SMOOTH FUNCTIONS AND CONVERGENCE OF SINGULAR INTEGRALS

To the memory of N. M. Rivière

BY
CALIXTO P. CALDERÓN¹

1. Introduction and statement of the main result

Let $x = (x_1, x_2, ..., x_n)$, $y = (y_1, y_2, ..., y_n)$ be points of the real *n*-dimensional Euclidean Space R^n and let $x' = |x|^{-1}x$ be a point in the unit sphere of R^n , $|x| = (\sum_{i=1}^{n} x_i^2)^{1/2}$. Let K(x) be a positively homogeneous kernel of degree -n, that is

(1.1)
$$K(x) = |x|^{-n}K(x'), \quad x \neq 0.$$

The L^1 -modulus of continuity of the kernel K is defined by

(1.2)
$$\omega_{K}(s) = \sup_{h:|h| \leq s} \int_{2 < |x| < 4} |K(x+h) - K(x)| dx, \quad |s| < 1.$$

The L^1 -modulus of continuity of $f \in L^1(\mathbb{R}^n)$ is defined by

(1.3)
$$\omega(f, s) = \omega(s) = \sup_{h: |h| \le s} \int_{\mathbb{R}^n} |f(x+h) - f(x)| dx.$$

We are going to assume that the kernel K satisfies the following properties:

(1.4)
$$\int_{\Sigma} K(x') d\sigma = 0$$
(ii)
$$\int_{\Sigma} |K(x')| \log^{+} |K(x')| d\sigma < \infty.$$

If the kernel K is odd we assume the weaker condition

(1.5) (iii)
$$\int_{\Sigma} |K(x')| d\sigma < \infty, K \text{ odd}$$

where Σ denotes the unit sphere and $d\sigma$ its "area" element. Throughout this paper we shall be concerned with operators defined by

(1.6)
$$p.v. \int_{\mathbb{R}^n} K(x-y)f(y) dy$$

where K satisfies properties (i) and (ii) in (1.4), or (iii) in (1.5).

Received February 8, 1978.

¹ Research partially supported by the National Science Foundation.

THEOREM A. Suppose that K satisfies properties (i) and (ii) of (1.4), or property (iii) of (1.5). Let f(x) be a function in $L^1(\mathbb{R}^n)$. Suppose that the L^1 -moduli of continuity of f and K satisfy the Dini condition

(1.7)
$$\int_0^1 \omega_{\mathbf{K}}(s)\omega(s) \frac{ds}{s} < \infty.$$

Then

(1.8)
$$\lim_{\epsilon \to 0} \int_{|x-y| > \epsilon} K(x-y)f(y) \, dy \quad \text{exists} \quad \text{a.e.},$$

and moreover, the maximal operator $\sup_{\epsilon>0} \left| \int_{|x-y|>\epsilon} K(x-y)f(y) \, dy \right| = K^*(f)$ satisfies

(1.9)
$$|E(K^*(f) > \lambda) \cap Q_0| < \frac{C_1}{\lambda} ||f||_1 + \frac{C_2}{\lambda} \int_0^1 \omega_K(s) \omega(s) \frac{ds}{s}.$$

where Q_0 denotes an n-dimensional cube and the constants C_1 and C_2 depend on n, Q_0 and K but not on λ or f.

2. Auxiliary lemmas

2.1. LEMMA. Let $T(r) \ge 0$ be a nonincreasing radial function belonging to $L^1(\mathbb{R}^n)$. Let f be a nonnegative measurable function, locally integrable in \mathbb{R}^n . Define the following operators:

(2.1.1)
$$m(f)(x) = \inf_{S(x)} \frac{1}{|S(x)|} \int_{S(x)} f(t) dt, \quad S(x) \supset S_0(x),$$

(2.1.2)
$$m_0(f)(x) = \inf_{Q(x)} \frac{1}{|Q(x)|} \int_{Q(x)} f(t) dt, \quad Q(x) = \frac{1}{2} S_0(x),$$

where the infima are taken over all spheres S(x) centered at x such that their radii are greater than r_0 and over all cubes Q(x) centered at x and with edges parallel to the coordinate axes that contain the sphere of radius $\frac{1}{2}r_0$ about x. Under the above assumptions, the following estimates hold:

(i)
$$\int_{\mathbb{R}^n} T(|y|)f(x-y) \ dy \ge \left(\int_{|y|>r_0} T(|y|) \ dy\right) m(f)(x),$$

