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Abstract

It is shown that the only pseudoconvex sets with smooth boundary in C"
on which 0 satisfies Lipschitz smoothing estimates of order 1/2 are the
strongly pseudoconvex ones. Various extensions of this result are made to
weakly pseudoconvex domains of finite type and in various norms. It is
proved that subelliptic estimates for 0 can hold on a pseudoconvex set in C"
only if the domain is of finite type in the sense of Kohn.

O. Introduction

The purpose of this work is to prove some characterizations of certain
types of pseudo-convex domains in terms of estimates for the inhomogene-
ous Cauchy-Riemann equations on these domains. For instance, we prove
that the only pseudo-convex sets in C" with C3 boundary on which the
operator satisfies the Henkin-Romanov Lipschitz 1/2 estimate [11] are the
strongly pseudo-convex domains.
Some of our results, in the context of domains of finite type in C2 with C

boundary, have been anticipated (in the Sobolev norm) by Greiner [6].
Greiner’s results are highly non-elementary, requiring reduction of the
problem to the study of an algebra of pseudo-differential operators on the
boundary. We, on the other hand, show that the critical feature distinguish-
ing a weakly pseudo-convex point from a strongly pseudo-convex point is
the presence of a (possibly low dimensional) complex analytic variety with a
high order of contact at the point. Our proofs are fairly elementary, and are
inspired by the example of Stein appearing in Kerzman [13].
One consequence of our work is that we are able to give the following

partial answer to the question, raised by Kohn,2 of giving necessary and
sufficient conditions for subelliptic estimates for the 0 problem:
Let _C" be an open set with smooth boundary. Then 0 satisfies

subelliptic estimates on only if is of finite type.
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2 It has recently been announced (see Kohn [16]) that Greiner’s methods work in the Sobolev
norm on domains in C" with C boundary. Kohn gives some deep sufficient conditions for
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268 STEVEN G. KRANTZ

In what follows, our ambient space C will satisfy n >-2. For general
function theory on C and standard notation, the reader is referred to [12].
We write fzj for Of/Ozj, fzjk for 02f/Ozj Ok, etc. when it is convenient. We
recall that if c C" has C2 boundary then a defining function p for is a
Ca function on some open W___ b@ with grad p: 0 on W and

c W={z W: o(z)< 0}.

If z 6 b@ and w (wa,..., w,) C" satisfies E pj wi 0 we then say that
w T,o(b@)l. The complex structure on Ca induces an identification of

T,o(b@)l with the maximal complex subspace of T(b)l. We let T,o(b@)
be the vector bundle with total space Jz, T,o(b@)l. If Ta, Ta are real
tangent vector fields on b@, we let [T, Ta] TaT2-T2T. Of course if S, T
are smooth sections of Ta,o (holomorphic vector fields) then [S, T] is as well.
The same holds for S, T To, T,o.
To fix notation, we recall that the Levi form at z b@ is the map (linear in

the first variable, conjugate linear in the second)

Lz" Tx,o(b)[. x Tx,o(b@)[ R

given by L(w, w)=Yi,k= pzjk(Z)Wi@k. If the Levi form is positive semi-
definite at every z b@, we say that is pseudo-convex. In case L is
positive definite at every z b@ we say that is strongly pseudo-convex.
Pseudo-convexity and strong pseudo-convexity are independent of the
choice of defining function. Moreover, these notions make sense in a
neighborhood of any point P b@ near which b@ is Ca.
Our purpose in the second section is to give an intrinsic indicator, which

can be formulated in terms of a weighted exactness criterion for the
Dolbeault complex, with which one can detect strongly and weakly pseudo-
convex domains, The indicator is invariant under biholomorphic maps which
are C to the boundary, yet in principle one need not make direct reference
to the boundary in order to apply it.

In Section 3, we develop s6me refinements and consequences of the main
result.

Section 4 contains results in the Sobolev norm and in the case of Ca we
obtain some refinements of Greiner’s results. Finally, some remarks about
biholomorphic maps are made.

Section 5 addresses itself to analogues of the above results in the context
of tangential estimates.

Section 6 contains remarks about Lp smoothing and Orlicz spaces.
It is a pleasure to thank Robert E. Greene for his insightful remarks and

suggestions.

1. Function spaces

If @ c C is open we let LP(@) be the Lebesgue space of the pth power
integrable functions and L() the essentially bounded functions. For O<
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cz < 1 we let

A,()= {f: II[ll= + sup
z,z+h

If(z + h)-f(z)l/Ihl I[fll=)<

It will be useful to have the auxiliary space

,,() {f: sup If(z + h)-f(z)lllhl" llfllx()<}.z,z +h

Observe that is a norm while Ilx is not. We let

AI() {f: Ilfll,=+ sup If(z +h)+f(z-h)-2f(z)lllhl=-IlfllA,()<oo}
and whenever cz > 1 we define

For these a,/ is defined analogously. Finally, let

Ek(@)=C()fq{f:VfL,O<j<k} and E()=kEk().

