ORIENTATION REVERSING MAPS OF SURFACES

BY
Robert Zarrow

1. Introduction

In this paper we characterize the conjugacy classes (in the diffeomorphism group) of orientation reversing maps whose squares have prime order $p>2$ on a compact surface. These results extend the author's previous work [7], in which the case $p=2$ was considered, and are analogous to the results of Nielsen [3] and Gilman [2], where orientation preserving maps were considered. Our main theorem is the following.

Theorem 1.1. Let X be a smooth compact surface of genus n and let $g_{i}: X \rightarrow X, i=1,2$ be two orientation reversing maps with the property that g_{1}^{2} and g_{2}^{2} both have prime order p. Then g_{1} and g_{2} are conjugate in the group of diffeomorphisms of X if and only if (1) g_{1}^{2} and g_{2}^{2} are conjugate, (2) $X\left\langle g_{1}\right\rangle$ and $X\left\langle g_{2}\right\rangle$ are diffeomorphic, and (3) g_{1}^{p} is conjugate to g_{2}^{p}.

We remark that necessity is trivial. To prove sufficiency we may replace condition (1) by (1)': $g_{1}^{2}=g_{2}^{2}$. The map g_{i}^{p} is an orientation reversing map of order two, and the conjugacy class of such a map is determined by the topological type of the quotient space, (see e.g., [1, pp. 57-58]), so that (3) is equivalent to (3)':

$$
X /\left\langle g_{1}^{p}\right\rangle \cong X /\left\langle g_{2}^{p}\right\rangle
$$

Here \cong means homeomorphic. Also, if $g_{1}^{2}=g_{2}^{2}=f$, then each g_{i} induces an orientation reversing map g_{i}^{\prime} of order two on $X^{\prime}=X /\langle f\rangle$. It is clear that $X^{\prime} /\left\langle g_{i}^{\prime}\right\rangle \cong X /\left\langle g_{i}\right\rangle$ and that (2) may be replaced by (2)': g_{1}^{\prime} is conjugate to g_{2}^{\prime}. Finally, it is not difficult to construct examples which show that conditions (1), (2) and (3) are independent.

The notation which we use is much the same as that used in [7]. For completeness we review it here. Let X be a smooth compact surface of genus n and let $g: X \rightarrow X$ be an orientation reversing map such that $f=g^{2}$ has prime order $p>2$. Let $\pi: X \rightarrow X^{\prime}=X /\langle f\rangle$ denote the (possibly branched) covering. The surface X^{\prime} has genus m and g induces an orientation reversing involution g^{\prime} on X^{\prime}.

If Y is a Riemann surface with an automorphism h then we say that h is embeddable if there is a conformal map $d: Y \rightarrow \mathbf{R}^{3}$ such that $d h d^{-1}$ is the restriction of a rotation. Rüedy [4] has given necessary and sufficient
conditions for an automorphism to be embeddable, and using his result we prove in [6] that if X is given a conformal structure so that f and g are, respectively, conformal and anticonformal, then f is embeddable. Thus by [4] f has an even number $2 a$ of fixed points. We may now calculate m, the genus of X^{\prime}, from the Riemann-Hurwitz formula, and we get $n-1=$ $p(m-1)+a(p-1)$. Let $\alpha(f)$ denote the angle of the rotation of f. If we normalize by requiring that $0<\alpha(f)<2 \pi$ then we must have $\alpha(f)=$ $2 \pi j / p, j=1,2, \ldots, p-1$. It is not hard to show, using the Chinese remainder theorem, that in proving 1.1 it suffices to consider only $\alpha(f)=2 \pi / p$.

We prove 1.1 by considering separately three cases. Case one is g^{\prime} has fixed points and $X^{\prime} /\left\langle g^{\prime}\right\rangle$ is orientable; case two is g^{\prime} has fixed points and $X^{\prime} /\left\langle g^{\prime}\right\rangle$ is not orientable; and case three is g^{\prime} has no fixed points. We remark that in the third case $X^{\prime} /\left\langle g^{\prime}\right\rangle$ must be non-orientable [5].

2. Case 1: $X^{\prime} /\left\langle g^{\prime}\right\rangle$ is orientable and g^{\prime} has fixed points

In addition to proving Theorem 1.1 in this case, we prove several results which indicate what g is like geometrically.

Lemma 2.1. $\quad X^{\prime} /\left\langle g^{\prime}\right\rangle$ is orientable if and only if $X /\left\langle g^{p}\right\rangle$ is.
Proof. We know that f induces an mapping f^{\prime} on $X /\left\langle g^{p}\right\rangle$. Also

$$
X^{\prime} /\left\langle g^{\prime}\right\rangle \cong\left(X /\left\langle g^{p}\right\rangle\right) /\left\langle f^{\prime}\right\rangle
$$

The lemma now follows easily.
Proposition 2.2. Let X be a Riemann surface and suppose that $H: X \rightarrow X$ is an embeddable automorphism of odd order and $K: X \rightarrow X$ is an antiautomorphism of order two. Assume further that $X /\langle K\rangle$ is orientable and that H and K commute. Then there exists a conformal embedding of X in \mathbf{R}^{3} so that H and K become, respectively, the restrictions of a rotation about the z-axis and a reflection in the $x-y$ plane.

