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A PROBLEM IN THE EXTENSION OF MEASURES

BY

A. MAITRA, B. V. RAO AND K. P. S. BHASKARA RAO

1. Introduction

The problem referred to in the title is as follows. Suppose (X, ) is a
measurable space, 9/a sub-tr-field of and/z a probability measure on 9/.
Can /z be extended to a measure on ?

E. Marczewski has discussed various aspects of this problem in a number
of articles, notably [10], [11], [12]. In [10], he constructed an example of a
non-separable probability measure/z on a sub-tr-field 9/of the Borel tr-field
9 of the unit interval [0, 1]. Plainly t cannot be extended to a measure on, which shows that the answer to the problem posed above is, in general,
no. Marczewski [11] then asked if a separable measure tz on a sub-tr-field 9/
of the Borel tr-field of the unit interval could be extended to . The
answer is again no as the following (unpublished) example of Marczewski
shows. Take 9/to be the tr-field of meager and comeager Borel subsets of
the unit interval and let/x be the measure on 9.I which is 0 on meager Borel
sets and 1 on comeager Borel sets. So defined, tz is a separable probability
measure on 9/. But, as is well known, a probability measure on the Borel
tr-field of the unit interval sits on a meager Borel set. Hence tz cannot be
extended to a measure on the Borel tr-field.

In view of these examples, one is led to reformulate the above problem.
To do so we first introduce some definitions. We shall say that a measurable
space (X, ) has the extension property if for every countably generated sub-
tr-field 9.1 of and any probability measure/z on 9I,/z can be extended to a
measure on 9. Of particular interest will be measurable spaces (X, ) such
that is countably generated and contains singletons. It is known that, if
(X, ) is such a measurable space, then X can be metrized in such a way that
it becomes a separable metric space and is just the Borel tr-field of X.
Conversely, if X is a separable metric space, then the Borel tr-field of X is
countably generated and contains singletons. This leads us to the following
definition. We say that a separable metric space X has the extension property
if (X, x) has the extension property, where, for a metric space Y, y
denotes the Borel tr-field of Y.
The question naturally arises if every separable metric space has the

extension property. We do not know if a separable metric space without the
extension property can be shown to exist in ZFC. However, with additional
axioms it is possible to prove the existence of such separable metric spaces.
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Indeed, under CH (continuum hypothesis) Banach [1] and Rao [16] have
observed that there is a countable family c of subsets of [0, 1] such that
Lebesgue measure on the Borel g-field of [0, 1] does not extend to a
measure on the (r-field on [0, 1] generated by sets in c and the Borel
subsets of [0, 1]. Mauldin [15] proved the same result under the weaker
axiom MA (Martin’s axiom). Plainly the measurable space ([0, 1], ) does
not have the extension property. Since the (r-field is countably generated
and contains singletons, it follows, by virtue of the remarks made in the
preceding paragraph, that there is a separable metric space without the
extension property.

In the other direction, Varadarajan ([18], p. 194) proved (in ZFC) that
every analytic set has the extension property. In recent years, this result has
been rediscovered by several authors; see [3], [7], [8]. The present article is
the outcome of our attempts to extend Varadarajan’s result to coanalytic
sets.
The main result of the paper is the following:

THEOREM. The [ollowing conditions are equivalent (in ZFC):
(i) Every PCA set has the extension property.
(ii) Every coanalytic set has the extension property.
(iii) Every PCA set is universally measurable.

Now if V L then there is a PCA set of reals which is not Lebesgue
measurable [4]. So it follows from our theorem that under V L there is a
coanalytic set which does not have the extension property. On the other
hand, if we assume Martin’s Axiom (to be abbreviated hereafter by MA)
and 2)o>N1, then every PCA set is universally measurable [13, p. 169],
and, consequently, every coanalytic set has the extension property. We
conclude that the proposition "every coanalytic set has the extension prop-
erty" is undecidable in ZFC.
The proof of our main result is presented in the next section. In the final

section, we give examples to show that the extension property of separable
metric spaces neither implies nor is implied by universal measurability.

