this case, we prove several results
which indicate what g is like geometrically.

LEMMA 2.1. X’/(g’} is orientable if and only if X/(g) is.

Proof. We know that f induces an mapping f’ on X/(g). Also

The lemma now follows easily.

PROPOSITION 2.2. Let X be a Riemann surface and suppose that H: X-->X
is an embeddable automorphism of odd order and K: X-->X is an anti-
automorphism of order two. Assume further that X/(K} is orientable and that
H and K commute. Then there exists a conformal embedding of X in R3 so
that H and K become, respectively, the restrictions of a rotation about the
z.axis and a reflection in the x-y plane.

Proof. We will first show that X may be topologically embedded in R3 so
that the above conditions hold. Since X/(K} is orientable, the fixed point set
of K is a collection of curves which divides X. Thus there exist two surfaces
with boundary, X1 and X2 such that X X1 U X2, K(X1)= X2, K(X2)= X1
and X1 f3 X2 is the fixed point set of K. Now clearly

H(X f3 X2)= H(K(X1 f3 X2))= K(H(X f3 X2)).

Thus H(Xa f’l X) cX f3 X2. Similarly H-t(XI f’l X2) cX f3 X2, and hence

H(X f3 X2) X N

Now let r, s e X1-X1 fqX2 and let /cX-X f3X2 be a path with end-
points r and s. If H(r)eX and H(s)X2 then H(/) intersects X1 f3X2,
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which contradicts the fact that

H(Xl C X,.)= Xl C X.
Thus either H: XI--X1 and H: X2--*X2 or H: X1--*X2 and H: X2--* X1.
But from the fact that H has odd order the latter is impossible.

Since H is embeddable we may embed X in R3 so that H becomes the
restriction of a rotation about the z-axis. Now change this embedding, if
necessary, so that the boundary curves are in the x-y plane and so that the
rest of X1 lies below the x-y plane, and so that H still remains the
restriction of a rotation. Clearly X -X/(K), i= 1, 2, so if we double across
the boundary curves we obtain (topologically) our result. To finish one need
only deform the embedded surface slightly so that it is still fixed by the
rotation H about the z-axis and reflection in the x-y plane and so that the
embedding is conformal. One can do this by the same argument used by
Riiedy in 4.2 of [4, pp. 416-417].
By 2.1, X/(g) is orientable, so we may apply 2.2 to the case in which

K gO, H =/. Thus we now assume that X is embedded in R3 so that gO and
]’ are induced by, respectively, reflection in the x-y plane and rotation about
the z-axis.
The intersection of X with the x-y plane contains c components, each of

which is mapped onto itself by f, and pd components, which are permuted
by f.

PROPOSITION 2.3. The number a + c is even, where 2a is the number of
fixed points of f.

Proof. We first cut X along each of the c + pd curves. This divides X into
two surfaces X and X2. Thus f induces two maps fi: Xi -- X,, 1, 2, which
are both the restrictions of a rotation about the z-axis. Now we may glue
discs to the boundary components of, say, Xx, and f may be extended to a
map on the resulting surface. This map has a +c fixed points and is
embeddable. Thus a + c is even.

Proof of 1.1 (case 1). Let g and g2 be two orientation reversing maps of
order 2p with the property that g g and let c, (resp. pd,), 1, 2, be the
number of boundary components of X/(g} which are fixed by (resp. are not
fixed by) f, the action induced by f on X/(g!’). Thus if X/(g)X/(g.), then

c + pdl c2 + pd.
Also, (X/(g))/(f) has ci + di boundary components. It is clear that

so that if X/(gl)-X/(g) then cl + d =c+d2. Thus we must have c =c2
and d d.
By previous remarks we may identify X/(g), i= 1, 2, with a surface

embedded in R3 beneath the x-y plane so that the boundary components lie
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in the x-y plane and so that the fi are restrictions of rotations about the
z-axis. Since we assumed that a (f) 27r/p, it is easy to see that the boundary
curves of X/(g) and X/(gg} and the fixed points of fl and fz may be paired
so that the valence of corresponding curves and points are the same. Thus
by [3, p. 53] or [2] there is a map h: X/(g)---X/(g), f2--hfah-. Since g’
has order two, h lifts to a map k so that the following diagram commutes.

kX X

Xl(g) , Xl(g)

Thus g.= kgk- and either (a) f=kfk- or (b) f=kfk-g. A short
calculation using the order of f shows that (a) holds.
We now write g2 f-Jg, J (P- 1)/2, so that

gz= f-Jkgk-X= kf-gk-X= kgxk-.
This completes the proof.

