LIE ALGEBRA COHOMOLOGY AT IRREDUCIBLE MODULES

by John Brendan Sullivan¹

We will develop a procedure for producing irreducible modules for the Lie algebra of a semisimple, simply connected algebraic group at which the 1-cohomology is non-zero. Further, we will relate our computations of Lie cohomology to the cohomology of the algebraic group. The cohomology of the group may be zero at a module where the cohomology of the Lie algebra is non-zero, but there is an efficient method for augmenting the module to give a module where the cohomology of the group is non-zero.

Hochschild showed that the (restricted) 1-cohomology of a non-abelian p-Lie algebra L is non-zero at the L-module Hom (LU_L, k) , where U_L is the restricted universal enveloping algebra of L [3]. In Sections 1 and 2, we show that his methods can be used in the case of the Lie algebra of a Chevalley group to produce a good supply of irreducible modules $\{V_{j}\}$ at which the 1-Lie cohomology is non-zero. One begins with a suitable p-semi-linear map from the Lie algebra to the trivial Lie algebra k, and uses the isomorphism

$$H^2(LU_L, k) \cong H^1(LU_L, \text{Hom}(LU_L, k))$$

to obtain a 1-cohomology class with values in Hom (LU_L, k) . By passing to subquotients of Hom (LU_L, k) , one obtains some irreducible modules $\{V_i\}$ at which the 1-cohomology is non-zero. The highest weights of these modules are the differentials of the elements $\{-\alpha_i\}$ where $\{\alpha_i\}$ is a basis for the root system of the group relative to a maximal torus T.

The space of 1-Lie cocycles at an irreducible module is itself a module for the group. In showing in Theorem 2.2 that the cohomology spaces are non-zero at $\{V_{jj=1}^{\dim(T)}\}$, we produce a line of 1-cocycles that is stable under the action of an appropriate Borel subgroup of the group, and show that the weight of the line under the action of T does not occur in the module V_j . Consequently, the cocycles in the line are not coboundaries. At the same time, the weight of this line gives the highest weight of a composition factor of the 1-Lie cohomology as a module for the group. As an illustration, we give the result of Sections 1 and 2 specifically for the Lie algebra of the special linear group.

A module at which the group cohomology is non-zero may be obtained economically from V_i by tensoring V_i with the dual module $(H^1(L, V_i))^*$ (Corollary to Theorem 2.2).

Received November 4, 1977.

¹ Supported in part by a National Science Foundation grant.

^{© 1979} by the Board of Trustees of the University of Illinois Manufactured in the United States of America

In Section 3, we carry out a complete computation of the cohomology space of the Lie algebra of the special linear group Sl_3 , as a module for Sl_3 , at the irreducible module V_1 whose highest weight is the differential of $-\alpha_1$ for the usual basis $\{\alpha_i\}$ of the root system of Sl_3 . $H^1(sl_3, V_1)$ is isomorphic as an Sl_3 -module to the Frobenius power of the identity representation of Sl_3 (Theorem 3.4). The computation depends on knowing that the space of vectors in V_1 whose weight equals the weight of the line stable under the Borel sub-Lie algebra has dimension one (Lemma 3.3).

As a corollary to this theorem, we see that Sl_3 has non-zero 1-cohomology at V_1 tensored with the Frobenius power of the identity representation of Sl_3 . This result shows how far one need go to realize an extension of the trivial module k by V_1 (parametrized by an element of $H^1(sl_3, V_1)$) as an sl_3 -submodule of an Sl_3 -module.

Notation

Let k be a field of characteristic p. Let L be a finite-dimensional p-Lie algebra over k. We also let k stand for the trivial one-dimensional L-module and for the trivial one-dimensional p-Lie algebra.

Suppose that L is the Lie algebra of an algebraic group G. The space of 1-Lie algebra cocycles $Z^{1}(L, V)$ with values in a G-module V may be given the structure of a G-module as follows:

$$(g \cdot f)(l) = g \cdot (f(\operatorname{Ad}(g^{-1})(l))) \text{ where } g \in G, \quad l \in L, \quad f \in Z^{1}(L, V)$$

and Ad is the adjoint representation of G on L.

