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LIE ALGEBRA COHOMOLOGY AT IRREDUCIBLE MODULES

BY

JOHN BRENDAN SULLIVAN

We will develop a procedure for producing irreducible modules for the
Lie algebra of a semisimple, simply connected algebraic group at which the
1-cohomology is non-zero. Further, we will relate our computations of Lie
cohomology to the cohomology of the algebraic group. The cohomology of
the group may be zero at a module where the cohomology of the Lie algebra
is non-zero, but there is an efficient method for augmenting the module to
give a module where the cohomology of the group is non-zero.

Hochschild showed that the (restricted) 1-cohomology of a non-abelian
p-Lie algebra L is non-zero at the L-module Hom (LUr., k), where Ur. is
the restricted universal enveloping algebra of L [3]. In Sections 1 and 2, we
show that his methods can be used in the case of the Lie algebra of a
Chevalley group to produce a good supply of irreducible modules {V} at
which the 1-Lie cohomology is non-zero. One begins with a suitable
p-semi-linear map from the Lie algebra to the trivial Lie algebra .k, and uses
the isomorphism

H2(LUL, k)HI(LUL, Hom (LUL, k))

to obtain a 1-cohomology class with values in Hom (LUr., k). By passing to
subquotients of Hom (LUL, k), one obtains some irreducible modules {V} at
which the 1-cohomology is non-zero. The highest weights of these modules
are the differentials of the elements {-ai} where {ai} is a basis for the root
system of the group relative to a maximal torus T.
The space of 1-Lie cocydes at an irreducible module is itself a module for

the group. In showing in Theorem 2.2 that the cohomology spaces are
non-zero at { l]’’l’dirn(T)

"jJj=l we produce a line of 1-cocydes that is stable under
the action of an appropriate Borel subgroup of the group, and show that the
weight of the line under the action of T does not occur in the module V.
Consequently, the cocydes in the line are not coboundaries. At the same
time, the weight of this line gives the highest weight of a composition factor
of the 1-Lie cohomology as a module for the group. As an illustration, we
give the result of Sections 1 and 2 specifically for the Lie algebra of the
special linear group.
A module at which the group cohomology is non-zero may be obtained

economically from V by tensoring V with the dual module (HI(L, V))*
(Corollary to Theorem 2.2).
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In Section 3, we carry out a complete computation o the cohomology
space of the Lie algebra of the special linear group Sla, as a module or Sla,
at the irreducible module V1 whose highest weight is the differential of -al for
the usual basis {eta} of the root system of Sla. H(sla, V) is isomorphic as an
S/z-module to the Frobenius power of the identity representation of
(Theorem 3.4). The computation depends on knowing that the space of vectors
in V whose weight equals the weight of the line stable under the Borel sub-Lie
algebra has dimension one (Lemma 3.3).
As a corollary to this theorem, we see that Sla has non-zero 1-cohomology at
V tensored with the Frobenius power of the identity representation of Sla. This
resultshowshowfaroneneedgotorealize anextensionofthe trivialmodule k by
V (parametrized by an element of H(sla, V)) as an s/a-submodule of an
S/z-module.

Notation

Let k be a field of characteristic p. Let L be a finite-dimensional p-Lie
algebra over k We also let k stand for the trivial one-dimensional L-
module and for the trivial one-dimensional p-Lie algebra.
Suppose that L is the Lie algebra of an algebraic group G. The space of

1-Lie algebra cocycles Z(L, V) with values in a G-module V may be given
the structure of a G-module as follows:

(g. f)(1) g- (f(Ad (g-I)(/))) where g G, eL, fZ(L, V)

and Ad is the adjoint representation of G on L.
The expression ’p-linear’ is used in place of the usual expression ’p-semi-

linear’.
sl,+x denotes the special linear Lie algebra, and Sl,+ denotes the special

linear group.

1. The cohomology of the restricted universal enveloping algebra

We will study restricted representations of a finite-dimensional p-Lie
algebra L. Let Ur be the restricted universal enveloping algebra of L. Inside
UL there is the associative algebra without unit, U LUr. First we will
look at the cohomology spaces H(U, V) of the associative algebra U at a
right U-module V.
Make V into a two-sided U-module by adding on the trivial left

U-module structure. Give the space of 1-cochains Hom (U, V) the left
U-module structure

(u * f)(u’) f(u’u)- u’f(u) [= f(u’u)],

and the right U-module structure (f u)(u’)= f(u’)u. (We have ’exchanged’
the left and right module structures given in [2].)
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Theorem 3.1 of [2] gives an isomorphism of cohomology spaces

H(U-, V)H"-(UL, Hom (U, V)).