3. Case 2: X’/g’ is not orientable and g’ has fixed points

We prove here several results which are also used in 4. We start by first
looking at the behavior of orientation reversing involutions. If Y is a
compact surface, possibly with boundary, and G is an orientation reversing
involution, then by an annular region for G we mean an open set A c y,
homeomorphic to an annulus, which is fixed by G and with the property that
A/(G) is a moebius strip.

LEMMA 3.1. Let Y and G be as above. Assume also that Y/(G) is not
orientable. Then there exist either one or two annular regions A on Y with the
property that if we remove the interiors of these regions from Y, the quotient of
the remaining surface modulo G is orientable. If G has fixed points, the
number of annular regions needed is determined by the topological type of
Y/(G).

Proof. We first remark that a torus has an orientation reversing involu-
tion with the property that the quotient surface is a moebius strip. To see
this think of the torus as the quotient of the plane by the lattice generated
by r and 1, where Im (-) > 0, Re (z) 1/2. Then the map z covers a map
of the torus with the desired property.
We consider the case in which has boundary components and G has

fixed points. It is shown in [5, pp. 224-225] that G may be obtained by
glueing to a double one or two tori, each with an involution as described
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above. The glueing is accomplished by removing two small discs intersecting
the fixed point sets on the torus and the double and glueing along the
boundary. It is not hard to see that a regular neighborhood about the loop
corresponding to the line y 1/2 may be found on each adjoined torus
which satisfies the required properties for our annular region. We adjoin one
(resp. two) tori iff Y/(G) has an odd (resp. even) number of cross caps.
We now consider the case in which G has no fixed points. If we refer to

[5, pp. 225-226] it is easy to find exactly one annular region with the desired
property. If m is odd then this annular region does not divide and if m is
even then it does divide .
Now assume that Y has a finite number of boundary components. In this

case Int (Y) is homeomorphic to a compact surface with finitely many
punctures. Thus assume

Int(Y)=Z-{z,.. ZN},

where Z is compact. We may extend g to Z, and by what we have just
shown there exists either one or two annular regions for g on Z which
satisfy the conclusion of the theorem.
We now claim that these regions may be chosen so that they avoid the

points zi. We took as our annular region a regular neighborhood of the loop
corresponding to the line y 1/2. If this loop contains any points zi, then let
/ be a simple smooth arc contained in a fundamental domain for (, 1)
which connects x + i/2 and x + 1/2+ i/2, for some x, which does not pass
through any zi, and whose image under the map z-- also does not pass
through any zi. The arc /and its image under the map z correspond to
a loop on the adjoined torus, and a regular neighborhood of this loop has
the desired property.
The annular regions which we have constructed are contained in Int (Y),

and if we remove them from Y and take the quotient of the remaining
surface modulo G we obtain an orientable surface. This completes the
proof.

LEMMA 3.2. If Y is a compact surface of genus zero, possibly with
boundary, and G is an orientation reversing involution with the property that
Y/(G) is not orientable, then there exists an annular region A on Y so that
(Y-A)/(G) is orientable. Also it is impossible to have two disjoint annular
regions for G.

Proof. We consider first the case in which Y= S2. In this case G is
conjugate to the antipodal map [1, p. 59], so that a neighborhood, which is
fixed by G, of a great circle may serve as an annular region which satisfies
the conclusion of the lemma. If A is any annular region for G on Y, then A
divides Y into two components which are interchanged by G. Hence it is
impossible to have two disjoint annular regions for G. The case in which Y
has boundary components follows by an argument similar to that used in
proving 3.1.
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We remark now that g’ has fixed points and X’/(g’) is not orientable iff gO
also has fixed points and X/(g) is not orientable. This follows from 2.1 and
from the following lemma.

LEMMA 3.3. If x X is not a fixed point of f, then gO (x)= x if and only if
g’(x’) x’, where x’= 7r(x). Also g’ has fixed points only if p is odd.

Proof. We first remark that if g’ has fixed points then this set consists of
the points along a set of loops. If g’(x’)= x’, then we must have g(x)= fi(x)
for some ], where 0<_ ] <_p. Thus x g-f(x)= g-(x), hence x fz-(x).
Since this equation holds for infinitely many x X, we must have that
2j- 1 p. Therefore gO (x)= x. The converse is trivial.

LEMMA 3.4. We assume that X’/(g’) is not orientable. Then we may find
either one or two annular regions for gO on X such that each of these regions is

fixed by f and each projects to an annular region for g’ on X’. If we remove the
interiors of these regions from X and X’, then the quotients of the remaining

surfaces by gO and g’, respectively, are orientable.