The expression 'p-linear' is used in place of the usual expression 'p-semi-linear'.

 sl_{n+1} denotes the special linear Lie algebra, and Sl_{n+1} denotes the special linear group.

1. The cohomology of the restricted universal enveloping algebra

We will study restricted representations of a finite-dimensional p-Lie algebra L. Let U_L be the restricted universal enveloping algebra of L. Inside U_L there is the associative algebra without unit, $U_L^+ = LU_L$. First we will look at the cohomology spaces $H^n(U_L^+, V)$ of the associative algebra U_L^+ at a right U_L^+ -module V.

Make V into a two-sided U_L^+ -module by adding on the trivial left U_L^+ -module structure. Give the space of 1-cochains Hom (U_L^+, V) the left U_L^+ -module structure

$$(u * f)(u') = f(u'u) - u'f(u) [= f(u'u)],$$

and the right U_L^+ -module structure (f * u)(u') = f(u')u. (We have 'exchanged' the left and right module structures given in [2].)

364

Theorem 3.1 of [2] gives an isomorphism of cohomology spaces

$$H^{m}(U_{L}^{+}, V) \cong H^{m-1}(U_{L}^{+}, \text{Hom}(U_{L}^{+}, V)).$$

The isomorphism may be induced from the map on cochains,

$$\operatorname{Hom}\left((U_{L}^{+})^{\otimes m}, V\right) \to \operatorname{Hom}\left((U_{L}^{+})^{\otimes (m-1)}, \operatorname{Hom}\left(U_{L}^{+}, V\right)\right),$$

$$f \to \overline{f}$$
 where $\overline{f}(a_1 \otimes \cdots \otimes a_{m-1})(a_m) = f(a_m \otimes a_1 \otimes \cdots \otimes a_{m-1}).$

We will exploit the isomorphism $H^2(U_L^+, k) \cong H^1(U_L^+, \text{Hom}(U_L^+, k))$ in producing non-trivial 1-cohomology classes.

1.1. Construction. There is a canonical linear map $\operatorname{Hom}_{p-\operatorname{linear}}(L,k) \rightarrow H^2(U_L^+,k)$. The map is injective if [L, L] = L. The construction follows the method of construction used in [3] in showing that non-abelian *p*-Lie algebras have representations which are not completely reducible. The material in the remainder of Sections 1.1 and 1.2 comes essentially from [3].

Let $h: L \to kt = k$ be a *p*-linear map to the base field. Form the direct product of Lie algebras E = L + kt, and give *E* the *p*-map $(l, a)^{[p]} = (l^{[p]}, h(l))$. The quotient map of *p*-Lie algebras $E \to L$ induces an algebra map $U_E \to U_L$ and by restriction, $\phi: U_E^+ \to U_L^+$. Order a basis l_1, \ldots, l_n for *L* and define a linear map $\psi: U_L^+ \to U_E^+$ by

$$\psi(l_1^{\alpha_1}\cdots l_n^{\alpha_n})=l_1^{\alpha_1}\cdots l_n^{\alpha_n} \quad \text{for} \quad 0\leq \alpha_i < p.$$

 ψ is a linear splitting of ϕ . We associate to E (and hence to h) a cocycle $g \in Z^2(U_L^+, k)$ as follows. The kernel of ϕ is $U_E t = U_E^+ t + kt$; let $\gamma: U_E t \to kt$ be the projection relative to this sum. Define a bilinear mapping $g: U_L^+ \times U_L^+ \to kt$ by $g(u, v) = \gamma(\psi(u)\psi(v) - \psi(uv))$. The relation g(uv, w) = g(u, vw) holds for g and g is a 2-cocycle. (A different choice of linear splitting of ϕ gives a 2-cocycle which is cohomologous to g.) Map $\operatorname{Hom}_{p-\operatorname{linear}}(L, k) \to H^2(U_L^+, k)$ by mapping h to the cohomology class of g. We will not check the linearity of this map here.