Proof. We will first show that X may be topologically embedded in \mathbf{R}^{3} so that the above conditions hold. Since $X /\langle K\rangle$ is orientable, the fixed point set of K is a collection of curves which divides X. Thus there exist two surfaces with boundary, X_{1} and X_{2} such that $X=X_{1} \cup X_{2}, K\left(X_{1}\right)=X_{2}, K\left(X_{2}\right)=X_{1}$ and $X_{1} \cap X_{2}$ is the fixed point set of K. Now clearly

$$
H\left(X_{1} \cap X_{2}\right)=H\left(K\left(X_{1} \cap X_{2}\right)\right)=K\left(H\left(X_{1} \cap X_{2}\right)\right)
$$

Thus $H\left(X_{1} \cap X_{2}\right) \subset X_{1} \cap X_{2}$. Similarly $H^{-1}\left(X_{1} \cap X_{2}\right) \subset X_{1} \cap X_{2}$, and hence

$$
H\left(X_{1} \cap X_{2}\right)=X_{1} \cap X_{2} .
$$

Now let $r, s \in X_{1}-X_{1} \cap X_{2}$ and let $\gamma \subset X_{1}-X_{1} \cap X_{2}$ be a path with endpoints r and s. If $H(r) \in X_{1}$ and $H(s) \in X_{2}$ then $H(\gamma)$ intersects $X_{1} \cap X_{2}$,
which contradicts the fact that

$$
H\left(X_{1} \cap X_{2}\right)=X_{1} \cap X_{2}
$$

Thus either $H: X_{1} \rightarrow X_{1}$ and $H: X_{2} \rightarrow X_{2}$ or $H: X_{1} \rightarrow X_{2}$ and $H: X_{2} \rightarrow X_{1}$. But from the fact that H has odd order the latter is impossible.

Since H is embeddable we may embed X_{1} in \mathbf{R}^{3} so that H becomes the restriction of a rotation about the z-axis. Now change this embedding, if necessary, so that the boundary curves are in the $x-y$ plane and so that the rest of X_{1} lies below the $x-y$ plane, and so that H still remains the restriction of a rotation. Clearly $X_{i} \cong X /\langle K\rangle, i=1,2$, so if we double across the boundary curves we obtain (topologically) our result. To finish one need only deform the embedded surface slightly so that it is still fixed by the rotation H about the z-axis and reflection in the $x-y$ plane and so that the embedding is conformal. One can do this by the same argument used by Rüedy in 4.2 of [4, pp. 416-417].

By 2.1, $X /\left\langle g^{p}\right\rangle$ is orientable, so we may apply 2.2 to the case in which $K=g^{p}, H=f$. Thus we now assume that X is embedded in \mathbf{R}^{3} so that g^{p} and f are induced by, respectively, reflection in the $x-y$ plane and rotation about the z-axis.

The intersection of X with the $x-y$ plane contains c components, each of which is mapped onto itself by f, and $p d$ components, which are permuted by f.

Proposition 2.3. The number $a+c$ is even, where $2 a$ is the number of fixed points of f.

Proof. We first cut X along each of the $c+p d$ curves. This divides X into two surfaces X_{1} and X_{2}. Thus f induces two maps $f_{i}: X_{i} \rightarrow X_{i}, i=1,2$, which are both the restrictions of a rotation about the z-axis. Now we may glue discs to the boundary components of, say, X_{1}, and f_{1} may be extended to a map on the resulting surface. This map has $a+c$ fixed points and is embeddable. Thus $a+c$ is even.

Proof of 1.1 (case 1). Let g_{1} and g_{2} be two orientation reversing maps of order $2 p$ with the property that $g_{1}^{2}=g_{2}^{2}$ and let $c_{i}\left(\right.$ resp. $\left.p d_{i}\right), i=1,2$, be the number of boundary components of $X /\left\langle g_{i}^{p}\right\rangle$ which are fixed by (resp. are not fixed by) f_{i}, the action induced by f on $X /\left\langle g_{i}^{p}\right\rangle$. Thus if $X /\left\langle g_{1}^{p}\right\rangle \cong X /\left\langle g_{2}^{p}\right\rangle$, then

$$
c_{1}+p d_{1}=c_{2}+p d_{2}
$$

Also, $\left(X /\left\langle g_{i}^{p}\right\rangle\right) /\left\langle f_{i}\right\rangle$ has $c_{i}+d_{i}$ boundary components. It is clear that

$$
X /\left\langle g_{i}\right\rangle \cong\left(X /\left\langle g_{i}^{p}\right\rangle\right) /\left\langle f_{i}\right\rangle
$$

so that if $X /\left\langle g_{1}\right\rangle \cong X /\left\langle g_{2}\right\rangle$ then $c_{1}+d_{1}=c_{2}+d_{2}$. Thus we must have $c_{1}=c_{2}$ and $d_{1}=d_{2}$.