(ii)
$$\int_{\mathbb{R}^n} T(|y|) f(x-y) \ dy \ge \left(\int_{|y| > r_0} T(|y|) \ dy \right) C_n m_0(f)(x).$$

Proof. An integration by parts shows

$$(2.1.3) \quad \int_{\mathbb{R}^n} T(|y|) f(x-y) \ dy \ge -\Gamma_n \int_{r_0}^{\infty} \frac{1}{r^n \Gamma_n} \left(\int_{|x-y| < r} f(x-y) \ dy \right) r^n \ dT(r)$$

where Γ_n stands for the volume of the *n*-dimensional unit ball. Using the fact that

$$\frac{1}{r^n \Gamma_n} \int_{|x-y| < r} f(y) \, dy \ge m(f)(x), \quad r > r_0,$$

(2.1.3) gives (i) directly.

The inequality $m(f)(x) \ge C_n m_0(f)(x)$, C_n depending on n only, gives (ii).

2.2. Lemma. Let f be an L^1 function and $\omega(t)$ its L^1 -modulus of continuity. Suppose that there exists a continuous function $\omega_0(t)$, defined for $t \ge 0$, such that

$$(\boldsymbol{\beta}) \quad \boldsymbol{\omega}_0(0) = 0,$$

(2.2.1) $(\beta\beta) \frac{\omega_0(t)}{t}$ is nonincreasing,

$$(\beta\beta\beta) \quad \frac{\omega_0(t)}{t} < C \frac{\omega_0(2t)}{2t}.$$

Assume also that $\omega_0(t)$ and $\omega(t)$ satisfy the following integrability conditions:

(2.2.2)
$$(\gamma) \quad \int_{1}^{\infty} \omega_{0}(t) \frac{dt}{t} < \infty; \qquad (\delta) \quad \int_{0}^{1} \omega_{0}(t) \omega(t) \frac{dt}{t} < \infty.$$

Then f admits the following decomposition. For each positive $\lambda > 0$, there exists a function \bar{f} that satisfies:

- (i) $|\bar{f}| < C_1 \lambda$ a.e.,
- (ii) $\bar{f} = f$ on a closed set F; its complement $G(\lambda)$ has measure

$$|G_{\lambda}| < \frac{C_2}{\lambda} \Big[||f||_1 + \iint_{\mathbb{R}^n \times \mathbb{R}^n} \frac{\omega_0(|x-y|)}{|x-y|^n} |f(x) - f(y)| \, dx \, dy \Big].$$

(iii)
$$\iint_{\mathbb{R}^{n} \times \mathbb{R}^{n}} |\overline{f}(x) - \overline{f}(y)| \frac{\omega_{0}(|x - y|)}{|x - y|^{n}} dx dy$$

$$\leq C_{3} \Big(||f||_{1} + \iint |f(x) - f(y)| \frac{\omega_{0}(|x - y|)}{|x - y|^{n}} dx dy \Big).$$

(iv)
$$\int_{\mathbb{R}^{n} \times \mathbb{R}^{n}} |\bar{f}(x) - \bar{f}(y)|^{2} \frac{\omega_{0}(|x - y|)}{|x - y|^{n}} dx dy$$

$$\leq C_{4} \lambda \left[\int_{\mathbb{R}^{n} \times \mathbb{R}^{n}} |f(x) - f(y)| \frac{\omega_{0}(|x - y|)}{|x - y|^{n}} dx dy + ||f||_{1} \right].$$

(v)
$$\int_{\mathbb{R}^n} |\bar{f}|^2 dx \le C_5 \lambda \left[\|f\|_1 + \iint_{\mathbb{R}^n \times \mathbb{R}^n} |f(x) - f(y)| \frac{\omega_0(|x - y|)}{|x - y|^n} dx dy \right].$$

Here C_1, C_2, \ldots, C_5 do not depend on λ or f.

Proof. Let us fix $\lambda > 0$ and consider the sets

(2.2.3)
$$G_1(\lambda) = \{x; f^*(x) > \lambda\}, \quad G_2(\lambda) = \{x; \beta^*(x) > \lambda\},$$

where $f^*(x)$ and $\beta^*(x)$ stand for the maximal functions of f(x) and $\beta(x)$ respectively. The maximal function being used is

(2.2.4)
$$A^*(x) = \sup_{Q(x)} \frac{1}{|Q(x)|} \int_{Q(x)} |A(y)| dy$$

where the Q(x) are cubes centered at x with edges parallel to the coordinate axes.