1.2. PROPOSITION. The map

$$\operatorname{Hom}_{p-\operatorname{linear}}(L,k) \to H^2(U_L^+,k) \cong H^1(U_L^+,\operatorname{Hom}(U_L^+,k))$$

is injective if [L, L] = L.

Proof. We use the relations given in [3] to prove this proposition. Let $S = U_L^+ + kt$ be the right U_L^+ -module extension of U_L^+ by kt corresponding to the 1-cocycle \bar{g} . Then \bar{g} , which is the image of h under the map of the proposition, is given by the formula $\bar{g}(u)(v) = g(v, u)$, and the module structure on S is given by

$$(v+at)u = vu + \overline{g}(u)(v)t$$
 for $u, v \in U_L^+$ and $a \in k$.

Suppose that there is a stable complement Q to the submodule kt. Express each element v of U_L^+ as q(v)+r(v), where q(v) lies in Q and r(v) lies in kt. The relations of [3] show that r is zero over [L, L] and that $r(l^{[p]}) = -h(l)$ for $l \in L$. Hence, under our hypothesis, r(L) = 0 and h = 0.

Remark. One can also show that the map is injective using the method of [4, \$8].

2. Non-zero one-cohomology for the Lie algebra

2.0. Let G be a simply connected semisimple algebraic group over an algebraically closed field of characteristic p, with Lie algebra L. We will recall some of the structure of G and L (see [1, A] for more details).

There is a complex semisimple Lie algebra \mathbf{g} and a Z-form \mathbf{g}_Z of \mathbf{g} such that $\mathbf{g}_Z \otimes k = L$. \mathbf{g}_Z arises in the following way. Let \mathbf{h}' be a Cartan subalgebra of \mathbf{g} and let $\Delta = \{\alpha_1, \ldots, \alpha_n\}$ be a set of simple roots for the root system ϕ of \mathbf{g} , relative to \mathbf{h}' . Let $\{X_{\alpha}\}_{\alpha \in \phi} \cup \{[X_{\alpha_i}, X_{-\alpha_i}]\}_{\alpha_i \in \Delta}$ be a Chevalley basis for \mathbf{g} [1, A, 1.2]. This basis spans a Z-form \mathbf{g}_Z of \mathbf{g} . $\{[X_{\alpha_i}, X_{-\alpha_i}]\}_{\alpha_i \in \Delta}$ spans a Z-form \mathbf{h}'_Z of \mathbf{h}' . Let $\mathbf{h} = \mathbf{h}'_Z \otimes k$. In $L = \mathbf{g}_Z \otimes k$, denote $X_{\alpha_i} \otimes 1$ by $X_i, X_{-\alpha_i} \otimes 1$ by Y_i , and $[X_i, Y_i]$ by H_i .

We locate some objects inside G (see [1, A, 3.2, 3.3]). There are 1-parameter subgroups $\{X_i(t)\}_{t \in k}, \{Y_i(t)\}_{t \in k}, i = 1, ..., n$, and a maximal torus T with the following properties:

(1) T normalizes each 1-parameter subgroup and operates on $\{X_i(t)\}_{t \in k}$ (resp. $\{Y_i(t)\}_{t \in k}$) by a character α_i of T (resp. $-\alpha_i$), i.e., for $a \in T$, $aX_i(t)a^{-1} = X_i(\alpha_i(a)t)$.

(2) There is a morphism from Sl_2 to G that maps

$$\begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix}$$
 to $X_i(t)$

and

$$\begin{pmatrix} 1 & 0 \\ t & 1 \end{pmatrix} \text{ to } Y_i(t).$$

The differential of the morphism maps

$$\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$
 to X_i and $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ to Y_i .

(3) The Lie algebra of $\{X_i(t)\}_{t \in k}$ is kX_i and the Lie algebra of $\{Y_i(t)\}_{t \in k}$ is kY_i , and the Lie algebra of T is **h**.