2. Proofs

We shall need below the notion of a perfect measure. Recall that a
probability measure /x on a measurable space (X, 9) is said to be perfect if
for every real-valued, 9-measurable function f on X, there is a Borel subset
B of the real line such that B of(X) and Ix(f-I(B)) 1. It is known
that if X is a coanalytic set, then any probability measure on (X, x) is
perfect. This follows easily from the fact that every coanalytic set is
universally measurable.
LEMMA 1. Suppose (X, 91), (Y, ) are measurable spaces and f is a (91,



A PROBLEM IN THE EXTENSION OF MEASURES 213

)-measurable [unction ofX onto Y. If (X, ) has the extension property, then
so does (Y, ).

The easy proof is omitted. The next lemma is known; the proof is
included here for completeness.

LEMM 2. Assume tha$ all PCA sets are universally measurable. Let X be
a coanaltic set and f a real-valued Borel measurable function on X. Then
there is a function g: f(X)---X such that g is universall measurable and
f g(y) y for every y e f(X).

Proof. Let F be the graph of f, that is,

F {(x, y) e Xx R: f(x) y}.

It is well known that F is a Borcl subset of Xx R, so F is coanalytic.
According to a result of Kond6 [5], F admits a coanalytic uniformization G
(parallel to the second axis), that is, G

_
F and G G (X x {y}) is a singleton

for each y e f(X). Plainly G defines a function g on f(X) to X such that

f g(y)= y. Finally, if B is a (relatively) Borcl subset of X, then g-(B) is
the projection to the second coordinate of the set G O(BxR). Since
G (B x R) is coanalytic, it follows that g-(B) is PCA and so universally
measurable.

Proof of the theorem. The implication (i) (ii) in the theorem is obvious
and (ii) (i) is an easy consequence of Lcrnma 1.
Wc now prove (ii)(iii). Let Y bca PCA subset of a Polish space Z. Let

k bc a probability measure on the Borcl subsets of Z. Suppose that the
outer measure A*(Y)>0. Find a Borcl subset Y’ of Z such that Y_ Y’ and
A(Y’)= A*(Y). Define v on v, the Borcl it-field on Y by

v(E Y) A(E)/A(Y!) for E

It is easy to check that v is a probability measure on y.
Since Y is a PCA set, there is a coanalytic set X and a continuous

function f on X onto Y. Let be the Borel or-field on X and put
9 f-(y). Since and y are isomorphic, there is a measure tx on such
that v tf-. By (ii), tx extends to a measure ix’ on . Since X is coanalytic
it follows that ix’ is perfect. Consequently, there is a Borel subset B of Z
such that B _f(X)= Y and tx’(f-(B)) 1. But t’(f-X(B)) (f-X(B)) and
hence v(B)= 1. This implies that A(B)= A (Y’), so that Y is )t-measurable. It
now follows that Y is universally measurable.
For the implication (iii)=>(ii), let X be a coanalytic set, 9 a countably

generated sub-or-field of the Borel or-field on X and /z a probability
measure on . Choose sets A,, n-> 1, such that (A,, n-> 1} generates 9. Let
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be the characteristic function of the sequence {A,}. According to Lemma 2,
there is a universally measurable function g: f(X)--X such that g(y)=y
for each y f(X).
Now let h be the measure on the Borel g-field of the unit interval which

is defined by setting h =/f-1. Let v denote the restriction of the completion
of h to the tr-field of universally measurable subsets of f(X). Note that , is a
probability measure. Define /z’ on by setting /’= vg-1. Using a familiar
property of the characteristic function f and the fact that fog is the identity
on f(X), one checks that /z’=/z on 9. This completes the proof.

3. Remarks

We conclude with some remarks which will elucidate the relationship for
separable metric spaces between universal measurability and the extension
property.

(A) We shall exhibit a subset of the unit interval which has the extension
property but is not universally measurable. Towards this consider a subset Z
of [0, 1] such that neither Z nor [0, 1]-Z contains a perfect set. Such a set
can be shown to exist in ZFC [6, p. 514]. Plainly Z is not universally
measurable. Indeed, Z is not measurable with respect to any continuous
probability measure. We claim that Z has the extension property.