By previous remarks we may identify $X /\left\langle g_{i}^{p}\right\rangle, i=1,2$, with a surface embedded in \mathbf{R}^{3} beneath the $x-y$ plane so that the boundary components lie
in the $x-y$ plane and so that the f_{i} are restrictions of rotations about the z-axis. Since we assumed that $\alpha(f)=2 \pi / p$, it is easy to see that the boundary curves of $X /\left\langle g_{1}^{p}\right\rangle$ and $X /\left\langle g_{2}^{p}\right\rangle$ and the fixed points of f_{1} and f_{2} may be paired so that the valence of corresponding curves and points are the same. Thus by [3, p. 53] or [2] there is a map $h: X /\left\langle g_{1}^{p}\right\rangle \rightarrow X /\left\langle g_{2}^{p}\right\rangle, f_{2}=h f_{1} h^{-1}$. Since g_{i}^{p} has order two, h lifts to a map k so that the following diagram commutes.

Thus $g_{2}^{\mathrm{p}}=k g_{1}^{\mathrm{p}} k^{-1}$ and either (a) $f=k f k^{-1}$ or (b) $f=k f k^{-1} g_{1}^{\mathrm{p}}$. A short calculation using the order of f shows that (a) holds.

We now write $g_{2}=f^{-j} g_{2}^{p}, j=(p-1) / 2$, so that

$$
g_{2}=f^{-j} k g_{1}^{p} k^{-1}=k f^{-j} g_{1}^{p} k^{-1}=k g_{1} k^{-1}
$$

This completes the proof.

3. Case 2: X^{\prime} / g^{\prime} is not orientable and g^{\prime} has fixed points

We prove here several results which are also used in §4. We start by first looking at the behavior of orientation reversing involutions. If Y is a compact surface, possibly with boundary, and G is an orientation reversing involution, then by an annular region for G we mean an open set $A \subset Y$, homeomorphic to an annulus, which is fixed by G and with the property that $A /\langle G\rangle$ is a moebius strip.

Lemma 3.1. Let Y and G be as above. Assume also that $Y /\langle G\rangle$ is not orientable. Then there exist either one or two annular regions A on Y with the property that if we remove the interiors of these regions from Y, the quotient of the remaining surface modulo G is orientable. If G has fixed points, the number of annular regions needed is determined by the topological type of $Y /\langle G\rangle$.

Proof. We first remark that a torus has an orientation reversing involution with the property that the quotient surface is a moebius strip. To see this think of the torus as the quotient of the plane by the lattice generated by τ and 1 , where $\operatorname{Im}(\tau)>0, \operatorname{Re}(\tau)=1 / 2$. Then the map $z \rightarrow \bar{z}$ covers a map of the torus with the desired property.

We consider the case in which Y has boundary components and G has fixed points. It is shown in [5, pp. 224-225] that G may be obtained by glueing to a double one or two tori, each with an involution as described
above. The glueing is accomplished by removing two small discs intersecting the fixed point sets on the torus and the double and glueing along the boundary. It is not hard to see that a regular neighborhood about the loop corresponding to the line $y=1 / 2$ may be found on each adjoined torus which satisfies the required properties for our annular region. We adjoin one (resp. two) tori iff $Y /\langle G\rangle$ has an odd (resp. even) number of cross caps.

We now consider the case in which G has no fixed points. If we refer to [5, pp. 225-226] it is easy to find exactly one annular region with the desired property. If m is odd then this annular region does not divide Y and if m is even then it does divide Y.

Now assume that Y has a finite number of boundary components. In this case $\operatorname{Int}(Y)$ is homeomorphic to a compact surface with finitely many punctures. Thus assume

$$
\operatorname{Int}(Y)=Z-\left\{z_{1}, \ldots, z_{N}\right\}
$$

where Z is compact. We may extend g to Z, and by what we have just shown there exists either one or two annular regions for g on Z which satisfy the conclusion of the theorem.

We now claim that these regions may be chosen so that they avoid the points z_{i}. We took as our annular region a regular neighborhood of the loop corresponding to the line $y=1 / 2$. If this loop contains any points z_{i}, then let γ be a simple smooth arc contained in a fundamental domain for $\langle\tau, 1\rangle$ which connects $x+i / 2$ and $x+1 / 2+i / 2$, for some x, which does not pass through any z_{i}, and whose image under the map $z \rightarrow \bar{z}$ also does not pass through any z_{i}. The arc γ and its image under the map $z \rightarrow \bar{z}$ correspond to a loop on the adjoined torus, and a regular neighborhood of this loop has the desired property.