(4) The differential of the character α_i of T is the root $\alpha_i \in \mathbf{h}^*$ of the line kX_i , obtained from the root of X_{α_i} by tensoring with k. We will denote both the character and the root by α_i .

(5) $\{X_i(t)\}_{t \in k}$ i = 1, ..., n and T generate a Borel subgroup B of G.

There is the decomposition of $\mathbf{g}_{Z} = \mathbf{n}_{Z}^{+} \oplus \mathbf{h}_{Z} \oplus \mathbf{n}_{Z}^{-}$, where the first factor is the sum of the positive root spaces and the last is the sum of the negative

root spaces. Let $\mathbf{n}^+ = \mathbf{n}_Z^+ \otimes k$, and let $\mathbf{n}^- = \mathbf{n}_Z^- \otimes k$. Then L has the decomposition $L = \mathbf{n}^+ \oplus \mathbf{h} \oplus \mathbf{n}^-$, and $\mathbf{b} = \mathbf{n}^+ \oplus \mathbf{h}$ is the Lie algebra of B.

We will assume that L is a Lie algebra such that \mathbf{n}^+ is generated by $\{X_i\} i = 1, ..., n$. $L = sl_{n+1}$ is such a Lie algebra in any characteristic.

LEMMA. $\{\alpha_i\}_{i=1}^n$ generates a free abelian subgroup of the character group of T with rank n.

Proof. This follows easily from the fact that G has finite center.

2.1. Let L be the Lie algebra of the simply connected, semisimple group G and suppose that \mathbf{n}^+ is generated by $\{X_i\}_{i=1}^n$. Choose ordered bases for \mathbf{n}^+ and for \mathbf{n}^- consisting of root vectors. Order L by placing some ordered basis for \mathbf{h} first, the ordered basis for \mathbf{n}^- second, and that for \mathbf{n}^+ last.

Fix some non-zero p-linear map $f: L \to k$ which is zero on $\mathbf{n}^+ + \mathbf{h}$. We require some information about the 1-cocycle $g: U_L^+ \to \text{Hom}(U_L^+, k)$ which was associated with f in Section 1.1, (which was called \bar{g} there).

(1) $g(\mathbf{n}^+ + \mathbf{h}) = 0$. One may check that $\psi(u)\psi(l) - \psi(ul) = 0$ for $l \in \mathbf{n}^+ + \mathbf{h}$, using the fact that $f(\mathbf{n}^+ + \mathbf{h}) = 0$. Thus, $g(\mathbf{n}^+ + \mathbf{h}) = 0$.

(2) $k \cdot g(Y_i)$ is **b**-stable for each *j*. The cocycle condition for *g* and the relations in *L*, $[X_i, Y_i] = 0$, for $i \neq j$, $[X_j, Y_i] = H_j$, and $[H_i, Y_i] = -\alpha_j(H_i)Y_j$ lead to the equalities $0 = X_i \cdot g(Y_i)$, for $i \neq j$, $0 = X_j \cdot g(Y_j)$, and $H_i \cdot g(Y_j) = -\alpha_j(H_i)g(Y_j)$. Since $\{X_i\}_{i=1}^n$ generates \mathbf{n}^+ as a Lie algebra and since $\{H_i\}_i$ spans \mathbf{h} , $kg(Y_j)$ is **b**-stable with weight $-\alpha_j$.

We proceed to produce some non-zero 1-cohomology classes for L with values in irreducible modules. Let V denote the left- U_L^+ -submodule of Hom (U_L^+, k) generated by $g(L) = g(\mathbf{n}^-)$. V may be generated by $\{g(Y_j)\}_{j=1}^n$ since $\{Y_j\}_{j=1}^n$ generate \mathbf{n}^- as a Lie algebra. Choose a maximal proper submodule W of V. The 1-cocycle

$$\bar{g} \colon U_L^+ \xrightarrow{\mathbf{s}} V \to V/W$$

has values in an irreducible module; we will show that the cohomology class of \bar{g} is non-zero. We show in fact that the Lie algebra cocycle obtained by restricting \bar{g} to L represents a non-zero element of $H^1(L, V/W)$.