It is important to observe that if is bounded and has C boundary then
E() Ck-l(),

pThe spaces A’q), Ep.q), L(o.q are forms on with coefficients of the
indicated type. Let C.q)(), C(.q)() be as usual and let

dosed forms}

DEFINITION 1.1. Suppose that B 1, Bz are function spaces which contain
E=(). We say that the 0 operator satisfies estimates of type (B 1, B2) on
if there is a linear operator T: Ao,l()_- C() so that OTf f for all f and
IITflIB2 <-- C IlfllB1. If P b, we say that 0 satisfies weak local estimates of type
(B 1, B2) at P provided the following holds"
For any closed (0, 1) form f with coefficients BI() there is an open

V P and a function u on V f3 so that Ou f and Ilul[2(v) < oo. (Here we
interpret in the distribution sense.)

It follows from the interior ellipticity of 0 on functions that 0 is hypoellip-
tic on functions so the above definitions make sense. In what follows, we
adhere to the custom of letting Ci, K,, etc. denote various constants which
are different in different contexts. They will be independent of the relevant
parameters (made clear in the context) but will be of no intrinsic interest.

2. Principal ideas

In what follows,
_
C will be an open set, P b, and p will be a

defining function for in a neighborhood of P.
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We remark once and for all that our proofs will be seen to be local.
Therefore they all hold for domains in a complex manifold, or even at
non-singular points of an analytic space. However, all statements in this
paper are formulated and proved in Cn, n-> 2.
We will first formulate and prove a basic result, which is not optimal but

which contains all the fundamental ideas in its proof. After the proof we
give some variants and auxiliary results.

THEOREM 2.1. Suppose c C has a C3 boundary and is pseudo-convex.
Then is strongly pseudo-convex if and only if c3 satisfies (L, A1/2) estimates
on . If ffJ is not strongly pseudo-convex at P b then 0 does not satisfy
(L, A1/3+a) estimates on for any d > O.

Proof. In case has C3 boundary and is strongly pseudo-convex, a
construction of Fornaess [5] enables one to solve the Cousin II problem with
differentiable parameters on . In particular, we obtain a C2 function g
defined on a neighborhood 1

_
x so that:

(2.1.1)
(2.1.2)

g(, z) is holomorphic in z for each fixed .
For each compact K_f there is a 8: > 0 so that

Re g(, z) <-- O(z)- p()- 8c I zl2 for all (, z) K x K.

(2.1.3) g(,)=0 for all 1.
Using this g, one uses techniques of Henkin and Henkin-Romanov [9], [10],
[11] and of Siu [20] to obtain an explicit operator T: A(o,1)()--* C() so
that OTf f and IITfIl,=-< C Ilfll,.

Conversely, suppose has C3 boundary, P b, and the Levi form fails
to be positive definite at P. Let O be the defining function for near P.
There is a neighborhood U of P and a local holomorphic change of
coordinates : U Uo so that if v (z) is the new complex variable and
po(v) p -(v) then

(2.1.4) Oo(V) =-2 Re I) +1/2 Y ((1O0)v?5 ((P))) v, + Ro(v).
i,k=l

By boundary smoothness, the remainder satisfies IRo(v)l<--Ca Ivl3 for some
C1 > 0, v small. In addition, we have Po--(P)= 0, o ( U) satisfies

T,o(b)lpo={V: v 0},

and (1 +0i, 0 ,0) is the real inward unit normal to b(0) at Po. We wl
perform the main construction on Do, pull the example in a trivial fashion
back to -a(o), then extend it to all of .
Now define

n (V) --3Vl-- 2c2(Ivlz + e)/+(po)(Po) Ivxlz + (p0),,(Po)Vlk
k=2
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where C2> 2 will be chosen momentarily. We suppose, without loss of
generality, that

Lo((0, v, 0,..., 0), (0, v, 0 ,0))= 0.

Thus if v @o

Oo(v) Re rh (V)+ 2C:z(Ivl:Z + s)3/:Z + Ro(v)+ Re Vl + [1/2 ((#O),jk (Po))Vjk]
j,k =2

Now the expansion in brackets is non-negative since the Levi form is
positive semi-definite on span {v2, v,}; if we choose C2 sufficiently large
then by the estimate on Ro we may be sure that 0>Reh(V)+
C2(Iv[2 + e)3/2 + Re vl or

(2.1.10) Rerl(v)<_-C2(Ivl2+e)3/2-Reva for Ve@o.
Now let b C1 q-1 +110[Ic2(o)< 0% after shrinking U if necessary. Let C2 be
large enough so that (2.1.10) is true and so that C2-> 8b. Then if v o and

we have

(2.1.11)