The isomorphism may be induced from the map on cochains,

Hom ((U)(R)", V)--* Hom ((U)(R)("-1, Hom (U, V)),

f-- f where f(al (R)... a_)(a) f(a, t ax a_).

We will exploit the isomorphism H2(U,, k)H(U, Hom (U, k)) in pro-
ducing non-trivial 1-cohomology classes.

1.1. Construction. There is a canonical linear map Homo_linear (L, k)-->
H2(U, k). The map is injective if [L, L] L. The construction follows the
method of construction used in [3] in showing that non-abelian p-Lie
algebras have representations which are not completely reducible. The
material in the remainder of Sections 1.1 and 1.2 comes essentially from [3].
Let h" L--> kt = k be a p-linear map to the base field. Form the direct

product of Lie algebras E=L+kt, and give E the p-map (/,a)t=
(l1, h(l)). The quotient map of p-Lie algebras E--> L induces an algebra
map U -- UL and by restriction, 4" U--> U. Order a basis l,...,/ for
L and define a linear map : U-- U by

q(l l) l l for 0--< a < p.

is a linear splitting of 4. We associate to E (and hence to h) a cocyde
g ZE(U[, k) as follows. The kernel of 4 is Uv.t Ut + kt; let /: Uv.t -- kt
be the projection relative to this sum. Define a bilinear mapping g" U
U --> kt by g(u, v)- "V((u)d/(v) +(uv)). The relation g(uv, w)= g(u, vw)
holds for g and g is a 2-cocyde. (A different choice of linear splitting of 4
gives a 2-cocyde which is cohomologous to g.) Map Homo_linear (L, k)-*
H2(U, k) by mapping h to the cohomology class of g. We will not check the
linearity of this map here.

1.2. PROPOSITION. The map

Homp_,mar (L, k)- HE(U., k)-H(U,Hom (U, k))

is injective if [L, L] L.

Proof. We use the relations given in [3] to prove this proposition. Let
S U+ kt be the right U-module extension of U by kt corresponding to
the 1-cocycle g,. Then , which is the image of h under the map of the
proposition, is given by the formula (u)(v)=g(v, u), and the module
structure on S is given by

(v + at)u vu + ,(u)(v)t for u, v U and a e k.

Suppose that there is a stable complement Q to the submodule kt.
Express each element v of U as q(v)+ r(v), where q(v) lies in Q and r(v)
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lies in kt. The relations of [3] show that r is zero over [L, L] and that
r(ltPl)=-h(l) for lL. Hence, under our hypothesis, r(L)=0 and h =0.

Remark.
of E4, 8].

One can also show that the map is injective using the method

2. Non-zero one-cohomology for the Lie algebra

2.0. Let G be a simply connected semisimple algebraic group over an
algebraically closed field of characteristic p, with Lie algebra L.. We will
recall some of the structure of G and L (see [1, A] for more details).
There is a complex semisimple Lie algebra g and a Z-form gz of g such

that gz (R) k L. gz arises in the following way. Let h’ be a Cartan sub-
algebra of g and let A ={al a,} be a set of simple roots for the root
system of g, relative to h’. Let {X},U{[X,, X-]},a be a Chevalley
basis for g [1, A, 1.2]. This basis spans a Z-form gz of g. {[X,, X_,]},a
spans a Z-form h of h’. Let h h:@ k. In L gz @ k, denote X,, @ 1 by
X, X_,, @ 1 by Y, and [X, Y] by H.
We locate some objects inside G (see [1, A, 3.2, 3.3]). There are

1-parameter subgroups {X(t)},k, {Y(t)},k, i= 1,..., n, and a maximal
torus T with the following properties:

(1) T normalizes each 1-parameter subgroup and operates on {X(t)},
(resp. {Y(t)},) by a character ct of T (resp. -a), i.e., for acT,
aX(t)a- Xi (a, (a)t).

(2) There is a morphism from Sl2 to G that maps

and

(I ) to

The differential of the morphism maps

10) to X and ( )toY.
(3) The Lie algebra of {X(t)}, is kX and the Lie algebra of {Y(t)},k is

kY, and the Lie algebra of T is h.
(4) The differential of the character a of T is the root a h* of the line

kX, obtained from the root of X,, by tensoring with k. We will denote both
the character and the root by ai.