Proof. Let E be the union of either one or two annular regions for gO on
X with the property that (X-E)/(gO) is orientable. By 3.1 such a E exists.
Also by an argument similar to that used in 3.1 we may assume that E
contains no fixed points of f. We first consider the case in which E consists of
one annular region A. The map g’ acts on 7r(A) and since A/(g) is not
orientable, 7r(A)/(g’) is also not orientable. Thus by 3.1 or 3.2 there are one
or two annular regions on 7r(A) with the property that if we remove them
and take the quotient modulo g’, we obtain an orientable surface.
We claim that there is only one such annular region on 7r(A). Assume

that there are two, a’ and /3’. These lift to two disjoint annular regions a
and /3 on A. But A has genus zero so by 3.2 we get a contradiction. Thus
there is only one annular region a’ for g’ on 7r(A), and this lifts to an
annular region c for gO on A. Since (Tr(A)-a’)/(g’) is orientable, (A-
a)/(gO) is orientable. Also by the choice of A, (X-A)/(g) is orientable.
Thus (X-ot)/(g) is orientable. If a’ lifted to p regions on X then each
would be an annular region for gO and (X-a)/(g) would not be orientable,
contradiction. Thus a is fixed by f and hence satisfies the conclusion of the
theorem.
We now consider the case in which E consists of two annular regions A

and B. If 7r(A) and 7r(B) are disjoint, then by an argument similar to that
used in the case in which E has one component, we may find annular regions
a’ and /3’ on r(A) and 7r(B) which lift to annular regions a and /3 which
satisfy the conclusion of the theorem.

If 7r(A) f3 7r(B) O, then let C= ,n’(B)-Tr(A). Since g’(Tr(B)) 7r(B) and
g’(Tr(A))- 7r(A), g’(C)= C. The set C need not be connected but we claim
that C must have one component C’, which is fixed by g’, with the property
that C’/(g’} is not orientable. If this is not the case then C/(g’} is orientable.
We may thus find an annular region a’ for g’ on 7r(A), which lifts to an
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annular region a for gO on A, with the property that (Tr(A)-a’)/(g’) is
orientable. Thus (A-a)/(g) is also orientable. Since C/(g’) is orientable,
(r-l(C)fqB)/(g) is orientable as well. Now

A UB-a =(A-a)U(’rr-l(C)nB).

What we have shown implies that ((A a) U (7r-1(C) f3 B))/(gp) is orientable
so that (A to B-a)/(g) is orientable. This implies that (X-a)/(gp) is
orientable. This contradicts the fact that we needed two annular regions for
gO on X. Thus there is a component C’ of C with the property that C’/(g’) is
not orientable.
Now we find disjoint annular regions on r(A)toTr(B) which lift to

annular regions on X which are fixed by f. We let/3’ be an annular region for
g’ on C’ with the property that (C’-/3’)/(g’) is orientable. Then/3’ lifts to an
annular region/3 for gO on B. Since B has genus zero gO interchanges the
two components of B-/3, so that (B-/3)/(g) is orientable. Hence (C-
/3’)/(g’) is orientable. Now let a’ be an annular region for g’ on or(A) with
the property that (,rr(A)-a’)/(g’) is orientable. By an argument similar to
that used before a’ lifts to an annular region a on A with the property that
(A-a)/(gp) is orientable. Thus (A U B-(a tO/3))/(go) is orientable, so that
(X-a tO [3)/(g") is orientable. If a’ or/3’ lifts to p annular regions on X, then
(X-a tO/3)/(g) is not orientable. Thus a’ and/3’ each lift to one component
on X, and each lift is fixed by f. This completes the proof.

LEMMA 3.5. Suppose A and A’ are two annular regions with maps

H: A--A, H’: A’--A’,

both fixed point free of order p, and

K: A-->A, K’: A’--A’,

orientation reversing of order two with the property that the quotient spaces are
both moebius strips. Also H commutes with K and H’ commutes with K’.
Assume further that there exists a map h OA-OA’ with the property that (1)
h oH=H’oh and (2) h oK=K’oh. Then h may be extended to a map
h: A--A’ so that (1) and (2) hold.

Proof. The maps H and H’ induce fixed point free actions L and L’,
both of order p, on A/(K) and A’/(K’}. We may find fundamental domains
D and D’ for L and L’, respectively, both of which are homeomorphic to a
square, and bounded by four arcs. Two arcs a l, aa (a, a) are subsets of
OA/(K) (OA’/(K)) and the other two join O and aa (ct] and a). The map h
induces a map

h OA/(K)---A ’/(K’)

’i=12and the two fundamental domains may be chosen so that h(a)= a,
Now h may dearly be extended to D, and by means of the formula
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hl(L(x))=L’(ha(x)), to all of A/(K). Since A and A’ are two sheeted
coverings of A/(K) and A’/(K’) we may lift ha to a map with the desired
properties.