The auxiliary function $\beta(x)$ is defined by

(2.2.5)
$$\beta(x) = \int_{\mathbb{R}^n} \frac{\omega_0(|x-y|)}{|x-y|^n} |f(x)-f(y)| dy.$$

The exceptional set $G(\lambda)$ is going to be defined by $G(\lambda) = G_1(\lambda) \cup G_2(\lambda)$. Consider a Whitney covering for G (for details see [9, Chapter VI, Section I]. Thus G is expressed as $\bigcup_{1}^{\infty} Q_k$ and the covering possesses the following properties:

$$(2.2.6) (\alpha) Q_i^0 \cap Q_j^0 = \phi, i \neq j.$$

 $(\alpha\alpha)$ diam $(Q_k) \le$ distance $(Q_k, F) \le 4$ diam (Q_k) .

 $(\alpha\alpha\alpha)$ If Q_i and Q_j are adjacent then there exists two universal constants C_1 and C_2 such that C_1 diam $(Q_i) \le \operatorname{diam}(Q_i) \le C_2 \operatorname{diam}(Q_i)$.

 (αv) If Q_i and Q_j do not touch, then distance $(Q_i, Q_j) \ge \text{diam } (Q_s)$, s = i, j.

Our next step is to define $\bar{f}(x)$:

(2.2.7)
$$\bar{f}(x) = f(x)$$
 on F ,

$$= \mu_k \quad \text{on} \quad Q_k, \quad \text{where} \quad \mu_k = 1/|Q_k| \int_{Q_k} f \, dt,$$

$$k = 1, 2, \dots, m$$

Clearly, from properties (2.2.6), we have $|\mu_k| < C\lambda$, with C depending on n only; hence

$$(2.2.8) |\bar{f}| < C\lambda.$$

Our next steps will be to estimate

$$\int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \frac{\omega_0(|x-y|)}{|x-y|^n} |\bar{f}(x) - \bar{f}(y)| \, dx \, dy = \int_F \bar{\beta}(x) \, dx + \int_G \bar{\beta}(x) \, dx.$$

Estimate for $\int_{F} \bar{\beta}(x) dx$. From the definition of $\bar{f}(x)$ we get

(2.2.9)
$$\int_{F} \bar{\beta}(x) dx = \int_{F} \int_{F} \frac{\omega_{0}(|x-y|)}{|x-y|^{n}} |f(x)-f(y)| dy dx + \int_{F} \left(\sum_{1}^{\infty} |f(x)-\mu_{k}| \int_{Q_{k}} \frac{\omega_{0}(|x-y|)}{|x-y|^{n}} dy\right) dx.$$

Using properties (2.2.1) and the fact that $x \in F$ we have

$$(2.2.10) \quad \sum_{1}^{\infty} |f(x) - \mu_{k}| \int_{Q_{k}} \frac{\omega_{0}(|x - y|)}{|x - y|^{n}} dy$$

$$\leq C' \sum_{1}^{\infty} |f(x) - \mu_{k}| |Q_{k}| \frac{\omega_{0}(|x - y_{k}|)}{|x - y_{k}|^{n}}$$

$$= C' \sum_{1}^{\infty} \frac{\omega_{0}(|x - y_{k}|)}{|x - y_{k}|^{n}} \left| \int_{Q_{k}} (f(x) - f(y)) dy \right|$$

$$\leq C'' \sum_{1}^{\infty} \int_{Q_{k}} \frac{\omega(|x - y|)}{|x - y|^{n}} |f(x) - f(y)| dy$$

where y_k stands for the center of Q_k . Taking into account (2.2.9) and (2.2.10) we get

(2.2.11)
$$\int_{F} \bar{\beta}(x) \, dx \leq (1 + C'') \int_{F} \beta(x) \, dx$$

where C'' does not depend on λ or f.

Estimates for $\int_G \bar{\beta}(x) dx$. Consider

(2.2.12)
$$\int_{G} \bar{\beta}(x) dx = \int_{G} \left(\int_{F} \frac{\omega_{0}(|x-y|)}{|x-y|^{n}} |\bar{f}(x) - \bar{f}(y)| dy \right) dx + \int_{G} \left(\int_{G} \frac{\omega_{0}(|x-y|)}{|x-y|^{n}} |\bar{f}(x) - \bar{f}(y)| dy \right) dx.$$