IRe vii-< 2b(lvl2 + e)3/2

Re rl (v) --< -Re v C:z(Ivl: + s)3/2

<_-6b(Ivl:Z + e)

-<-IRe )II--(Ivl
Now if IRe Vl[ [Im vl we have

(2.1.12) Re n(v)- IRe [-lIml-(Ivl=+ )

But if IRe v[ [Im v[ then by the definition of , for v small, we have

(2.1.13) IIm n(v)l Jim
In any case, (2.1.11), (2.1.12), (2.1.13) give us

(2.1.14) I(v)lc(Ivl+(Ivl=+)’=) provided IRevl2b(Ivl=+)

On the other hand, if [Re Vll>2b(Ivl+e)3/ and IRe vllImvl and if it
were the case that Re v<0 then

(2.1.15) Oo(V) -2 Re Vl+ (0o), (Po)V
Lk=l

-2 Re v +(Oo)(Po)Ivl= + Re (Oo)(Po)+ o(Ivl3)
k=2

by the positive semi-definiteness of the Levi form. For v suciently small
we thus have Oo(V)-Rev>O so Veto. So when [Revl>
2b(Ivl+e)3/ and IRe vl lIm vl we must have Re v>0 whence it follows,
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with (2.1.10), that

(2.1.16) Re rl (v) --< -c(Ivl[ + (Ivl2 + e)3/2).

Finally, if IRe vii> 2b(Ivl2+e)3/2 and IIm vii>IRe vii we have, for v small,

(2.1.17) IIm (v)[ >-IIm vl >-1/2lye[ >- c(Iv[ + (Ivl: + e)3/:).

In summary, (2.1.14)-(2.1.17) tell us that when v is small, v o, we have

(2.1.18) t  (v)l c(Iv l+(IvlZ+ ) forsome C>0.

After shrinking U, we may suppose that this inequality holds for all v o.
Now we observe that lines (2.1.11)-(2.1.18) show that a%(o) omits the

positive real axis. Therefore we may define /3(v)= 2/log (v), where the
"principal branch" for logarithm is selected. Further, we let

v(v)-- ot3(v) d2 2 c3le
log "O (v) "O (v) log2 n (v)"

The first term on the right hand side is dearly in E, 1) and is bounded,
uniformly, in e. By the definition of rl, and by (2.1.18), the same holds for
the second term. Thus % e A(o.1)(o) and % is bounded, uniformly, in e.

Suppose, seeking a contradiction, that there is a d >0 and u e C=(o)
with IlullA+,,_< c<, and Ou %. Then, of necessity, u =/3 + h for some
holomorphic functions h on o.
We observe that for 0< 8 < C3, C, Il -< C31/3, C3 to be selected, one

has

0(6, , 0,..., 0) -28 +1/20zlel(Po)I1= / Re Y Ozej(Po)6g+ 0(C6 + 33).

Clearly if C3 > 0 is sufficiently small, we have

(2.1.19) O(&,0,...,0)<0, i.e. (6,,0 ,0)eo.

Now we define, for 0 < 6 < C3/C, e > 0 small,

()= (&5o,...,0)-(Cz&K,0,...,0)dff].
1=C38

By the above remarks, the integral makes sense. By our hypothesis about
the uniform Lipschitz smoothness of u, we have

(2.1.20) I (3)<_ C6’+2/3
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with C independent of 8, e for all sufficiently small and positive. On the
other hand, by the Cauchy integral theorem,

(2.1.21)

/(8) I,l=c,a" /3 (& ’, 0 ,0)-/3(C& , O,..., O) d"

IC -{l/lg[-3(-2C2(2+Ct2/3+e)3/2+C’(2-t-C"(]
C381/3

1/log [-3C2a 2C2(Ca2+ C3252/a + etan + C’C,32+ C"C2,3g)]}d

where C’, C" are constants. If we let e=82 then we see that for iS
sufficiently small we have"

(2.1.22)

(2.1.23)

(2.1.24)

The argument of the first logarithmic term has negative real
part which is essentially -3&
The argument of the second logarithmic term has negative real
part which is essentially -3C2&
The arguments of each of the logarithm terms have moduli
essentially

(3 + 2C2)8, (3 + 2C)C28

respectively.