Let $\{\alpha_i\}_{i=1}^n$ be the basis for the root system of G relative to T that is given in Section 2.0.

PROPOSITION. $H^1(L, V/W)$ is non-zero if the characters $\{\alpha_i\}_{i=1}^n$ have distinct differentials.

This condition is satisfied when $\mathbf{h} \cap \text{Center}(L) = 0$, for instance.

Proof of the proposition. There is an index j_0 for which $g(Y_{i_0})$ does not lie in W. Then $k \cdot \dot{g}(Y_{i_0})$ is a **b**-stable line of vectors in V/W of weight $-\alpha_{i_0}$. The line of vectors in an irreducible L-module that is **b**-stable is unique and the **h**-weight of this line determines the module up to isomorphism [1, A, §6]. Therefore, V/W is the irreducible L-module of highest weight $-\alpha_{i_0}$.

Since G is simply connected, there is a representation of G on V/W whose differential is the given representation of L on V/W. Let $l \subset V/W$ be a B-stable line. Then l is **b**-stable, and so $l = k\bar{g}(Y_{i_0})$. Denote the T-weight of $\bar{g}(Y_{i_0})$ by λ .

We proceed to show that $k \cdot \bar{g}$ is a *B*-stable line in $Z^1(L, V/W)$. We have $\bar{g}(Y_i) = 0$ for $i \neq j_0$ since the unique **b**-stable line in V/W has weight $-\alpha_{j_0}$ and since the weights $\{\alpha_i\}_{i=1}^n$ are distinct elements of \mathbf{h}^* by the hypothesis. \bar{g} is determined up to scalar multiplication by the conditions $\bar{g}(\mathbf{n}^+ + \mathbf{h}) = 0$ and $\bar{g}(Y_i) = 0$ for $i \neq j_0$.

The one parameter subgroups $\{X_i(t)\}_{t \in k}$ act trivially on \bar{g} . Since $[X_i, Y_j] = 0$ for $i \neq j$, Y_j commutes with $X_i^m/m!$ in the Kostant Z-form U_Z of the universal enveloping algebra of the complex Lie algebra g [1, A]. Consequently, on the representation space of U_Z , that gives rise to the simply connected group G under reduction modulo p, the operator $X_i(t)$ commutes with the operator coming from Y_j . Therefore, Ad $(X_i(t))(Y_j) = Y_j$, where Ad is the adjoint representation of G on L. Since $X_i(t)$ acts trivially on $\bar{g}(Y_j)$, $X_i(t) \cdot \bar{g} = \bar{g}$ at Y_j for $i \neq j$. Furthermore, we have

$$\operatorname{Ad} (X_{i}(t))(Y_{i}) = Y_{i} + tH_{i} - t^{2}X_{i}$$

by 2.0(2), and the corresponding computation for Sl_2 and sl_2 ; hence, $X_i(t) \cdot \bar{g} = \bar{g}$ at Y_i . Since $X_i(t) \cdot \bar{g}$ and \bar{g} are both zero on $\mathbf{n}^+ + \mathbf{h}$, we have that $X_i(t) \cdot \bar{g} = \bar{g}$.

 $k \cdot \bar{g}$ is a *T*-stable line of weight $\lambda - (-\alpha_{i_0})$. Since *T* stabilizes kY_i and $\mathbf{n}^+ + \mathbf{h}$ under the adjoint representation, $t \cdot \bar{g}$ is also zero at Y_i for $i \neq j_0$ and at $\mathbf{n}^+ + \mathbf{h}$, for $t \in T$. The value of $t \cdot g$ at Y_{i_0} is $(\lambda - (-\alpha_{i_0}))(t)\bar{g}(Y_{i_0})$. Therefore, \bar{g} and $t \cdot \bar{g}$ differ by the scalar $(\lambda - (-\alpha_{i_0}))(t)$, and the claim is established.