The annular regions which we have constructed are contained in Int (Y), and if we remove them from Y and take the quotient of the remaining surface modulo G we obtain an orientable surface. This completes the proof.

Lemma 3.2. If Y is a compact surface of genus zero, possibly with boundary, and G is an orientation reversing involution with the property that $Y \mid\langle G\rangle$ is not orientable, then there exists an annular region A on Y so that $(Y-A) /\langle G\rangle$ is orientable. Also it is impossible to have two disjoint annular regions for G.

Proof. We consider first the case in which $Y=S^{2}$. In this case G is conjugate to the antipodal map [1, p. 59], so that a neighborhood, which is fixed by G, of a great circle may serve as an annular region which satisfies the conclusion of the lemma. If A is any annular region for G on Y, then A divides Y into two components which are interchanged by G. Hence it is impossible to have two disjoint annular regions for G. The case in which Y has boundary components follows by an argument similar to that used in proving 3.1.

We remark now that g^{\prime} has fixed points and $X^{\prime} /\left\langle g^{\prime}\right\rangle$ is not orientable iff g^{p} also has fixed points and $X /\left\langle\mathcal{G}^{p}\right\rangle$ is not orientable. This follows from 2.1 and from the following lemma.

Lemma 3.3. If $x \in X$ is not a fixed point of f, then $g^{p}(x)=x$ if and only if $\mathrm{g}^{\prime}\left(x^{\prime}\right)=x^{\prime}$, where $x^{\prime}=\pi(x)$. Also g^{\prime} has fixed points only if p is odd.

Proof. We first remark that if g^{\prime} has fixed points then this set consists of the points along a set of loops. If $g^{\prime}\left(x^{\prime}\right)=x^{\prime}$, then we must have $g(x)=f^{j}(x)$ for some j, where $0 \leq j \leq p$. Thus $x=g^{-1} f^{j}(x)=g^{2 j-1}(x)$, hence $x=f^{2 j-1}(x)$. Since this equation holds for infinitely many $x \in X$, we must have that $2 j-1=p$. Therefore $g^{p}(x)=x$. The converse is trivial.

Lemma 3.4. We assume that $X^{\prime} \mid\left\langle g^{\prime}\right\rangle$ is not orientable. Then we may find either one or two annular regions for g^{p} on X such that each of these regions is fixed by f and each projects to an annular region for g^{\prime} on X^{\prime}. If we remove the interiors of these regions from X and X^{\prime}, then the quotients of the remaining surfaces by g^{p} and g^{\prime}, respectively, are orientable.

Proof. Let Σ be the union of either one or two annular regions for g^{p} on X with the property that $(X-\Sigma) /\left\langle g^{p}\right\rangle$ is orientable. By 3.1 such a Σ exists. Also by an argument similar to that used in 3.1 we may assume that Σ contains no fixed points of f. We first consider the case in which Σ consists of one annular region A. The map g^{\prime} acts on $\pi(A)$ and since $A /\left\langle g^{p}\right\rangle$ is not orientable, $\pi(A) /\left\langle g^{\prime}\right\rangle$ is also not orientable. Thus by 3.1 or 3.2 there are one or two annular regions on $\pi(A)$ with the property that if we remove them and take the quotient modulo g^{\prime}, we obtain an orientable surface.

We claim that there is only one such annular region on $\pi(A)$. Assume that there are two, α^{\prime} and β^{\prime}. These lift to two disjoint annular regions α and β on A. But A has genus zero so by 3.2 we get a contradiction. Thus there is only one annular region α^{\prime} for g^{\prime} on $\pi(A)$, and this lifts to an annular region α for g^{p} on A. Since $\left(\pi(A)-\alpha^{\prime}\right) /\left\langle g^{\prime}\right\rangle$ is orientable, ($A-$ $\alpha) /\left\langle g^{p}\right\rangle$ is orientable. Also by the choice of $A,(X-A) /\left\langle g^{p}\right\rangle$ is orientable. Thus $(X-\alpha) /\left\langle g^{p}\right\rangle$ is orientable. If α^{\prime} lifted to p regions on X then each would be an annular region for g^{p} and $(X-\alpha) /\left\langle g^{p}\right\rangle$ would not be orientable, contradiction. Thus α is fixed by f and hence satisfies the conclusion of the theorem.

We now consider the case in which Σ consists of two annular regions A and B. If $\pi(A)$ and $\pi(B)$ are disjoint, then by an argument similar to that used in the case in which Σ has one component, we may find annular regions α^{\prime} and β^{\prime} on $\pi(A)$ and $\pi(B)$ which lift to annular regions α and β which satisfy the conclusion of the theorem.