Proof of Theorem 1.1 (in case 2). Let ga and g2 be two orientation
reversing maps satisfying the hypothesis of 1.1. Thus we may assume that
g g f and that the maps g and g, which are induced on X’ by gl and
g2, respectively, are conjugate.
By 3.4 there are one or two annular regions on X for each of the maps g

and g., which project to annular regions on X’ for the maps g] and g. If we
remove these annular regions we obtain surfaces X, i= 1, 2, which are fixed
by g’ and which have the property that X/(g[’) is orientable. Since the
annular regions of g’ are fixed by f, X is also fixed by f. Also, since g and
g are conjugate, X X:.
Now let ci (resp. di), 1, 2, be the number of loops on X which are fixed

pointwise by gf and which lift to one (resp. p) loops on X. Since g] is
conjugate to g we must have C + d c2 + d2. Also by 3.3 the loops which
are fixed pointwise by gl lift to loops which are fixed pointwise by g[’. Since
there are c + pd such loops and since g and gg are conjugate, we must
have Cl -- pda c2 + pd2. Thus ca c2 and dl d2.
The map f induces a map f on X/(g}. Also f is embeddable with 2a fixed

points and aft)= 27rip. By mimicking the argument used in 2.2 we may
embed X in l3 so that g’ becomes reflection in the x-y plane and f
becomes a rotation about the z-axis through an angle of 2r/p. We may thus
identify X/(g[’} with that part of X which lies below and in the x-y plane,
and in this case f becomes a rotation about the z-axis through an angle of
27r/p. Also X/(g) and XE/(g) are both homeomorphic and the maps fl and
f2 both fix the same number of boundary components and both have the
same number of fixed points. Thus by [3, p. 53] or [2], there is a map
k: Xa/(g)-->XE/(gz} such that f2 kflk-1. By doubling across the ci + pd
boundary components which come from loops which are fixed pointwise by
g’, we obtain a map h: XI-X2 so that (1) hfh-=f and (2) hgh-= g.. By
repeated application of 3.5 we may extend h so that h:X-->X and so that
(1) and (2) still hold. It is now trivial to show that hgh-a= g2. This
completes the proof.

4. Case 3" X’/g’ is not orientable and g’ has no fixed points

The proof of 1.1 in this case depends on our previous results. If m is even
then we use the results of 2 and if m is odd we use the results of 3.
We first consider the case in which m is even. By [5, pp. 225-226], there

is a dividing cycle A on X’, which is fixed by g’, with the property that
X’-A consists of two components which are interchanged by g’. We may
move A slightly if necessary so that it still has the above properties and so
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that it does not intersect the branch point set. The lifts of A divide X into
two components. We now cut X’ along A to produce two homeomorphic
surfaces with boundary X and X. Similarly we cut X along the lifts of A
to produce two homeomorphic surfaces with boundary X1 and Xz on which
the map f induces actions fl and f2, respectively. Also assume that these
surfaces are numbered so the map 7ri, i= 1, 2, induced by r on X, is such
that 7r: X --X[, and X/(f) X.
LEMMA 4.1. If m is even then the loop A described above lifts to one loop if

a is odd, and lifts to p loops if a is even.

Proof. Assume first that a is odd and A lifts to p loops. Then the surface
X1 has p boundary components which are permuted by fl. Now glue discs to
the boundary components of X1 and extend fl to this surface. We obtain a
map which is embeddable and which contains an odd number, a, of fixed
points, a contradiction. Thus A lifts to one loop.

Similarly, if a is even and A lifts to one loop, then we glue a disc to the
one boundary component of X1 and extend I’1 to the resulting surface to
obtain an embeddable map with an odd number, a + 1, of fixed points, a
contradiction. Thus A lifts to one loop.
We now construct a surface on which gO and f both induce mappings. If A

lifts to p loops then none of these loops are fixed by g, since none are fixed
by f. Since p is prime, gO must fix each of these loops. Also gO induces a
map K’ of order two on the disjoint union of X1 and X2. This map K’ has
the property that K’fl =f2K’ and K’f2 =flK’. Now glue OX1 to OX2 by
identifying xOX1 to K’(x)OX2. We produce a surface Z which is
homeomorphic to X and on which K’ induces a map K which is orientation
reversing of order two. The maps fl and f2 together induce a map F on Z,
which commutes with K. Also K fixes pointwise each loop which came from
a boundary component of X, i= 1, 2. We also have X/(K)X and is thus
orientable. Let c be the number of loops which are fixed pointwise by K and
fixed by F, and let pd be the number of loops which are fixed pointwise by K
and permuted by F. We then have the following.