(5) {X(t)},k 1,..., n and T generate a Borel subgroup B of G.
There is the decomposition of gz " hz n, where the first factor is

the sum of the positive root spaces and the last is the sum of the negative
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root spaces. Let n+ n) k, and let n- n (R) k. Then L has the decomposi-
tion L =n+ h n-, and b n+h is the Lie algebra of B.
We will assume that L is a Lie algebra such that n+ is generated by

{Xi}i 1,..., n. L sl,+l is such a Lie algebra in any characteristic.

LEMMA. {i)il generates a free abelian subgroup of the character group of
T with rank n.

Proof. This follows easily from the fact that G has finite center.

2.1. Let L be the Lie algebra of the simply connected, semisimple group
G and suppose that n+ is generated by {X}=I. Choose ordered bases for n+

and for n- consisting of root vectors. Order L by placing some ordered basis
for h first, the ordered basis for n- second, and that for n+ last.

Fix some non-zero p-linear map f: L k which is zero on n+ +h. We
require some information about the 1-cocyde g: U--Hom (U, k) which
was associated with f in Section 1.1, (which was called , there).

(1) g(n++h)=0. One may check that (u)O(1)-@(ul)=O for/n++h,
using the fact that f(n+ +h) 0. Thus, g(n+ +h) = 0.

(2) k-g(Y) is b-stable for each . The cocyde condition for g and the
relations in L, [X, Y]=0, for i], [X, Y]=/-/, and [Hi, Y]=-ai(/-/)Y
lead to the equalities 0 Xi g(Y), for : j, 0 X g(Y), and Hi g(Y)
-ai(H)g(Y). Since {Xi}=l generates n+ as a Lie algebra and since {Hi}
spans h, kg(Y) is b-stable with weight

We proceed to produce some non-zero 1-cohomology classes for L with
values in irreducible modules. Let V denote the left-U-submodule of
Horn (U, k) generated by g(L)= g(n-). V may be generated by {g(Y)}=l
since {Y}=I generate n- as a Lie algebra. Choose a maximal proper
submodule W of V. The 1-cocyde

g

g"UVV/W

has values in an irreducible module; we will show that the cohomology class
of , is non-zero. We show in fact that the Lie algebra cocyde obtained by
restricting , to L represents a non-zero element of Hi(L, V/W).

Let {a}% be the basis for the root system of G relative to T that is given
in Section 2.0.

PROPOSITION. Hi(L, V/W) is non-zero if the characters {ai}=l have dis-
tinct differentials.
This condition is satisfied when h f3 Center (L)= 0, for instance.

Proof of the proposition. There is an index o for which g(Y) does not lie
in W. Then k (Yo) is a b-stable line of vectors in V/W of weight -ao. The
line of vectors in an irreducible L-module that is b-stable is unique and
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the h-weight of this line determines the module up to isomorphism [1, A,
6]. Therefore, V/W is the irreducible L-module of highest weight

Since G is simply connected, there is a representation of G on V/W
whose differential, is the given representation of L on V/W. Let c V/W be
a B-stable line. Then is b-stable, and so l= kg,(Yo). Denote the T-weight
of g’(Yo) by h.
We proceed to show that k- g, is a B-stable line in ZI(L, V/W). We have

g,(Y) 0 for io since the unique b-stable line in V/W has weight -a/o and
since the weights {a,},"=l are distinct elements of h* by the hypothesis, g, is
determined up to scalar multiplication by the conditions g,(n/ +h)=0 and
(Y) 0 for i# Jo.
The one parameter subgroups {X(t)},k act trivially on g,. Since [X,

0 for i= j, Y/ commutes with X?/m! in the Kostant Z-form Uz of the
universal enveloping algebra of the complex Lie algebra g [1, A]. Conse-
quently, on the representation space of Uz, that gives rise to the simply
connected group G under reduction modulo p, the operator X(t) commutes
with the operator coming from Y. Therefore, Ad (X(t))(Y)= Y, where Ad
is the adjoint representation of G on L. Since X(t) acts trivially on ,(Y),
X(t). , , at Yfor i#. Furthermore, we have

Ad (X(t))(Y) Y+t/-/ taX/
by 2.0(2), and the corresponding computation for Sla and sl; hence,
X/(t) g, g, at Y/. Since X,(t) and are both zero on n+ +It, we have that
X,(t) g,

k-g, is a T-stable line of weight. X-(-%0). Since T stabilizes kY and
n/+h under the adjoint representation, t. g, is also zero at Y for i# o and
at n+ +h, for T. The value of t- g at Y/o is (X-(-a/o))(t)g,(Y/o). Therefore,
and t- g, differ by the scalar (A-(-a/o))(t), and the claim is established.
g, is not a coboundary. In fact, V/W has no vector of T-weight A -.(-a/o).