Let 9 be a countably generated sub-g-field of z and let /z be a
probability measure on 9. To show that tz can be extended to z it suffices
to consider the case where tz is a continuous measure on 92. Let 9’ be a
countably generated sub-tr-field of 3[o,3 such that 9 =’ fqZ. Define
on ’ by t’(A’)= I(A’ fqZ). By Varadarajan’s theorem (quoted in Section
1), t’ can be extended to a measure u on Nro.11. Since tx is continuous we
note that u is continuous. It follows that the outer measure u*fZ)= 1. This
enables us to define a measure on Nz by the formula

h (B f3 Z)= v(B) for B e [o.1]

An easy calculation now shows that =/z on 9.
(B) Next we show in ZFC+CH that there is a separable metric space

which is universally measurable but does not possess the extension property.
Our construction is based on a method of Luzin and Sierpifiski [9].
Let A be an analytic non-Borel set in [0, 1]. There is then a system

{A(p)}, indexed by finite sequences of positive integers, of Borel sets in
[0, 1] such that A isthe result of operation (A) on the system {A(p)}. Let
A, a<to, be the constituents of A induced by {A(p)} (see [17]). It is
known that the sets A are Borel subsets of [0, 1], disjoint and A
U<I A. The analytic non-Borel set A and the defining system {A(p)} can
be so chosen that the sets A, a < to, are all non-empty. For each
pick a point y A. By CH, enumerate the elements of [0, 1] as x,
Put S {(x, y): a < to1}. We have thus obtained a subset of the unit square.
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We claim that S is universally measurable but does not possess the extension
property.

Indeed, S is a universal null set. To see this, consider the system {B(p)}
defined by B(p)=[0, 1]xA(p). If B is the result of operation (A) on B(p)
and B, a <ol, are the constituents of B induced by {B(p)}, then B
[0, 1] x A and B [0, 1] x A,, a < o1. Note that the set S meets each B in
exactly one point. Let h be a continuous probability measure on the Borel
sets of the unit square. According to a known property of constituents [ 17],
there is a <ol such that the outer measure h*(Jo> B)= 0. Now, the set
Sf’l(t.Jo,B) being countable, we have A(S fq(Jo Bo)) 0. Since S_B,
it follows that A*(S) 0.
To see that S does not have the extension property, denote by r the

projection on S to the first coordinate. Then r is a one-one continuous and
hence Borel measurable function on S onto [0, 1]. Let 9I f-(o.l) and
the measure on 91 such that tzf- is Lebesgue measure on oto.1. Since f is
one-one, 9I contains all singletons and t is continuous on 91. Since S is a
universal null set, it follows that tx cannot be extended to the Borel r-field
s.
We remark that it is possible to prove in ZFC+MA that there is a

separable metric space which is universally measurable but which does not
have the extension property. Indeed, a modification due to Mauldin [14] of
a construction of Darst [2] yields in ZFC+MA a subset S’ of the unit square
which is a universal null set and whose projection to the first coordinate is
the unit interval. Just as above one shows that S’ does not have the
extension property.

(C) We do not know if a separable metric space without the extension
property can be shown to exist in ZFC. However we now show that it is
impossible to prove in ZFC that there is a separable metric space of
cardinality bll which does not possess the extension property.

Indeed, we show in ZFC+MA+ 20>R that if X is any set of cardinal-
ity R then (X, P(X)) has the extension property, where P(X) is the
power-set of X. To see this let 9 be a countably generated tr-field on X and
let/ be a probability measure on 9. Let f be the characteristicfunction of a
sequence {A,} which generates 9. Put Y f(X). Then Y has cardinality at
most b1, so that, by MA and 2 > R, Y is a universal null set of reals [13,
p. 167]. Consequently v supports no continuous probability measure. So
/zf- is discrete on c. As f is an isomorphism of
is discrete on 9. Let B, B2,... be the atoms of 9 such that =/z(B,) 1.
Pick x, B,, n > 1. Then / =Y.= tx(B,)O(x,) is a measure on P(X) which
extends
The preceding should be compared with the last paragraph in [7] where

the authors purportedly prove in ZFC that on any set X of cardinality
there is a countably generated tr-field such that (X, ) does not have the
extension property! This is of course incorrect.
We are indebted to a referee for several helpful suggestions.
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