 \bar{g} is not a coboundary. In fact, V/W has no vector of T-weight $\lambda - (-\alpha_{i_0})$. If $\lambda - (-\alpha_{i_0})$ were a T-weight of V/W, then the character $-\alpha_{i_0} = \lambda - (\lambda - (-\alpha_{i_0}))$ would be a linear combination of $\{\alpha_i\}_{i=1}^n$ with non-negative integral coefficients. However, $\{\alpha_i\}_{i=1}^n$ generates a free abelian subgroup of the character group T^x , by the lemma in Section 2.0. This completes the proof of the proposition.

2.2. THEOREM. Let $\{\alpha_i\}_{i=1}^n$ be the basis for the root system of G relative to T. Suppose that these characters have distinct differentials. The 1-Lie algebra cohomology $H^1(L, \)$ is non-zero at the irreducible L-modules $\{V_{j}\}_{j=1}^n$ of highest weights $\{-\alpha_j\}_{j=1}^n$.

Proof. Let $f_i: L \to k$ be a *p*-linear map where $f_j(\mathbf{n}^+ + \mathbf{h}) = 0$, $f_j(Y_j) \neq 0$, and $f_i(Y_i) = 0$ for $i \neq j$. Let g_j be the 1-cocycle with values in Hom (U_L^+, k) which is associated with f_j in Section 1.2, and let V be the U_L^+ -submodule generated by $g_j(L)$. If W is a maximal proper submodule of V, then $V/W \cong V_j$ as L-modules and $H^1(L, V_j) = H^1(L, V/W) \neq (0)$, by the proposition. The group cohomology $H^1(G, V_j)$ may very well be zero (see Section 3). However:

COROLLARY. Under the hypothesis of the theorem, the cohomology space $H^1(G, V_i \otimes (H^1(L, V_i))^*)$ is non-zero.

Proof. Since V_j is irreducible and non-trivial as an L-module, the canonical map $V_j \rightarrow B^1(L, V_j)$ from V_j to the space of one-coboundaries is an isomorphism of G-modules. Therefore,

$$0 \to B^{1}(L, V_{i}) \to Z^{1}(L, V_{i}) \xrightarrow{\pi} H^{1}(L, V_{i}) \to 0 \qquad (*)$$

gives a G-module extension of $H^1(L, V_j)$ by V_j . This is a non-trivial G-module extension since it is non-trivial as an L-module extension. In fact, since $H^1(L, V_j)$ is always trivial as an L-module, we have that, for any $f \in Z^1(L, V_j) - B^1(L, V_j)$, $V_j + k \cdot f$ is an L-submodule of $Z^1(L, V_j)$. The one Lie cohomology class associated to the extension $0 \rightarrow V_j \rightarrow V_j + k \cdot f \rightarrow k \rightarrow 0$ is (f), which is non-zero. Since this L-extension is non-trivial, (*) is a non-trivial L-extension. Therefore the space

$$H^1(G, V_j \otimes (H^1(L, V_j))^*) \cong \operatorname{Ext}_G (H^1(L, V_j), V_j)$$

is non-zero.

2.3. EXAMPLE. $Sl_{n+1,k}$ and $sl_{n+1,k}$.

Let **h** be the diagonal sub-Lie algebra of sl_{n+1} and let $\alpha_j \in \mathbf{h}^*$ have the value $\alpha_j((h_i)) = h_j - h_{j+1}$ at (h_i) , the diagonal matrix with entries h_1, \ldots, h_{n+1} . Let T be the diagonal subgroup of Sl_{n+1} and let α_j be the character on T with values $\alpha_j((t_i)) = t_j t_{j+1}^{-1}$ at the diagonal matrix with entries t_1, \ldots, t_{n+1} .