Let us interchange the order of integration in the first term of the right-hand member of (2.2.12). It is readily seen to be dominated by $\int_F \bar{\beta}(y) dy$; thus

$$(2.2.13) \int_{G} \left(\int_{F} |\bar{f}(x) - \bar{f}(y)| \frac{\omega_{0}(|x - y|)}{|x - y|^{n}} \, dy \right) dx \le (1 + C'') \int_{F} \beta(y) \, dy.$$

The second term on the right-hand member of (2.2.12) reduces to

(2.2.14)
$$\sum_{i,k} |\mu_i - \mu_k| \int_{Q_k} \int_{Q_k} \frac{\omega_0(|x - y|)}{|x - y|^n} \, dy \, dx.$$

Let us fix i and consider the subindices s such that Q_s touches Q_i and the

subindices v such that Q_v does not touch Q_i . First we are going to estimate

(2.2.15)
$$\sum_{s} |\mu_{i} - \mu_{s}| \int_{Q_{s}} \int_{Q_{s}} \frac{\omega_{0}(|x - y|)}{|x - y|^{n}} dy dx.$$

From property (2.2.6) it follows that there are at most N different Q_s (here, N depends on the dimension only). Using the fact that $|\mu_i - \mu_s| < 2C\lambda$ we see that (2.2.15) is dominated by

(2.2.16)
$$\sum_{s} 2C\lambda \int_{Q_{s}} dy \int \frac{\omega_{0}(|y-x|)}{|y-x|^{n}} |\phi_{i}(y) - \phi_{i}(x)| dx$$

where ϕ_k stands for the characteristic function of Q_k . From properties (2.2.6) it follows that there exists a factor l (depending on the dimension only) such that

$$(2.2.17) Q_{\rm s} \subset lQ_{\rm i}$$

where lQ_i stands for the dialation of $Q_i l$ times about its center. By this last remark, we have (2.2.16) dominated by

(2.2.18)
$$2C\lambda \int_{Q_i} dy \int \frac{\omega_0(|x-y|)}{|x-y|^n} |\phi_i(x) - \phi_i(y)| dx$$

which, in turn, is dominated by

$$(2.2.19) \quad 2C\lambda \int_{|t| \le 4l \operatorname{diam}(Q_i)} \frac{\omega_0(t)}{|t|^n} \left(\int |\phi_i(x) - \phi_i(x - t)| \, dx \right) dt \\ \le 2C\lambda \cdot \operatorname{constant} \cdot |Q_i|.$$

Consequently, (2.2.15) is dominated by

(2.2.20) Const
$$\lambda |Q_i|$$
.

Our next step will be to estimate

(2.2.21)
$$\int_{\Omega_i} \left(\sum_{v} |\mu_i - \mu_v| \int_{\Omega_i} \frac{\omega_0(|x-y|)}{|x-y|^n} dy \right) dx.$$

Now, we shall make use of (2.2.6) (αv) and properties (2.2.1) and get the following estimate for (2.2.21):

$$(2.2.22) \quad \operatorname{Const} \sum_{v} \frac{\omega_{0}(|y_{i} - y_{v}|)}{|y_{i} - y_{v}|^{n}} \int_{Q_{v}} |\mu_{i} - f(y)| \, dy$$

$$\leq \operatorname{Const} \sum_{v} \int_{Q_{i}} dx \int_{Q_{v}} |f(x) - f(y)| \frac{\omega_{0}(|x - y|)}{|x - y|^{n}} \, dy$$

$$\leq \operatorname{Const} \int_{Q_{v}} \left(\int_{G} |f(x) - f(y)| \frac{\omega_{0}|x - y|}{|x - y|^{n}} \, dy \right) dx.$$

Inequalities (2.2.20)-(2.2.22) give

$$(2.2.23) \quad \iint\limits_{G\times G} |\overline{f}(x) - \overline{f}(y)| \frac{\omega_0(|x-y|)}{|x-y|^n} dx dy \le C\left(\lambda |G_\lambda| + \int_{\mathbb{R}^n} \beta(x) dx\right).$$

By the size of G_{λ} and the estimates (2.2.11) and (2.2.13) we obtain (iii) of the thesis. The other parts are easy consequences of this one and will be left to the reader.

DEFINITION. Let $\phi(t)$ denote the function

$$\left(\int_t^1 \frac{\omega_0(s)}{s} \, ds\right) B(t)$$

where B(t) is the characteristic function of the interval [0, 1]. Let $\omega_0(s)$ denote a function coincident with the L^1 -modulus of continuity of K if $0 < s \le 1$ and extended for values of s > 1, so that properties (2.2.1) and (2.2.2) (γ) are met.