If $\pi(A) \cap \pi(B) \neq \emptyset$, then let $C=\pi(B)-\pi(A)$. Since $g^{\prime}(\pi(B))=\pi(B)$ and $g^{\prime}(\pi(A))=\pi(A), g^{\prime}(C)=C$. The set C need not be connected but we claim that C must have one component C^{\prime}, which is fixed by g^{\prime}, with the property that $C^{\prime} /\left\langle g^{\prime}\right\rangle$ is not orientable. If this is not the case then $C /\left\langle g^{\prime}\right\rangle$ is orientable. We may thus find an annular region α^{\prime} for g^{\prime} on $\pi(A)$, which lifts to an
annular region α for g^{p} on A, with the property that $\left(\pi(A)-\alpha^{\prime}\right) /\left\langle g^{\prime}\right\rangle$ is orientable. Thus $(A-\alpha) /\left\langle g^{p}\right\rangle$ is also orientable. Since $C /\left\langle g^{\prime}\right\rangle$ is orientable, $\left(\pi^{-1}(C) \cap B\right) /\left\langle g^{p}\right\rangle$ is orientable as well. Now

$$
A \cup B-\alpha=(A-\alpha) \cup\left(\pi^{-1}(C) \cap B\right)
$$

What we have shown implies that $\left((A-\alpha) \cup\left(\pi^{-1}(C) \cap B\right)\right) /\left\langle g^{p}\right\rangle$ is orientable so that $(A \cup B-\alpha) /\left\langle g^{p}\right\rangle$ is orientable. This implies that $(X-\alpha) /\left\langle g^{p}\right\rangle$ is orientable. This contradicts the fact that we needed two annular regions for g^{p} on X. Thus there is a component C^{\prime} of C with the property that $C^{\prime} /\left\langle\mathrm{g}^{\prime}\right\rangle$ is not orientable.

Now we find disjoint annular regions on $\pi(A) \cup \pi(B)$ which lift to annular regions on X which are fixed by f. We let β^{\prime} be an annular region for g^{\prime} on C^{\prime} with the property that $\left(C^{\prime}-\beta^{\prime}\right) /\left\langle g^{\prime}\right\rangle$ is orientable. Then β^{\prime} lifts to an annular region β for g^{p} on B. Since B has genus zero g^{p} interchanges the two components of $B-\beta$, so that $(B-\beta) /\left\langle g^{p}\right\rangle$ is orientable. Hence $(C-$ $\left.\beta^{\prime}\right) /\left\langle g^{\prime}\right\rangle$ is orientable. Now let α^{\prime} be an annular region for g^{\prime} on $\pi(A)$ with the property that $\left(\pi(A)-\alpha^{\prime}\right) /\left\langle g^{\prime}\right\rangle$ is orientable. By an argument similar to that used before α^{\prime} lifts to an annular region α on A with the property that $(A-\alpha) /\left\langle g^{p}\right\rangle$ is orientable. Thus $(A \cup B-(\alpha \cup \beta)) /\left\langle g^{p}\right\rangle$ is orientable, so that $(X-\alpha \cup \beta) /\left\langle\mathrm{g}^{p}\right\rangle$ is orientable. If α^{\prime} or β^{\prime} lifts to p annular regions on X, then $(X-\alpha \cup \beta) /\left\langle g^{p}\right\rangle$ is not orientable. Thus α^{\prime} and β^{\prime} each lift to one component on X, and each lift is fixed by f. This completes the proof.

Lemma 3.5. Suppose A and A^{\prime} are two annular regions with maps

$$
H: A \rightarrow A, \quad H^{\prime}: A^{\prime} \rightarrow A^{\prime}
$$

both fixed point free of order p, and

$$
K: A \rightarrow A, \quad K^{\prime}: A^{\prime} \rightarrow A^{\prime}
$$

orientation reversing of order two with the property that the quotient spaces are both moebius strips. Also H commutes with K and H^{\prime} commutes with K^{\prime}. Assume further that there exists a map $h: \partial A \rightarrow \partial A^{\prime}$ with the property that (1) $h \circ H=H^{\prime} \circ h$ and (2) $h \circ K=K^{\prime} \circ h$. Then h may be extended to a map $h: A \rightarrow A^{\prime}$ so that (1) and (2) hold.

Proof. The maps H and H^{\prime} induce fixed point free actions L and L^{\prime}, both of order p, on $A /\langle K\rangle$ and $A^{\prime} /\left\langle K^{\prime}\right\rangle$. We may find fundamental domains D and D^{\prime} for L and L^{\prime}, respectively, both of which are homeomorphic to a square, and bounded by four arcs. Two arcs $\alpha_{1}, \alpha_{2}\left(\alpha_{1}^{\prime}, \alpha_{2}^{\prime}\right)$ are subsets of $\partial A /\langle K\rangle\left(\partial A^{\prime} /\langle K\rangle\right)$ and the other two join α_{1} and $\alpha_{2}\left(\alpha_{1}^{\prime}\right.$ and $\left.\alpha_{2}^{\prime}\right)$. The map h induces a map

$$
h_{1}: \partial A /\langle K\rangle \rightarrow A^{\prime} \mid\left\langle K^{\prime}\right\rangle
$$

and the two fundamental domains may be chosen so that $h_{1}\left(\alpha_{i}\right)=\alpha_{i}^{\prime}, i=1,2$. Now h_{1} may clearly be extended to D, and by means of the formula
$h_{1}(L(x))=L^{\prime}\left(h_{1}(x)\right)$, to all of $A /\langle K\rangle$. Since A and A^{\prime} are two sheeted coverings of $A /\langle K\rangle$ and $A^{\prime} /\left\langle K^{\prime}\right\rangle$ we may lift h_{1} to a map with the desired properties.