LEMMA. (a) The characters $\{\alpha_j\}_{j=1}^n$ have distinct differentials for all $sl_{n+1,k}$ in all characteristics except for sl_3 in characteristic 3.

(b) The characters $\{\alpha_i\}_{i=1}^n$ have linearly independent differentials if and only if characteristic $k \not\geq n+1$.

Proof. (a) This may be checked easily. (b) Suppose that $\sum_{i} a_i \alpha_i = 0$. At $(h_i)_{i=1}^{n+1}$,

$$0 = \sum_{i} a_{i} \alpha_{i}((h_{j})) \text{ and } (a_{1} + a_{n})h_{1} + \sum_{i=2}^{n} (a_{i} - a_{i-1} + a_{n})h_{i} = 0$$

for all $(h_1, \ldots, h_n) \in k^n$. Therefore the following relations hold:

$$a_1 + a_n = 0,$$
 $a_i - a_{i-1} + a_n = 0$ for $i = 2, ..., n.$ (*)

The sum of these relations is $(n+1)a_n = 0$. If characteristic $k \not\mid n+1$, then $a_n = 0$, and furthermore, $a_i = 0$ for all *i* by (*).

Conversely, if characteristic $k \mid n+1$, then $\sum_{i=1}^{n} (n-i+1)\alpha_i = 0$.

Let $\{\lambda_j\}_{j=1}^n$ be the characters on T given by $\lambda_j((t_i)) = t_1 \cdots t_j$. The character $-\alpha_j$ equals $\lambda_{j+1} - 2\lambda_j + \lambda_{j-1}$, and as an Sl_{n+1} -module, the sl_{n+1} -module of highest weight $-\alpha_j$ has highest T-weight $\lambda = \lambda_{j+1} + (p-2)\lambda_j + \lambda_{j-1}$. The line spanned by the cohomology class of \tilde{g}_j in $H^1(sl_{n+1}, V_j)$ is B-stable of weight $p \cdot \lambda_j$ (except possibly for sl_3 in characteristic 3). Consequently, $H^1(sl_{n+1}, V_j)$ has a G-composition factor of highest weight $p \cdot \lambda_j$, and in particular, $H^1(sl_{n+1}, V_1)$ has a composition factor isomorphic to the first Frobenius power $Id^{(p)}$ (see [4]) of the identity representation Id of Sl_{n+1} on k^{n+1} . In the next section, we show that if $p \not\prec 3$, then $H^1(sl_3, V_1)$ is isomorphic as an Sl_3 -module to $Id^{(p)}$.

3. The one-cohomology of Sl_3 and sl_3

3.1. LEMMA. Let G be an affine algebraic group with Lie algebra L, and let T be a torus in G with Lie algebra **h**. Let V be a finite-dimensional U_L^+ -module and let V^L be the space of L-invariants. Then the canonical image of $H^1(L, V)$ in $H^1(\mathbf{h}, V)$ lies in the image of $H^1(\mathbf{h}, V^L)$ in $H^1(\mathbf{h}, V)$.

Proof. First we show that $H^1(\mathbf{h}, V^{\mathbf{h}}) = H^1(\mathbf{h}, V)$.

Let G^1 be the kernel of the Frobenius morphism of G. Since V is a unitary U_L -module, V is a G^1 -module (see [4]). V is completely reducible as an **h**-module, since **h** and T^1 stabilize the same subspaces and T^1 is a diagonalizable group scheme. Let V_{λ} be the subspace of V of vectors of **h**-weight λ . Then $H^1(\mathbf{h}, V) = H^1(\mathbf{h}, V^{\mathbf{h}}) + \sum_{\lambda \neq 0} H^1(\mathbf{h}, V_{\lambda})$, and we must show that $H^1(\mathbf{h}, V_{\lambda}) = 0$ for $\lambda \neq 0$. We may suppose that the dimension of V_{λ} is one in giving the demonstration.