If A-(-a/o were a T-weight of V/W, then the character -a/o=
X-(A-(-a/o)) would be a linear combination of {ai},"_-i with non-negative
integral coefficients. However, {a,}"= generates a free abelian subgroup of
the character group T, by the lemma in Section 2.0. This completes the
proof of the proposition.

2.2. THEOREM. Let {a,}*= be the basis for the root system of G relative to
T. Suppose that these characters have distinct differentials. The I-Lie algebra
cohomology Hi(L, is non-zero at the irreducible L-modules {V}/"_- of
highest weights {-

Proof. Let f" L--* k be a p-linear map where f(n+ +h)=0, f(Y)#0,
and f(Y)= 0 for i# ]. Let g/ be the 1-cocycle with values in Horn (UI, k)
which is associated with f in Section 1.2, and let V be the U/-submodule
generated by g/(L). If W is a maximal proper submodule of V, then
V/W- as L-modules and H(L, V)= HI(L, V/W)# (0), by the proposi-
tion.
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The group cohomology Hi(G, V) may very well be zero (see Section 3).
However:

COROLLARY. Under the hypothesis of the theorem, the cohomology space
HI(G, V(H(L, V))*) is non-zero.

Proof. Since V is irreducible and non-trivial as an L-module, the canoni-
cal map V-->B(L, V) from V to the space of one-coboundaries is an
isomorphism of G-modules. Therefore,

0 --- B(L, V) Z(L, Vi) H(L, V) 0

gives a G-module extension of Hi(L, V) by V. This is a non-trivial
G-module extension since it is non-trivial as an L-module extension. In fact,
since Hi(L, Vi) is always trivial as an L-module, we have that, for any
fEZI(L, V)-BI(L, V), V+k. f is an L-submodule of ZI(L, V). The one
Lie cohomology class associated to the extension 0-- V-- V+k-f-- k--
0 is (f), which is non-zero. Since this L-extension is non-trivial, (.) is a
non-trivial L-extension. Therefore the space

H(G, V(R)(H(L, V/))*) Ext (HI(L, V), V)
is non-zero.

2.3. EXAMPLE. Sln+x,k and sln+.k.
Let h be the diagonal sub-Lie algebra of sln+ and let aj E h* have the

value aj((hi))=h-h+x at (hi), the diagonal matrix with entries
hi,...,/%+1. Let T be the diagonal subgroup of Sln+ and let ai be the
character on T with values tjti+l at the diagonal matrix with entries
h,..-, t,+l.

LEMMA. (a) The characters {a}"_-i have diStinct differentials ]’or all sln+.k
in all characteristics except for sl3 in characteristic 3.

(b) The characters {aj}=l have linearly independent differentials if and
only if characteristic k X n + 1.

Proof. (a) This may be checked easily.
(h "n+l(b) Suppose that i aixi 0: At

0 Y aia,((hj)) and (ax + an)h + (ai-a,_ + a,)hi =0
i=2

for all (hi,..., hn) kn. Therefore the following relations hold:

al+a=0, ai-ai-l+a,=O for i=2,...,n. (,)

The sum of these relations is (n + 1)a =0. If characteristic k A" n + 1, then
an 0, and furthermore, ai 0 for all by (,).

Conversely, if characteristic k n + 1, then Y.__ (n + 1)ai 0.
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Let {hj}jl be the characters on T given by hj((ti))= tl... tj. The character

-cti equals hi+x-2hi +hi_, and as an S/,+-module, the s/,+-module of
highest weight -cti has highest T-weight h hi+l +(p-2)hj + h_x. The line
spanned by the cohomology class of , in HX(sl,+, V) is B-stable of weight
p h (except possibly for sl3 in characteristic 3). Consequently, HX(sl,+, V)
has a G-composition factor of highest weight p-h, and in particular,
Hl(sl,+, V) has a composition factor isomorphic to the first Frobenius
power Idp) (see [4]) o the identity representation Id o S/,+ on k"+. In the
next section, we show that if p , 3, then H(sl3, V) is isomorphic as an
S/3-module to IdCp).