Proof of Theorem 1.1 (in case 2). Let g_{1} and g_{2} be two orientation reversing maps satisfying the hypothesis of 1.1 . Thus we may assume that $g_{1}^{2}=g_{2}^{2}=f$ and that the maps g_{1}^{\prime} and g_{2}^{\prime}, which are induced on X^{\prime} by g_{1} and g_{2}, respectively, are conjugate.

By 3.4 there are one or two annular regions on X for each of the maps g_{1}^{p} and g_{2}^{p}, which project to annular regions on X^{\prime} for the maps g_{1}^{\prime} and g_{2}^{\prime}. If we remove these annular regions we obtain surfaces $X_{i}, i=1,2$, which are fixed by g_{i}^{p} and which have the property that $X_{i} /\left\langle g_{i}^{p}\right\rangle$ is orientable. Since the annular regions of g_{i}^{p} are fixed by f, X_{i} is also fixed by f. Also, since g_{1}^{p} and g_{2}^{p} are conjugate, $X_{1} \cong X_{2}$.

Now let $c_{i}\left(\right.$ resp. $\left.d_{i}\right), i=1,2$, be the number of loops on X which are fixed pointwise by g_{i}^{\prime} and which lift to one (resp. p) loops on X. Since g_{1}^{\prime} is conjugate to g_{2}^{\prime} we must have $c_{1}+d_{1}=c_{2}+d_{2}$. Also by 3.3 the loops which are fixed pointwise by g_{i}^{\prime} lift to loops which are fixed pointwise by g_{i}^{p}. Since there are $c_{i}+p d_{i}$ such loops and since g_{1}^{p} and g_{2}^{p} are conjugate, we must have $c_{1}+p d_{1}=c_{2}+p d_{2}$. Thus $c_{1}=c_{2}$ and $d_{1}=d_{2}$.

The map f induces a map f_{i} on $X_{i} /\left\langle g_{i}^{p}\right\rangle$. Also f is embeddable with $2 a$ fixed points and $\alpha(f)=2 \pi / p$. By mimicking the argument used in 2.2 we may embed X_{i} in \mathbf{R}^{3} so that g_{i}^{p} becomes reflection in the $x-y$ plane and f becomes a rotation about the z-axis through an angle of $2 \pi / p$. We may thus identify $X_{i} /\left\langle g_{i}^{p}\right\rangle$ with that part of X_{i} which lies below and in the $x-y$ plane, and in this case f_{i} becomes a rotation about the z-axis through an angle of $2 \pi / p$. Also $X_{i} /\left\langle g_{1}^{p}\right\rangle$ and $X_{2} /\left\langle g_{2}^{p}\right\rangle$ are both homeomorphic and the maps f_{1} and f_{2} both fix the same number of boundary components and both have the same number of fixed points. Thus by [3, p. 53] or [2], there is a map $k: X_{1} /\left\langle g_{1}^{p}\right\rangle \rightarrow X_{2} /\left\langle g_{2}^{p}\right\rangle$ such that $f_{2}=k f_{1} k^{-1}$. By doubling across the $c_{i}+p d_{i}$ boundary components which come from loops which are fixed pointwise by g_{i}^{p}, we obtain a map $h: X_{1} \rightarrow X_{2}$ so that (1) $h f h^{-1}=f$ and (2) $h g_{1}^{p} h^{-1}=g_{2}^{p}$. By repeated application of 3.5 we may extend h so that $h: X \rightarrow X$ and so that (1) and (2) still hold. It is now trivial to show that $h g_{1} h^{-1}=g_{2}$. This completes the proof.

4. Case 3: X^{\prime} / g^{\prime} is not orientable and g^{\prime} has no fixed points

The proof of 1.1 in this case depends on our previous results. If m is even then we use the results of $\S 2$ and if m is odd we use the results of $\S 3$.

We first consider the case in which m is even. By [5, pp. 225-226], there is a dividing cycle A on X^{\prime}, which is fixed by g^{\prime}, with the property that $X^{\prime}-A$ consists of two components which are interchanged by g^{\prime}. We may move A slightly if necessary so that it still has the above properties and so
that it does not intersect the branch point set. The lifts of A divide X into two components. We now cut X^{\prime} along A to produce two homeomorphic surfaces with boundary X_{1}^{\prime} and X_{2}^{\prime}. Similarly we cut X along the lifts of A to produce two homeomorphic surfaces with boundary X_{1} and X_{2} on which the map f induces actions f_{1} and f_{2}, respectively. Also assume that these surfaces are numbered so the map $\pi_{i}, i=1,2$, induced by π on X_{i}, is such that $\pi: X_{i} \rightarrow X_{i}^{\prime}$, and $X_{i} /\left\langle f_{i}\right\rangle \cong X_{i}^{\prime}$.