Using the elementary formula

1 1 log (B/A)
logA logB logAlogB

and observing that in our case, B/A is both bounded and bounded in
modulus away from 1, and using (2.1.22)-(2.1.24), it is a simple matter to

verify that line (2.1.21) is not less than C482/3. Combining this with (2.1.20)
we have

C42/3 182() Cd+2/3"

Letting 8-- 0, we obtain a contradiction.
What we have done is to show that 0 does not satisfy (L,Ad+I/3)

estimates on 0. However the entire proof takes place locally. The same
proof, using b --/3 o and g --Ob shows that does not satisfy (L, Ad+l/3)
estimates on f3 U. Using a Whitney extension operator (see [21]), we may
extend the b smoothly to all of so that ,gb are uniformly bounded in e,
and the same proof shows that 0 does not satisfy (L, Ad/I/3) estimates on ,
as desired. In subsequent proofs, all of the analysis will be done on 0 and
we make no further mention of the local-global dialectic.
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3. Further results for Lipschitz spaces

The smoothness hypotheses of b can be considerably relaxed. In fact it
suffices to know that the error term of the second order Taylor expansion
for O is O(Izl), some /3 > 2. Moreover, only smoothness near P is impor-
tant. Further, using modifications introduced in [17], we may deal with
higher order Lipschitz classes as well. Thus using 2.1 and 3.1 we have"

THEOREM 3.1. Let c_ C be pseudoconvex with P b and suppose that
there is a neighborhood U P so that_bffJ fl U is Aa, some > 2. If the Levi

form is not positive definite at P then 0 does not satisfy (L, A1/a) estimates at

P.
More generally, if b f3 U is A, 2</3 <3, then a does not s_atisfy

(L, /a+a) estimates on for any d >0. In addition, for any t >0, 0 does
not satisfy (A, +x/a+a) estimates for any d>0. In case b Cl U is C3, -does not satisfy (L,A1/3+a) estimates nor (A,A+I/3+a) estimates for any
d>0.

REARK 3.2. Theorem 3.1 persists with weaker conditions on the mod-
ulus of continuity of b than Aa continuity, /3> 2. The most natural
condition would be that b is C2, but we are unable to use the techniques of
this paper to weaken the hypotheses that far.

Remark 3.3. If @ (C)C" is strongly pseudoconvex with Aa boundary,
/3 > 2, it is well known that near a point P e b@ there is a holomorphic
change of coordinates to make b strongly convex near P. One may then
mimic the example appearing in [13] to prove that for any d > 0, one cannot
have estimates of type (L=, A/2+a) on . In short, there are no domains on
which 0 can satisfy better than (L=, Aa/z) estimates.

The proof of 2.1 would have been simpler had we only been proving the
nonexistence of weak local estimates. In this case, we would let (z) ro(z),
so that e doesn’t appear. Then with no changes, the proof of 2.1 gives"

THEOREM 3.4. Let c_ C" be pseudoconvex, P b@, U P a neighborhood
so that b U is Aa, some [3 > 2, and suppose that the Levi form is not
positive definite at P. Then 0 does not satisfy weak local estimates of type
(L, A1/a) on J at P, nor of type (A, A,+/2) at P for a > O. More precisely, if
b is Aa, 2 </3 <3, then 0 does not satisfy weak local estimates of type
(L, A/+a) nor of type (A,, A,+l/+d) any a, d>0.

A corollary of Theorem 3.4 is the surprising fact that if b@ is C3 near P
and is not strongly pseudoconvex at P, then 0 cannot satisfy better
estimates than (L, A1/3) near P. Put another way, we have"

THEOREM 3.5. Suppose ffJ c_ C has C3 boundary, is pseudoconvex, and for
each P b@ there are open neighborhoodsUp V,P and Cp, dp >0 so that
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for every f A(o,x( fq Up) there is a u C(Vo fq) with Ou f and

Then is strongly pseudoconvex at eve bounda point of .
The reader will obsee that the key ingredient of the proof of 2.1 is the

fact that there is a one-dimensional complex analytic variety with high order
of contact to b at P in case the Levi form is not positive definite at R In
fact the proof makes clear that the order of contact is a measure of (and an
obstruction to) available Lipschitz estimates for 0 near E This is so in part
because the order of contact determines the diameter of the contour over
which one integrates. Therefore we are able to prove:

THEOM 3.6. Suppose C" is open. Let P b and U be a neighbor-
hood of P. Suppose that b U is Aa, that O is a defining function for on U,
and that them is a non-singular complex analytic variety V of dimension n- 1
in U with p(z)= O(lz-P[a), some > 2, all z V. en 0 does not satisfy
estimates of pe (L, Aa+/a) on , any d > O, nor of pe (A, A+/a+a), any
d,a>O.

Proof. After a change of coordinates we may suppose that

V={z U" z=O}

and that P 0. It follows that there is a defining function 0 near P of the
form

O(z) =-2 Re z+(z)+R(z)

where IR (z)l C [z[e, some C> 0, z small and (0, z,..., z,)= 0. Let us
write

(z)=

where we have used standard multi-index notation. Now is real and if we
let

(3.6.1) A(z) be all terms in with s 0, t 0,
(3.6.2) Ae(z) be all terms in with s 0, t =0,

it follows that Re (A(z)+2A(z))= (z). Imitating the proof of 2.1, we let

(z) -3z +m(z)+2A=(z)-2Ca(lzl2+e)2,

C2 large. By an argument similar to that in 2.1 we find that, after shrinking
U if necessary:

(3.6.3) (o) omits the positive real axis.
(3.6.4) [, (z)l C(Iz[ + Izl) on @o.
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We thus define /3(z)=--z/log rl(z), %(z)----O13(z) and observe that"

(3.6.5) /3 is well defined by (3.6.3).
(3.6.6) % e A(o.1)(@o) and the % are uniformly bounded by (3.6.4).