3. The one-cohomology of Sl3 and S|3

3.1. LEnVtA. Let G be an ane algebraic group with Lie algebra L, and
let T be a torus in G with Lie algebra h. Let V be a finite-dimensional
U-module and let VL be the space ol:L-invariants. Then the canonical image o[
H(L, V) in H;(h, V) lies in the image o[ H(h, Vr) in H(la, V).

Proof. First we show that H(h, Vh) H(h, V).
Let G be the kernel of the Frobenius morphism of G. Since V is a

unitary UL-module, V is a G-module (see [4]). V is completely reducible
as an h-module, since h and T stabilize the same subspaces and T is a
diagonalizable group scheme. Let Vx be the subspace of V of vectors of
h-weight h. Then H(h, V)= Hi(h, Vh)+x0H(h, V), and we must show
that Hx(h, Vx)=0 for h : 0. We may suppose that the dimension of Vx is
one in giving the demonstration.
The kernel of any non-zero cocyde f with values in V equals the kernel

of h. In fact, for any kernel f and t’ h,

0 =/e([t, t’])= t-[(t’)-t’. [(t)= t. [(t’)= h(t)[(t’).

Therefore, ker (h), and ker ([) ker (h). Let h-ker ([) and let #o be
the zero-th coboundary operator for Lie algebra cohomology. [ is the
coboundary O((1/h (t))/(t)).

Therefore, in proving the lemma, we may suppose that /:: L---> V is a
one-cocycle that maps h into V.
The diagonalizable group T acts completely reducibly on L via the

adjoint representation; hence, so does h via the inner action ad. Let
L Y,x* Lx be the decomposition into weight spaces. For l Lx and h,
the application o ]’ to the relation It,/]= h(t)l gives the relation

(t-h(t)). f(l)= I. f(t).

Let s be the A-component of f(1). Since f(t) lies in V, I. f(t) has weight
and

(t-h(t)) s I. (t).,
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Therefore, 1. f(t)=0 and f(t) lies in Vr.
3.2. PROPOSITION. Let sln+l,k be a special linear Lie algebra other than sl3

in characteristic 3. Let V1 be the irreducible sl,+a-module of highest weight
-aa, and let V_, be the space of vectors in Va of weight -aa. If the
dimension of V_, is one, then Ha(sl,+a, Va) is isomorphic as an Sl+l-module
to the Frobenius power of the identity representation of Sl,+a on k"+a.

Proof. Ha(sl,+a, Va) has the composition factor Id() of dimension n + 1,
by Section 2.3. It will suffice then to show that dimk Ha(sl,/a, Va) < n + 1.

First we show that the kernel of the restriction mapping

"rr: Ha(sl.+a, Va) Ha(n +h,

has dimension <-1. (This fact does not require the hypothesis.) Represent a
cohomology class in the kernel of 7r by a one-cocyde f: sl,+a --> Va which is
0 on n-+h. The computation

0 f([Y,, X])= Y,. f(X)-X, f(Y,)= Y, f(X)
shows that f(X) is a lowest weight vector in Va. The lowest weight of Va is
the image w-(-czl)=oz, of the highest weight -aa under the opposite
involution w in the Weyl group of sl,+. Therefore, the weight of f(X) is c,;
at the same time, the weight of f(X) is aj by the computation

f(%(t)X) f([t, X])= f(X)-X f(t)= f(X) for tsh.

Thus, we see that f(X)= 0 for j # n, and that f is determined by its value at
X, alone. Since f(X,) lies in the space of lowest weight vectors, which has
dimension one, the dimension of the kernel of r is <-1.
Second we show that Hl(n +h, Va) has dimension <-n. The Weyl group

of s/,+a acts transitively on-A ={-a}=a. Therefore, there is an element of
W (realized as an element of Sl,/) that transforms V_I into V_,; conse-
quently, each V_, has dimension 1. Since Va is an irreducible and non-
trivial s/,/a-module, V (0). By the lemma in Section 3.1, we may repres-
ent a cohomology class in Ha(n-+h, Vx) by a cocyde f which is 0 on h.
Therefore, f(Y) is a vector of weight -ai, and f is determined by the family

(f(Y,) v-,}L-.
H(n-+h, Va) has dimension <-n, since each V_,., has dimension 1.