Lemma 4.1. If m is even then the loop A described above lifts to one loop if a is odd, and lifts to p loops if a is even.

Proof. Assume first that a is odd and A lifts to p loops. Then the surface X_{1} has p boundary components which are permuted by f_{1}. Now glue discs to the boundary components of X_{1} and extend f_{1} to this surface. We obtain a map which is embeddable and which contains an odd number, a, of fixed points, a contradiction. Thus A lifts to one loop.

Similarly, if a is even and A lifts to one loop, then we glue a disc to the one boundary component of X_{1} and extend f_{1} to the resulting surface to obtain an embeddable map with an odd number, $a+1$, of fixed points, a contradiction. Thus A lifts to one loop.

We now construct a surface on which g^{p} and f both induce mappings. If A lifts to p loops then none of these loops are fixed by g, since none are fixed by f. Since p is prime, g^{p} must fix each of these loops. Also g^{p} induces a map K^{\prime} of order two on the disjoint union of X_{1} and X_{2}. This map K^{\prime} has the property that $K^{\prime} f_{1}=f_{2} K^{\prime}$ and $K^{\prime} f_{2}=f_{1} K^{\prime}$. Now glue ∂X_{1} to ∂X_{2} by identifying $x \in \partial X_{1}$ to $K^{\prime}(x) \in \partial X_{2}$. We produce a surface Z which is homeomorphic to X and on which K^{\prime} induces a map K which is orientation reversing of order two. The maps f_{1} and f_{2} together induce a map F on Z, which commutes with K. Also K fixes pointwise each loop which came from a boundary component of $X_{i}, i=1,2$. We also have $X /\langle K\rangle \cong X_{i}$ and is thus orientable. Let c be the number of loops which are fixed pointwise by K and fixed by F, and let $p d$ be the number of loops which are fixed pointwise by K and permuted by F. We then have the following.

Lemma 4.2. We may embed Z in \mathbf{R}^{3} so that F and K become, respectively, the restriction of a rotation about the z-axis through an angle of $2 \pi / p$ and a reflection in the $x-y$ plane. If a is odd then $c=1$ and $d=0$. If a is even, then $c=0$ and $d=1$.

Proof. This follows immediately from 2.2 and 4.1.
We now consider the case in which m is odd. We first prove the following.
Proposition 4.3. If m is odd then a is even.
Proof. By [5, pp. 225-226] there are two loops A and B on X^{\prime} which divide X^{\prime} into two components X_{1} and X_{2}. The map g^{\prime} interchanges X_{1} and
X_{2} and A and B. Also A and B may be adjusted slightly, if necessary, so that neither loop contains a branch point. Assume that $a>0$. Then X_{1} contains branch points so that $\pi^{-1}\left(X_{1}\right)$ is connected.

We now use an argument similar to that used in 4.1. Thus from $\pi^{-1}\left(X_{1}\right)$ we construct a surface on which f induces an embeddable map with either a or $a+2$ fixed points, depending on whether A and B both lift to one or p loops. Hence a is even.

We remark that by 3.4 and 3.1 there exists an annular region α for g^{p} on X which projects to an annular region for g^{\prime} on X. The annular region α does not divide X as is seen from the proofs of 3.1 and 3.4. The region α is a neighborhood of a loop A which is fixed by g^{p} and f and which projects to a loop on X^{\prime} which is fixed by g^{\prime}.

We now construct a surface Y on which g^{p} and f both induce mappings. First we cut X along A and we obtain a surface X_{1} with two boundary components on which g^{p} and f induce maps. Let K^{\prime} denote the map induced by g^{p}. The boundary components of X_{1} are interchanged by K^{\prime}, and we identify $x \in \partial X_{1}$ with $K^{\prime}(x) \in \partial X_{1}$ to produce a surface Y on which g^{p} and f induce maps K and F, respectively. Clearly $Y \cong X$. Let B denote the loop on Y which came from A. Clearly K fixes B pointwise. Since B is the only loop which K fixes pointwise and since B does not divide Y, we must have that $Y \mid\langle K\rangle$ is not orientable. Also the Euler characteristic of $Y /\langle K\rangle$ is $(2 n-$ 2) $/ 2=n-1$.