We observe from the formula for O that there is a C3 > 0 so that whenever
0 < 8 < C3 and e C"-1, I l-< C361/13 then (6, ) e o.

Following the proof of 2.1 closely, we seek a contradiction by supposing
that there is a d >0 and u e C=(o) with (gu, =% and c, some
C>0.
We let, for 0 <

l()

and obtain a contradiction just as in 2.1.

COnOLLArV 3.7. Suppose ffJ is an open set, C", P e b, and for each
0 < k eN there is a neighborhood Uk

_
P with b f3 Uk smooth of order C and

a variety V with PeVU so that p(z)= O(Iz-PI) for all z e V (some
defining function p). Then 0 does not satisfy estimates of type (L, An) nor of
type (A,,, A+a), any a, d > O.

Remark 3.8. It is important to observe here that Range [19, Section 2]
has proved a version of 3.6, 3.7 for domains of the form

B= zeC"" ’. Iz l= ,<l meN".

Moreover, he has constructed a Henkin-Ramierz kernel for these domains
and computed (L, A,(,,)) estimates for them [19, Theorem 1.2, Proposition
1.5] which show that 3.6, 3.7 are best possible. This means that the indices
d + 1//3, a + d + 1//3 in the statement of 3.6 cannot be decreased and likewise
for 3.7.

Finally, let ! 12" have C boundary and be pseudoconvex. Consider the
semi-exact sequence

(3.7) A,.O() Oo ; A,I() A,()

where AP’q() denotes the differential (p, q) forms on with coefficients in
C(). It follows from the work in [15] that in fact the sequence is exact at
A’I(). What Theorem 2.1 shows is that if there are C, d > 0 so that every
f e ker 1 has a preimage u under o satisfying IlUllA1,3+d -< C I[fllLoo then
must be strongly pseudo-convex. Observe that the non-zero p in (3.7) does
not alter the validity of our assertion since holomorphic differentials may be
carried without effect through the proof of 2.1.
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4. Domains of finite type and Sobolev norms

Let
_
Cn. Let P b and U9 P be open with b fq U of class C. We

let o be the module of vector fields, over Coo(b f3 U), spanned by
Tl,o(b f3 U) and To.l(b f3 U). Moreover, for 1 --< k N we let ’k be the
module spanned by k-1 and by elements of the form [F, G] with F k-1,
G o. We have"

(4.1) is closed under conjugation.
(4.2) k--1 ---(4.3) =-- =o is a Lie algebra.

Let p be a defining function for on U. Following [14], [2], we define P to
be a point of type m, 0< meN provided (F, 0p}lp 0 for all F e ,-1 while
(F, OP}le # 0 for some F e ,. We say that is of type m if every P e b@ is of
type at most m. It is well known (see [4]) that strongly pseudo-convex
domains are of type 1 and that a point P on the boundary of the polydisc
(but not on the distinguished boundary) is not of finite type m for any m.
Using the terminology of [2], we say that a complex analytic manifold V is

tangent to b at P to order s provided Olv vanishes to order s+ 1,.
Equivalently, O(z)= O(Iz-Vl+) *or z e V. We observe that one only needs
that b U be C+1 in order to define finite type s at P or tangency to
order s.
The following theorem was first proved in [14] for domains in C2 and was

generalized to all C" in [2].

THEOREM 4.4 (Kohn, Bloom, Graham). Let _C" be an open set,
P bff, U a neighborhood of P so that b f3 U is C"+1. Then P is a point of
type m if and only if them is an n- 1 dimensional complex manifold with
order of contact m at P.

The first result of this section is:

THEOREM 4.5. Let
_
C" be open, P b, U a neighborhood of P, and

suppose bff) f3 U is C"+1. Suppose that P is a point of type m. Then - does not
satisfy estimates of type (Loo, Aa+l/(,+l)) nor of type (A, Aa+l/(,,+l)+) for any
a, d>0.

Further, if 0< ct <--1/2 and - satisfies weak local estimates of type (Loo,
at P, and if U is a neighborhood of P with b U smooth of order C
then P is a point of finite type mo-<[1/a] 1.