LEMMA 4.2. We may embed Z in 113 so that F and K become, respectively,
the restriction of a rotation about the z-axis through an angle of 27r/p and a

reflection in the x-y plane. If a is odd then c 1 and d O. If a is even, then
c O and d l.

Proof. This follows immediately from 2.2 and 4.1.

We now consider the case in which m is odd. We first prove the following.

PROPOSITION 4.3. If m is odd then a is even.

Pro@ By [5, pp. 225-226] there are two loops A and B on X’ which
divide X’ into two components X and X2. The map g’ interchanges X1 and
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Xa and A and B. Also A and B may be adjusted sliglatly, if necessary, so
that neither loop contains a branch point. Assume that a >0. Then X1
contains branch points so that r-x(X) is connected.
We now use an argument similar to that used in 4.1. Thus from zr-(X)

we construct a surface on which f induces an embeddable map with either a
or a + 2 fixed points, depending on whether A and B both lift to one or p
loops. Hence a is even.
We remark that by 3.4 and 3.1 there exists an annular region a for g" on

X which projects to an annular region for g’ on X. The annular region a
does not divide X as is seen from the proofs of 3.1 and 3.4. The region a is
a neighborhood of a loop A which is fixed by gO and f and which projects to
a loop on X’ which is fixed by g’.
We now construct a surface Y on which gP and f both induce mappings.

First we cut X along A and we obtain a surface X1 with two boundary
components on which g" and f induce maps. Let K’ denote the map induced
by gP. The boundary components of Xx are interchanged by K’, and we
identify x 0X with K’(x) OX to produce a surface Y on which gO and f
induce maps K and F, respectively. Clearly Y X. Let B denote the loop on
Y which came from A. Clearly K fixes B pointwise. Since B is the only loop
which K fixes pointwise and since B does not divide Y, we must have that
Y/(K) is not orientable. Also the Euler characteristic of Y/(K) is (2n-
2)/2=n-.

Proof of 1.1. We first consider the case in which m is even. We assume
g g f. For each of the maps g, i= 1, 2, we construct a surface Z, on
which each of the maps g[’ and f induce maps K and F. By Lemma 4.2 Z
and Z are both embeddable in 113 so that F/becomes a rotation through an
angle of 2"n’/p and K becomes a reflection in the x-y plane. Also there are c
loops fixed pointwise by K and fixed by F, and pd loops which are fixed
pointwise by K and permuted by F. The numbers c and d are the same for
both i-1 and i= 2. Thus by mimicking the argument used in 2, we may
construct a map k: Z Z2 such that kKx K2k and kFx Fak. Clearly k
maps the fixed point set of K onto the fixed point set of K.
We now use the map k to construct a map h which will conjugate gl and

ga. First cut Z along the loops which are fixed pointwise by K. We then
obtain two surfaces from Z, Nix and X2. The map k induces two maps
k, 1, 2, where k: Xa Xi2 after possibly renumbering. Now reglue X
and X2 to recover X. By observing carefully k on 0XI, we see that, after
reglueing, k and k2 induce a map h: X----X, with the property that
hg= g,h and hf= fh. Thus if ] (p+ 1)/2, then

hgh-= hgfh-1= hglh-hfh-= gf g2.

This completes the proof if m is even.
We now consider the case in which m is odd. We construct surfaces
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Y, i= 1, 2, on which g’ and f induce maps Ki and F, respectively. Let
Gi KF, 2j p + 1, so that G’ K. The surface Yd(K) is nonorientable
with one boundary component and has Euler characteristic n- 1. Thus

Y1](K1) Y2/(K2).

Also G2 is embeddable with 2a fixed points and a(G)= a(f)= 2r/p. Also if
Gf denotes the map induced by G on Yd(F)= Y, then Y/(G) is not
orientable by 2.1, has exactly one boundary component, and has Euler
characteristic m- 1. Thus

Y’I(G’I) Y.I(G).

It is easy to see that the results of 3 imply that there is a map k: Y1-- Yz
such that kG1 Gzk. Let Bi denote the curve fixed pointwise by K on Y.
Then k(B1)= B2. If we cut Y along B and reglue to recover X, then it is
easy to check that k induces a map h: X----X. Also hgl g2h. This com-
pletes the proof.
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