Proof of 1.1. We first consider the case in which m is even. We assume $g_{1}^{2}=g_{2}^{2}=f$. For each of the maps $g_{i}, i=1,2$, we construct a surface Z_{i}, on which each of the maps g_{i}^{p} and f induce maps K_{i} and F_{i}. By Lemma $4.2 Z_{1}$ and Z_{2} are both embeddable in \mathbf{R}^{3} so that F_{i} becomes a rotation through an angle of $2 \pi / p$ and K_{i} becomes a reflection in the $x-y$ plane. Also there are c loops fixed pointwise by K_{i} and fixed by F_{i}, and $p d$ loops which are fixed pointwise by K_{i} and permuted by F_{i}. The numbers c and d are the same for both $i=1$ and $i=2$. Thus by mimicking the argument used in $\S 2$, we may construct a map $k: Z_{1} \rightarrow Z_{2}$ such that $k K_{1}=K_{2} k$ and $k F_{1}=F_{2} k$. Clearly k maps the fixed point set of K_{1} onto the fixed point set of K_{2}.

We now use the map k to construct a map h which will conjugate g_{1} and g_{2}. First cut Z_{i} along the loops which are fixed pointwise by K_{i}. We then obtain two surfaces from $Z_{i}, X_{i 1}$ and $X_{i 2}$. The map k induces two maps $k_{i}, i=1,2$, where $k_{i}: X_{i 1} \rightarrow X_{i 2}$, after possibly renumbering. Now reglue $X_{i 1}$ and $X_{i 2}$ to recover X. By observing carefully k_{i} on $\partial X_{i 1}$, we see that, after reglueing, k_{1} and k_{2} induce a map $h: X \rightarrow X$, with the property that $h g_{1}^{p}=g_{2}^{p} h$ and $h f=f h$. Thus if $j=(p+1) / 2$, then

$$
h g_{1} h^{-1}=h g_{1}^{p} f^{i} h^{-1}=h g_{1}^{p} h^{-1} h f^{i} h^{-1}=g_{2}^{p} f^{i}=g_{2}
$$

This completes the proof if m is even.
We now consider the case in which m is odd. We construct surfaces
$Y_{i}, i=1,2$, on which g_{i}^{p} and f induce maps K_{i} and F_{i}, respectively. Let $G_{i}=K_{i} F_{i}^{i}, 2 j=p+1$, so that $G_{i}^{p}=K_{i}$. The surface $Y_{i} /\left\langle K_{i}\right\rangle$ is nonorientable with one boundary component and has Euler characteristic $n-1$. Thus

$$
Y_{1} /\left\langle K_{1}\right\rangle \cong Y_{2} /\left\langle K_{2}\right\rangle .
$$

Also G_{i}^{2} is embeddable with $2 a$ fixed points and $\alpha\left(G_{i}^{2}\right)=\alpha\left(f_{i}\right)=2 \pi / p$. Also if G_{i}^{\prime} denotes the map induced by G_{i} on $Y_{i} \mid\left\langle F_{i}\right\rangle=Y_{i}^{\prime}$, then $Y_{i}^{\prime} /\left\langle G_{i}^{\prime}\right\rangle$ is not orientable by 2.1 , has exactly one boundary component, and has Euler characteristic $m-1$. Thus

$$
Y_{1}^{\prime} /\left\langle G_{1}^{\prime}\right\rangle \cong Y_{2}^{\prime} /\left\langle G_{2}^{\prime}\right\rangle
$$

It is easy to see that the results of $\S 3$ imply that there is a map $k: Y_{1} \rightarrow Y_{2}$ such that $k G_{1}=G_{2} k$. Let B_{i} denote the curve fixed pointwise by K_{i} on Y_{i}. Then $k\left(B_{1}\right)=B_{2}$. If we cut Y_{i} along B_{i} and reglue to recover X, then it is easy to check that k induces a map $h: X \rightarrow X$. Also $h g_{1}=g_{2} h$. This completes the proof.

References

1. N. L. Alling and N. Greenleaf, Foundations of the theory of Klein surfaces, Lecture Notes in Math., vol. 219, Springer-Verlag, New York, 1971.
2. J. Gilman, On conjugacy classes in the Teichmüller modular group, Michigan Math. J., vol. 23 (1976), pp. 53-64.
3. J. Nielsen, Die Struktur periodischer Transformationen von Flächen, Danske Vid. Selsk. Mat.-Fys. Medd., no. 1 (1937), pp. 1-77.
4. R. Rüedy, Symmetric embeddings of Riemann surfaces, discontinuous groups and Riemann surfaces, Ann. of Math. Studies 79, Princeton University Press, 1974.
5. R. Zarrow, A canonical form for symmetric and skew-symmetric extended symplectic modular matrices with applications to Riemann surface theory, Trans. Amer. Math. Soc., vol. 204 (1975), pp. 207-227.
6. -_, Anti-conformal automorphisms of compact Riemann surfaces, Proc. Amer. Math. Soc., vol. 54 (1976), pp. 162-164.
7. -_, Orientation reversing square roots of involutions, Illinois J. Math., vol. 23 (1979), pp. 71-80 (this issue).

Northern Illinois University Dekalb, Illinois

Department of Mathematical Sciences
Northern Illinois University
DeKab, Illinois 60115