Proof. By Theorem 4.4, if P is of type m there is an n- 1 dimensional
complex manifold V with p(z)=O(lz-P["*+1) for z e V. It follows from
Theorem 3.6 that 0 does not satisfy estimates better than (Loo, A1/(,,+1)) nor
better than (Aa, At+x/(m+l)) on .
On the other hand, if P is not a point of type at most [l/a]-1, then in

particular (F, Op)lp 0 for all F e tl/-1. It follows from the proof of Lemma
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2.12 in [2] that there is an (n-1) dimensional complex analytic manifold
tangent to b@ at P to order at least [l/a]. By Theorem 3.6, 0 does not
satisfy estimates of type (L=, Aa+l/1+[1/])), any d>0. Since 1/(1 +[1]a])<a
we have that 0 does not satisfy estimates of type (L=, A) on . A variant of
3.6 along the lines of 3.4 yields that 0 does not satisfy weak local estimates
of type (L=,) near P.

In [14] Kohn proves that if P is a point of finite type m in b, if is
pseudoconvex, and if n 2 then m is odd. The fact persists in C as an
examination of proofs in [14] and [2] show (or one can use the reference in
the footnote, p. 528 [14]). This yields the following refinement:

COROLLARY 4.6. Suppose ffJ
_
C is pseudo-convex with C5 boundary and

suppose that for each Pb, 0 satisfies weak local estimates of type

(L,A1/4+a) at P, some d(P)>O. Then J is of type 1, hence is strongly
pseudo-convex.

Similarly, if - satisfies estimates of type (L, Aa+l/4), some d > O, then is

of type 1 hence is strongly pseudo-convex.

We can now introduce the Nikol’skii spaces, a variant of Sobolev spaces,
which will enable us to obtain results in the Sobolev norm and, in addition,
to obtain in Ca a new proof of Greiner’s Theorem [6] on sharp subelliptic
estimates for domains of finite type. We will also be able to obtain some
refinements and generalizations thereof, and to study a problem of Kohn.

For O<a<l, we define the L Nikol’skii spaces N(Cn) of order a,
1-< p--<, to be functions f: C"-- C for which

sup I-IIf(z + h) f(z
h#O

Here the Lp norm of f(z + h)-f(z) is computed in the z variable for each
fixed h. Similarly, one defines N for a --> 1 like the Lipschitz spaces of order
a with the modification that the L norm is replaced by the Lp norm. One
defines, for c C" open with C boundary, N() to be those fuffctions on

which are restrictions to of functions in N(C).

THEOREM 4.7. Suppose ;
_
C is open, P b@, U is a neighborhood of P,

bff; CI U is C"+, and P is a point of type m. Then 0 does not satisfy estimates

of type (L, Mll(m+l)+d
,p ), nor of type (Np, N;+ll(m+l)+d) otl for any a, d > O,

l<_p<_.

Proof. The proof follows already familiar lines that have been laid down
in Section 2. For the sake of brevity, we consider only the case m 3, p 2.
Let P b be a point of type m.
By Theorem 4.4 there is an (n- 1) dimensional analytic manifold V which

is tangent to order m at P. It follows, just as in the proof of Theorem 3.6,
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that we may construct a function rl(z) on o----U f3 so that:

(4.7.1) rl(o) omits the positive real axis.
(4.7.2) Irl(z)l >- c(Izll + IzI4) for z e o.

Here the coordinates have been normalized, as in 2.1, so that V ={zl 0},
(1, 0,..., 0) is the real inward unit normal to b at P, and P 0.
We define, for e > 0 small,

3e (g) 2/[(TI(Z) E)(n+3)/4 log (rl(z) e)].

This is well defined on o by (4.7.1). Further, let

r(z)=-ot3(z)
dz/[(rl(z)- e)"+3)/4 log (rl(z)- e)]
(n + 3) 2-rl(z)/[(rl(z)- e)"+7)/4 log (rl(z)- e)]

4

2TI(Z)/[(T] (Z) )(n+7)/4 log (l(z)- e)].

Since rl(z) O(Iz l + Izl while a(z)--> c(Iz l + Iz]4), an easy calculation
yields

I (z)l-< C(Izl / ]z14)-+3/4]llog (]zal + [z 14)1 A(z).

Let us write z’= (z2,..., z,). Thus

I{ 3’(z)l:z<-- I A:Z(z)+ I A:(z)=AI(z)+A2(z)"
Iz 1"1/2} l[<-Iz’l Iz’14-<[z 11

Izl-<l/2 Izl-<l/2

Now

Al(z) <-- c I 1/[1z’12"+6 lg2 Iz’l]
Izd,lz’l<-i/2
Izd_<lz’[

--< c I’l-<a/2 l/[Iz’lZ’-a lg2 Iz’l]

The term A2(z is handled similarly. It follows that % L2(o), uniformly in
e, and of course we have % A(o,)(@o).