- 2.3. LEMMA. Let f(x), λ and $\overline{f}(x)$ be the functions and the real parameter of Lemma 2.2. Let $\varphi(x) = f(x) \overline{f}(x)$. Then it is possible to find a sequence of cubes $\{A_k\}$ that satisfy:
 - (i) $\bigcup_{1}^{\infty} A_k \supset G(\lambda)$ where $G(\lambda)$ is the set introduced in Lemma 2.2.
 - (ii) Each point in \mathbb{R}^n belongs to at most \mathbb{N}_n different cubes and

$$\sum_{1}^{\infty} |A_k| < C_n^{(1)} |G(\lambda)|$$

where the constants $C_n^{(1)}$ and N_n depend on the dimension only.

(iii)
$$\int_{A_k} |\varphi(y)| dy < C_n^{(2)} \lambda |A_k|, k = 1, 2, \dots, \text{ where } C_n^{(2)} \text{ depends on n only.}$$

(iv)
$$\sum_{1}^{\infty} \phi(|A_k|^{1/n}) \int_{A_k} |\varphi(y)| dy$$

$$\leq C_n^{(3)} \left(\|f\|_1 + \iint_{\mathbb{R}^n \times \mathbb{R}^n} \frac{\omega_0(|x-y|)}{|x-y|^n} |f(x) - f(y)| \, dx \, dy \right)$$

where $C_n^{(3)}$ is independent of λ , $G(\lambda)$ and f.

Proof. Consider f, $\lambda > 0$, $G(\lambda)$ and \overline{f} as introduced in Lemma 2.2 and $\phi(t)$, $\omega_0(t)$ as defined above. We shall define the following covering for $G(\lambda)$: For each $x \in G(\lambda)$ we are going to select a cube centered at x, with edges parallel to the coordinate axes and such that

(2.3.1)
$$\frac{|G \cap Q(x)|}{|Q(x)|} = \left(\frac{1}{10}\right)^n.$$

If Q'(x) is any other cube centered at x such that $Q' \supset Q$ then

$$(2.3.2) \qquad \qquad \frac{|G \cap Q'|}{|Q'|} \le \left(\frac{1}{10}\right)^n$$

and consequently if Q'' is any cube such that $Q'' \supset Q(x)$ we have

$$(2.3.3) \qquad \frac{|G \cap Q''|}{|Q''|} \le \left(\frac{2}{5}\right)^n.$$

From (2.3.1) we have, trivially, $|Q(x)| \le (10)^n |G(\lambda)|$. Let us divide R^n into a mesh of cubes that are nonoverlapping and have volume $4^n(10)^n |G(\lambda)|$. Call them J_i and consider the sets $G(\lambda) \cap J_i$, i = 1, 2, ..., m, ... Each set $G(\lambda) \cap J_i$ is bounded and, moreover, is covered by members of the family $\{Q\}$. Apply Lemma 2a in [5, p. 60] to each set $G(\lambda) \cap J_i$ and get

(2.3.4)
$$\bigcup_{k=1}^{\infty} Q_k^{(j)} \supset G(\lambda) \cap J_j.$$

Each point of \mathbb{R}^n belongs to at most 4^n different cubes $\mathbb{Q}_k^{(j)}$. By construction we have

$$(2.3.5) G(\lambda) \subset \bigcup_{i,k} Q_k^{(j)}.$$

Since $|Q_k^{(j)}| \le 4^n (10)^n |G(\lambda)| = |J_s|$, each point in J_s could be covered by cubes $\{Q_k^{(s)}\}$ or by cubes associated with the $3^n - 1$ neighboring J_i . Thus, each point in R^n belongs to at most $4^n \cdot 3^n$ different $Q_k^{(j)}$. Let us relabel the cubes $Q_k^{(j)}$ as A_k . By construction, parts (i), (ii) and (iii) are satisfied. It remains to show (iv).