3.3. LEMMA. Let Va be the irreducible sl3-module of highest weight --OI.

The dimension of V_(., is 1 if p 3.

Proof. Take the irreducible sl,/a-module V of highest Sl,/a-weight
h+a +(p-2)h + h-a pAj-ai. The opposite involution w, which maps ().
in h to (h,+z-i)i, transforms the highest weightpA,-a into the lowest weight

w (px -a) = a./_-px.+,_.
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The difference (phj-oti)-w. (phj-ai)=p(A
stricts the possible weights of V to a certain range. For ] 1,

p(t q- Ja) (01 + a.) (p 1)al +pa2+Pa3+’..+po_ + (p 1)a,

limits the possible S/,+l-weights of V to those oi the form

re-

a (pX a) Y. aa,,

0_<a1<19, 0_<a_<p for l<i<n, 0_<a <p, by [1, A, 5.3].
When n 2, the possible weights of a vector v in V have the form

a (ph-a)-(alol+ a2a2), 0<_ al, a2 <-p- 1. Since the s/3-weights are
figured modulo p, v has s/3-weight -a if and only if a and -a are congruent
modulo p, that is, if a a + a2a 0 as an s/3-weight.Bythelemma of Section 2.3,
a and a are independent over k if p 4: 3. Thus, the only vectors of s/3-weight
-al in V are those in the one-dimensional highest S/3-weight space. This
completes the proof of the lemma.

3.4. THEOREM. At the irreducible sl3-module V of highest weight -a,
H(sl3, V) is isomorphic as an Sl3-module to the Frobenius power of the
identity representation of Sl3 on k3 if the characteristic of k is not 3.

Proof. Proposition 3.2 and Lemma 3.3 establish this theorem.

3.5. Comparison of the cohomology of Sl3 with that of sl3. The highest
S/3-weight of V1 is h2 +(p-2)).

COROLLARY 1. The group cohomology H(SI3, V) is zero if p 3.

Proof. Let Sl be the kernel of the Frobenius morphism of S13. The exact
sequence of group schemes 1 -- Sl -- Sl3 ---> Sl3/Sl -- 1 induces an exact
sequence of cohomology spaces

1 -- H(Sl3/Sl3, V[’) -- H(Sl3, V) -- H(Sl, V)s’, (,)

by [4, Lemma 5.1], once one adds to that lemma the fact that the canonical
map

HI(SI3, V)-- HI(SI, V)
has its image in the S/3-fixed part. The term Hl(S13/Sl, V31) is zero since
Vs31= V3 (0). Once we show that the term Ht(Sl, V)st3 is (0), we will
know that H(S13, V1) is (0).
There is a canonical injection Hx(SI, V)H(sl3, VI) which corres-

ponds to the map

Exts (k, V)-- Extst (k, Vx)

that takes an Sly-extension to its underlying differential extension. This map
is a map of S/a-modules, and so,

H(SI, VI)s’ Hl(sl3, V)s’ ((Id)(O)s’ (0).
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COROLLARY 2. HI(SI3, Vlt(Id(P))*) is non-zero if the characteristic of k
is not 3.

Proof. Theorem 3.4 and the corollary to Theorem 2.2 establish this
corollary.

Remark. One can show that the dimension o H(SI3, V (Ida))*) is
one if p7 3.

Remark. Theorem 3.4 holds with sl4 in place of sl3 if the characteristic
of k is not 2. In fact, Lemma 3.3 may be easily established for sl4 when
p2.

Remark. If the characteristic of k is 3, H(sl3, V) also has a composition
factor that is isomorphic to the trivial module k. This factor is the image of
the one-dimensional module HX(Sl3, V) under the canonical map from
Hl(Sl3, V) to Hl(sl3, V1). (See [5, Table 4.5] for the fact that H(SI3, V)
has dimension one when the characteristic of k is 3.)

3.6. Questions. (a) Is H(sl,+, V1) isomorphic as an S/n+l-module to
the Frobenius power of the identity representation of the group if the
characteristic of k does not divide n + 1?

(b) More generally, is H(L, V) irreducible except possibly if
p ldim (h)+ 1? (V is the module given in Theorem 2.2.)

(c) At which irreducible modules other than those produced in Theorem
2.2 does L have non-zero one cohomology?
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