Let us also observe, as in 3.6, that for C3 >0 sufficiently small it follows
from the existence of V that

(4.7.3) (, , 0,..., 0) o provided 0 < < C3, C, I[ -< c31/4.
We suppose, seeking a contradiction, that there are function u C=(o)

with 0u =/ and IlUllN21,4+d(eo) --< C, some d>0. Then, of necessity, u
/3 + h, some holomorphic h on o. We define, for C4 C3/16(C:+ 1)n,
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small, 0< 8 < C3,

8Re x28

u(z+ C8, z+ , z,,)Z3,.
C48

u, (z + 8, z2 + , z3 z.) dt]:z d A dz
1/2

Notice that since (1, 0 ,0) is the real inward unit normal at P, the same
argument which gives (4.7.3) also gives

(z +C8, z+ , z3 z,), (z +& z+ , z3,..., z,)o
when z, range over their respective domains of integration. By our
hypothesis about the Nikol’skii class of the u and by Minkowski’s integral
inequality (see [21]) we have

(4.7.4) I (8) --< C8 v2+a, uniformly in e.

On the other hand, the h integrate out by the Cauchy integral theorem
and we have

()

X {I/[(I(Zl q- C28, z:z-b z3, Zh)-- 8)(n+3)/4

x log (rl(zx + C:zS, zz+ K, z3, z,)- e)]
1/[xl(Zl q- 8, z2 -b , z3, zn)- 8)(n+3)/4

xlog (n(zx + , za + , z3, z,)- e)]} d] d dz
1/2

A computation similar to that in the proof of 2.1, letting e 8/10, and using
(4.7.1), (4.7.2), and the existence of V yields

(4.7.5) I8/xo(8) >-- C (8/1(8(’’+3)/4 Ilogz 81)" d dz

If we observe that the region of integration in the z variable has volume
(8/4)2n-28:z we obtain

(4.7.6) I8/lO(8) C x//[log2 8[.

Now combining (4.7.4) and (4.7.6) and letting 8 -- 0 yields a contradiction.
The counterexamples for (N,N+/m++a) are constructed similarly.

Let now H denote the classical Lp Sobolev spaces on o (see [1] or [4]).
One has for any e >0, a >0, 1-< p <--,

(4.8) N+(o) --- H’(o) __
N(o)



CHARACTERIZATIONS OF DOMAINS OF HOLOMORPHY 281

provided o is compact and b0 is C1. If one combines these inclusions with
Theorem 4.7 one has:

THEOREM 4.9. Suppose if) C has Coo boundary. Then 0 satisfies subel-
liptic estimates on only if if) is of finite type. If if) is of finite type m then 0
cannot satisfy subelliptic estimates of order better than 1/(m + 1).

This partially answers a question of Kohn mentioned in [3]. The result is
due to Greiner in case

_
C2. It is clear from our methods that one can

considerably relax the smoothness conditions on the boundary. Using some
positive results which are due to Kohn [14], we can state a more complete
result in C2:

THEOREM 4.10. Suppose C2 has C boundary. If is pseudo-convex
of type m then the subelliptic estimate

holds on for all e > O.
Conversely, if for some 1 <- m N, ff has C +1 boundary and (4.10.1)

holds on if) (with L2 Sobolev spaces replaced by L Sobolev spaces for any
1 <_ p <_ o if desired) then is a domain of finite type at most m.

REMARK 4.10.1. In fact the second statement of the theorem holds
locally. That is, if (4.10.1) holds near a point P then P must be of finite type
at most m.

We conclude this section with some remarks about a connection between
our results and nonexistence of biholomorphic maps. Let 1 <--ml <m2,
mi e N, and suppose 1, - C are domains with smooth boundary of types
ml, m respectively. If 1 and were biholomorphically equivalent via a
map , then one would pull O closed (0, 1) forms from 2 back to 1 via q
and similarly with functions, and vice-versa. If q, -1 were C to the
boundary,, it would follow that the Jacobians of q, -1 were bounded.

Therefore to solve Ou f on 2 with f A(o,1)(2) one could pull f back
to 1, solve there where O satisfies (L, H1/(,m/l-) estimates, and pull the

--1solution back to . This would contradict Theorem 4.10. Hence and q
cannot be C1 to the boundary. A more careful analysis shows that there is a
constant o o(ml, ma) with 0<o < 1 so that , -1 cannot be Ao, to the
boundary. This should be interpreted as strong evidence that type is a
biholomorphic invariant.

5. Tangential estimates

In [22], certain non-isotropic Lipschitz spaces were introduced which are
an appropriate context for regularity for the 0 operator. In several other
sources, these spaces have been exploited, and optimal regularity on
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strongly pseudo-convex domains has been computed (the best reference is
[7]).
We recall the definitions of these spaces. Let @ c_ 12" have C boundary.