Let us denote by F the complement of G and by T(|x|) the kernel $\omega_0(|x|)/|x|^n$. We have

$$(2.3.6) \int_{\mathbb{R}^{n} \times \mathbb{R}^{n}} T(|x - y|) |\varphi(x) - \varphi(y)| dy \leq \int_{G} |\varphi(y)| \left\{ \int_{F} T(|x - y|) dx \right\} dy$$

$$\geq \left(\frac{1}{12} \right)^{n} \sum_{1}^{\infty} \int_{A_{k}} |\varphi(y)| dy \int_{F} T(|x - y|) dx.$$

If $y \in A_k$ and $\Psi(x)$ denotes the characteristic function of F, we have

$$(2.3.7) \quad \int_{A_{k}} |\varphi(y)| \, dy \int_{F} T(|x-y|) \, dx \ge \int_{A_{k}} |\varphi(y)| \, dy \int_{F} T_{k}(|x-y|) \Psi(x) \, dx$$

where $T_k(s) = T(s)$ if |s| > 4 diam A_k and $T_k(s) = T(4$ diam $A_k)$ if $|s| \le$ diam A_k . By (2.3.3) and Lemma 2.1 we have

$$(2.3.8) \int_{A_{k}} |\varphi(y)| \, dy \left(\int T_{k}(|x-y|) \Psi(x) \, dx \right) \\ \geq C_{n} \int_{A_{k}} |\varphi(y)| \left[1 - \left(\frac{2}{5}\right)^{n} \right] \int_{|A_{k}|^{1/n}}^{1} \frac{\omega_{0}(t)}{t} \, dt \\ = C_{n} \left(\int_{A_{k}} |\varphi(y)| \, dy \right) \left(\frac{5^{n} - 2^{n}}{5^{n}} \right) \Phi(|A_{k}|^{1/n}).$$

Combining (2.3.6), (2.3.7) and (2.3.8) we get the thesis.

3. Proof of Theorem A

Let $\lambda > 0$ be a fixed real number and construct $G(\lambda)$ and \bar{f} as in Lemma 2.2. Define φ by

$$(3.1.1) f = \overline{f} + \varphi.$$

Let $\{A_k\}$ be the family of cubes constructed in Lemma 2.3. Let $K_0(x)$ be the kernel that equals K if $|x| \le 1$ and is zero otherwise and consider the truncated integral

$$(3.1.2) \qquad \int_{|x-y|>\epsilon} K_0(x-y)f(y) \ dy \quad \text{where} \quad x \in \mathbb{R}^n - \bigcup_{1}^{\infty} 20A_k.$$

Clearly, we have

$$(3.1.3) \quad \left| \bigcup_{1}^{\infty} 20A_{k} \right| < \frac{C_{n}}{\lambda} \left(\|f\|_{1} + \iint_{\mathbb{R}^{n} \times \mathbb{R}^{n}} \frac{\omega_{0}(|x-y|)}{|x-y|^{n}} |f(x)-f(y)| \, dx \, dy \right)$$

where C_n depends on n only. Let $\theta_k(y)$ be the characteristic functions of the A_k 's and let

 $n_k(y) = \frac{\theta_k(y)}{\sum_{i=1}^{\infty} \theta_i(y)}.$

Let k' be the indices of the cubes that do not touch the ball of radius ϵ about x and let k'' be the indices corresponding to the cubes that intersect the sphere of radius ϵ about x. Let

$$\mu_k = \frac{1}{|Q_k|} \int_{A_k} \varphi(y) \eta_k(y) \ dy.$$

Since $(12)^{-n} < \eta_k(y) \le 1$ over A_k we have

$$(3.1.4) |\mu_k| < C_n \lambda$$

where C_n depends on n only. Let $\bar{\varphi}(y) = \sum_{1}^{\infty} \mu_k \theta_k(y)$. Then $|\bar{\varphi}(y)| < C_n 12^n \lambda$.

Let us write the truncated integral (3.1.2) as

$$\int_{|x-y|>\epsilon} K_0(x-y)f(y) \, dy = \sum_{k'} \int_{A_k} K_0(x-y)(\varphi(y)\eta_k(y) - \mu_k) \, dy
+ \sum_{k''} \int_{|x-y|>\epsilon} K_0(x-y)[\varphi(y)\eta_k(y) - \mu_k \theta_k(y)] \, dy
+ \int_{|x-y|>\epsilon} K_0(x-y)\bar{\varphi}(y) \, dy.$$

Majorization for

$$\sum_{k'} \int_{A_k} K_0(x-y) [\varphi(y)\eta_k(y) - \mu_k \theta_k(y)] dy.$$

We are going to use the fact that $\varphi(y)\eta_k(y) - \mu_k\theta_k(y)$ has mean value zero over A_k . Let y_k be the center of A_k . We have

(3.1.6)
$$\sum_{k'} \int_{A_k} K_0(x - y) [\varphi(y) \eta_k(y) - \mu_k \theta_k(y)] dy$$
$$= \sum_{k'} \int_{A_k} [K_0(x - y) - K_0(x - y_k)] [\varphi(y) \eta_k(y) - \mu_k \theta_k(y)] dy.$$

Now consider the expression

$$(3.1.7) \quad M_1(x) = \sum_{k=1}^{\infty} \int_{A_k} |K_0(x-y) - K_0(x-y_k)| (|\varphi(y)| \, \eta_k(y) + |\mu_k| \, \theta_k(y)) \, dy.$$

Clearly $M_1(x)$ dominates (3.1.6).

Majorization for

$$\sum_{k,y} \int_{|x-y| > \epsilon} K_0(x-y) \{ \varphi(y) \eta_k(y) - \mu_k \theta_k(y) \} dy.$$

It can be readily seen that for the cubes whose subindices have been labeled $\{k''\}$ we have

$$(3.1.8) A_k \subset \{y; \epsilon/2 < |x-y| < 2\epsilon\}.$$

Let $\gamma_k(x) = |\varphi(y)| \eta_k(y) + |\mu_k| \theta_k(y)$ and let ν_k be the mean value of $\gamma_k(x)$ over A_k . Then, we have

$$(3.1.9) \left| \sum_{k''} \int_{|x-y| > \epsilon} K_0(x-y) \{ \varphi(y) \eta_k(y) - \mu_k \theta_k(y) \} dy \right|$$

$$\leq \int_{\epsilon/2 < |x-y| < 2\epsilon} |K_0(x-y)| \left(\sum_{1}^{\infty} \nu_k \theta_k(y) \right) dy$$

$$+ \sum_{k''} \int_{A_k} |K_0(x-y)| \left(\gamma_k(y) - \nu_k \theta_k(y) \right) dy$$

$$\leq \operatorname{Const} \lambda + \sum_{1}^{\infty} \int_{A_k} |K_0(x-y) - K_0(x-y_k)| \left(\gamma_k(y) + \nu_k \theta_k(y) \right) dy.$$

Let

$$M_2(x) = \sum_{1}^{\infty} \int_{A_k} |K_0(x-y) - K_0(x-y_k)| (\gamma_k(y) + \nu_k \theta_k(y)) dy.$$

Collecting estimates we get

$$(3.1.10) \quad \left| \sum_{k''} \int_{|x-y| > \epsilon} |K_0(x-y) \{ \varphi(y) \eta_k(y) - \mu_k \theta_k(y) \} \, dy \right| \le \text{Const } \lambda + M_2(x).$$

Estimates for the functions $M_1(x)$ and $M_2(x)$. A calculation using the homogeneity of $K_0(x)$ shows

$$(3.1.11) \quad \int_{|x|>2|h|} |K_0(x+h) - K_0(x)| \, dx < C \int_{|h|}^1 \omega_0(t) \, \frac{dt}{t} \quad \text{if} \quad |h| < 1/2$$

where $\omega_0(t)$ is the modulus of continuity of the kernel K as defined in (1.2) and C is independent of h. By the definition of $\eta_k(y)$, μ_k , ν_k and $\gamma_k(g)$ we have

$$\int_{A_k} \gamma_k(y) \, dy < C_n \int_{A_k} |\varphi(y)| \, dy,$$

$$(y_k + |\mu_k|) |A_k| \le C_n \int_{A_k} |\varphi(y)| \, dy.$$

Consequently

$$(3.1.13) \int_{\mathbb{R}^{n} - \bigcup_{1}^{\infty} 20A_{k}} (M_{1}(x) + M_{2}(x)) dx$$

$$\leq C_{n} \sum_{k=1}^{\infty} C \int_{|A_{k}|^{1/n}}^{1} \frac{\omega_{0}(t)}{t} dt \int_{A_{k}} |\varphi(y)| dy.$$

Notice that if $|A_k|^{1/n} > 1/2$ then $(K_0 * \phi_k)(x) = 0$ because $x \in C(20A_k)$. From Lemma 2.3 and 3.1.13) we get

$$(3.1.14) |E(M_1(x) + M_2(x) > \lambda)| < \frac{C_n}{\lambda} \left(||f||_1 + \int_0^1 \omega_0(t) \omega(t) \frac{dt}{t} \right).$$

Let

$$K_0^*(f) = \sup_{\epsilon > 0} \left| \int_{|x-y| > \epsilon} K_0(x-y) f(y) \ dy \right|.$$

So far we have

$$(3.1.15) K_0^*(f) \le K_0^*(\bar{f}) + K_0^*(\bar{\varphi}) + C_n\lambda + M_1(x) + M_2(x).$$