For each z b, let v2 denote the outward unit normal. Let N(b)] {12@
be the complex linear subspace o[ 12" generated by v, each z b. If
T(b)l denotes the (2n-1) dimensional real tangent space to b@ at z,
write T(bff)l ff-(b@)l (N(b@)l,. T(b)l) where these summands are
orthogonal in the Hermitian metric inherited from 12". Then C(R)I ff’(b@)l
T,o To, with notation as in Section 0. Let W

_
b be an open set with

the property that the orthogonal projection r" W--+ b@ is a well defined
retraction. For any z W, let -(z)=(b)l(z) and N(z)=-N(b)l=(,.).
Define

c1() {/e q" 3(t) e (/(t)) for all e (0, 1)}.
We shall say that, for O< a R, f Y,(@) provided f is continuous and

The definition of Y apparently depends upon W, but in the context of
boundary regularity the choice of W is inconsequential and we merely fix W
at the outset. We also define F,,(), for 0 < a, r e R, to be those f for which

Now for almost all of the results in Sections 2, 3, and 4, there are
analogues in the context of the Y and F., spaces. In the proofs of the new
facts, one uses the same rl, /3, %. The only difference is that one defines

for C, 6 appropriately small,/3 the order of vanishing of 0 restricted to the
analytic variety V={za =0} at P (as in Theorem 3.6}, and the integration
taking place over an appropriate contour. Of course the modification takes
place because one is now studying smoothness in the holomorphic tangential
directions. We now state some of the results for these new Lipschitz classes.

THEOREM 5.1. Suppose
_
C" is pseudoconvex, P b, U P is a neigh-

borhood so that f’l U has Aa boundary, some 2 < [3 < 3. If is not strongly
pseudo-convex at P then c3 does not satisfy (L, Y2/a+d) estimates on , nor
(A,, Y+2/a+a) estimates on ffJ, any d > O, ot > O. Moreover, 0 does not satisfy
weak local estimates of these types either.

Conversely, if ffJ (C)C has suciently smooth boundary and is strongly
pseudo-convex, then 0 does satisfy estimates of type

(L=, A1/2,1) and (A, F+/,+)
on @ ]’or all a > O.
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Proof. The first part follows from our general technique and the remarks
preceding the statement of the theorem.
The second part is due variously to Henkin-Romanov, Krantz, Alt,

Phong, Greiner, and Stein, and can be found in [7].

THEOREM 5.2. Let be as in Theorem 3.6. Then 0 does not satisfy
estimates of type (L, Y2/+a) nor of type (A, Y+2/+a) for any a, d>0.
Moreover 0 does not satisfy weak local estimates of these types.

COROLLARY 5.2.1. Let be as in Corollary 3.7. Then ;) does not satisfy
estimates of type (L, Ya) nor of type (A,, Y,+a) for any , d > 0. Moreover, 0
does not satisfy weak local estimates of these types.

THEOREM 5.3. Suppose if)

_
C has C3 boundary, is pseudoconvex, and for

each P b@ there are open neighborhoods Ur,
_
Vp P and Cp, dr, > 0 so that

for every f A(o.1)( N Up) there is a u C(Vp (’ ) with Ou f and

Then is strongly pseudo-convex at every boundary point of .
One may define Sobolev classes which reflect additional smoothness in the

holomorphic tangential directions in a manner analgous to that for the Y,
F,. A great deal is known about regularity for 0 on a strongly pseudo-
convex domain with respect to these non-isotropic Sobolev classes. The
reader should consult [7] for details.
Although we will not give definitions here, we remark that our construc-

tions work in the context of these Sobolev classes. One studies the analog-
ous Nikol’skii classes and uses appropriate imbedding theorems. However,
the imbedding theorems are difficult and we will say no more about this
matter here.

6. L" Smoothing and Orlicz norms

In [18] the following theorem is proved:

THEOREM 6.1. Let (C)C be strongly pseudo-convex with C5 boundary.
Let 1 < p < 2n + 2. Then 0 satisfies (Lo, Lq) estimates on where

1 1 1
q p 2n+2

The value of q given here cannot be taken to be any larger in case is the unit
ball in C.
Now let 2n + 2 < p <_o. Then O satisfies (L, A(ln-(,+la,) estimates on ffJ

and the Lipschitz order cannot be made any larger when is the unit ball in
Cn"
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The smoothness hypotheses in Theorem 6.1 can be relaxed, but we will
not concern ourselves with that here. Our purpose is rather to observe that
any o the estimates cited in Theorem 6.1 characterize strongly pseudo-
convex domains. One merely constructs rl as usual and let /3(z)=
z/[xl(z)] Ilog xl(z)[b where a and b are chosen appropriately. Then %
/3 and an appropriate integral I leads to a contradiction.
One may also prove a variety of negative results on domains of finite type,

just as in Section 4, for (Lp, Lq) smoothing and (Lp, A) smoothing. Since no
positive results are known in this category, it is perhaps best to leave the
details to the interested reader.
We conclude by noting that a variety of Orlicz classes, such as L (Log L)q,

are susceptible to examples such as those in Section 4. In all cases, the basic
result is that "smoothing of order 1/2" or "tangential smoothing of order 1"
characterizes strongly pseudoconvex domains. Moreover, i smoothing of
some order occurs, then the domain must be of finite type.
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