Since \bar{f} and $\bar{\varphi}$ belong to L^2 we have

$$(3.1.16) \quad |E(K_0^*(\bar{f}) + K_0^*(\bar{\phi}) > \lambda)| \le \frac{C}{\lambda^2} (||\bar{f}||_2^2 + ||\bar{\phi}||_2^2)$$

$$\leq C_{\overline{\lambda}}^{1} \left(\|f\|_{1} + \int_{0}^{1} \omega_{0}(t) \omega(t) \frac{dt}{t} \right)$$

where C does not depend on λ or f. Select a constant $L > C_n$ and evaluate $|E(K_0^*(f) > L\lambda)|$. From (3.1.15) we have

$$(3.1.17) \quad |E(K_0^*(f) > L\lambda| \le |E(K_0^*(\bar{f}) + K_0^*(\bar{\phi}) + M_1(x) + M_2(x) > (L - C_n)\lambda)|$$

$$\le \frac{C}{(L - C_n)} \frac{1}{\lambda} \left(||f||_1 + \int_0^1 \omega_0(t)\omega(t) \frac{dt}{t} \right).$$

In order to finish the proof consider

(3.1.18)
$$\int_{|x-y|>1} K(x-y)f(y) \, dy = \int_{|x-y|>1} K(x-y)\overline{f}(y) \, dy + \int_{|x-y|>1} K(x-y)\varphi(y) \, dy.$$

Since $\bar{f}(y)$ belongs to $L^2(R_n)$ the first term of the right-hand member of (3.1.18) does not represent any difficulty. Now let $K_1(x)$ be the function that equals K(x) if |x| > 1 and zero otherwise. Let us integrate the absolute value of $K_1 * \varphi$ over a sphere S centered at the origin and such that diam $(S) \ge \text{diam}(A_k)$ for all k. Let A'_k be the cubes A_k such that distance $(A'_k, S) < 10 \text{ diam } S$. For those cubes we have

$$(3.1.19) \int_{S} dx \int_{A_{k}} |K_{1}(x-y)| \, \eta_{k}(y) \, |\varphi(y)| \, dy$$

$$\leq C_{n} |\log (20 \operatorname{diam} S)| \int_{E} |K(\alpha)| \, d\alpha \int_{A_{k}'} |\varphi(y)| \, dy.$$

For the cubes A_k'' such that distance $(A_k'', S) \ge 10$ diam S we have

$$(3.1.20) \int_{S} \left(\int_{A_{k}''} |K_{1}(x-y)| \, \eta_{k}(y) \, |\varphi(y)| \, dy \right)$$

$$\leq C_{n} \int_{A_{k}} |\varphi(y)| \, dy \int_{|x| < \operatorname{diam} S} |K_{1}(x-y)| \, dx$$

$$\leq B_{0} C_{n} \left(\int_{A_{k}} |\varphi(y)| \, dy \right)$$

where

(3.1.21)
$$B_0 = \sup_{\substack{r > 8d(S), \\ r - d(S) \le |y| \le r + d(S)}} \int |K(y)| \, dy$$

with d(S) = diam(S). This finishes the proof of Theorem A.

REFERENCES

- 1. A. P. CALDERON, M. WEISS and A. ZYGMUND, On the existence of singular integrals, Proc. Symp. Pure Math., vol. 10 (1967), pp. 56-73
- A. P. CALDERON and A. ZYGMUND, Addendum to the paper "On singular integrals", Studia Math., vol. 46 (1973), pp. 297–299
- 3. L. Carleson, Selected problems in exceptional sets, van Nostrand, Princeton, New Jersey, 1967
- 4. WILLIAMS CONNETT, The Dini condition and the existence of singular integrals, to appear
- 5. MISCHA COTLAR, A general interpolation theorem for linear operators, Revista Matematica Cuyana, vol. 1 (1955), pp. 57-84
- 6. R. FEFFERMAN, A theory of entropy in Fourier analysis, Doctoral dissertation, Princeton University 1975
- 7. ——, A theory of entropy in Fourier analysis Advances in Mathematics
- 8. N. M. RIVIÈRE, Singular integrals and multiplier operators, Arch. Math., vol. 9 (1971), pp. 243-274
- E. M. STEIN, Singular integrals and differentiability properties of functions, Princeton University Press, Princeton, New Jersey, 1970

University of Illinois at Chicago Circle Chicago, Illinois