The kernel of any non-zero cocycle f with values in V_{λ} equals the kernel of λ . In fact, for any $t \in \text{kernel } f$ and $t' \in \mathbf{h}$,

$$0 = f([t, t']) = t \cdot f(t') - t' \cdot f(t) = t \cdot f(t') = \lambda(t)f(t').$$

Therefore, $t \in \ker(\lambda)$, and $\ker(f) = \ker(\lambda)$. Let $t \in \mathbf{h} - \ker(f)$ and let ∂^0 be the zero-th coboundary operator for Lie algebra cohomology. f is the coboundary $\partial^0((1/\lambda(t))f(t))$.

Therefore, in proving the lemma, we may suppose that $f: L \to V$ is a one-cocycle that maps **h** into $V^{\mathbf{h}}$.

The diagonalizable group T^1 acts completely reducibly on L via the adjoint representation; hence, so does **h** via the inner action ad. Let $L = \sum_{\lambda \in \mathbf{h}^*} L_{\lambda}$ be the decomposition into weight spaces. For $l \in L_{\lambda}$ and $t \in \mathbf{h}$, the application of f to the relation $[t, l] = \lambda(t)l$ gives the relation

$$(t - \lambda(t)) \cdot f(l) = l \cdot f(t). \tag{(*)}$$

Let s be the λ -component of f(l). Since f(t) lies in V^{h} , $l \cdot f(t)$ has weight λ and

$$(t-\lambda(t))\cdot s=l\cdot f(t).$$

Therefore, $l \cdot f(t) = 0$ and f(t) lies in V^{L} .

3.2. PROPOSITION. Let $sl_{n+1,k}$ be a special linear Lie algebra other than sl_3 in characteristic 3. Let V_1 be the irreducible sl_{n+1} -module of highest weight $-\alpha_1$, and let $V_{-\alpha_1}$ be the space of vectors in V_1 of weight $-\alpha_1$. If the dimension of $V_{-\alpha_1}$ is one, then $H^1(sl_{n+1}, V_1)$ is isomorphic as an Sl_{n+1} -module to the Frobenius power of the identity representation of Sl_{n+1} on k^{n+1} .

Proof. $H^1(sl_{n+1}, V_1)$ has the composition factor $\mathrm{Id}^{(p)}$ of dimension n+1, by Section 2.3. It will suffice then to show that $\dim_k H^1(sl_{n+1}, V_1) \le n+1$.

First we show that the kernel of the restriction mapping

$$\pi: H^1(\mathfrak{sl}_{n+1}, V_1) \to H^1(\mathbf{n}^- + \mathbf{h}, V_1)$$

has dimension ≤ 1 . (This fact does not require the hypothesis.) Represent a cohomology class in the kernel of π by a one-cocycle $f: sl_{n+1} \rightarrow V_1$ which is 0 on $\mathbf{n}^- + \mathbf{h}$. The computation

$$0 = f([Y_i, X_i]) = Y_i \cdot f(X_i) - X_i \cdot f(Y_i) = Y_i \cdot f(X_i)$$

shows that $f(X_i)$ is a lowest weight vector in V_1 . The lowest weight of V_1 is the image $w \cdot (-\alpha_1) = \alpha_n$ of the highest weight $-\alpha_1$ under the opposite involution w in the Weyl group of sl_{n+1} . Therefore, the weight of $f(X_i)$ is α_n ; at the same time, the weight of $f(X_i)$ is α_i by the computation

$$f(\alpha_j(t)X_j) = f([t, X_j]) = t \cdot f(X_j) - X_j \cdot f(t) = t \cdot f(X_j) \quad \text{for} \quad t \in \mathbf{h}.$$

Thus, we see that $f(X_j) = 0$ for $j \neq n$, and that f is determined by its value at X_n alone. Since $f(X_n)$ lies in the space of lowest weight vectors, which has dimension one, the dimension of the kernel of π is ≤ 1 .

Second we show that $H^1(\mathbf{n}^- + \mathbf{h}, V_1)$ has dimension $\leq n$. The Weyl group of sl_{n+1} acts transitively on $-\Delta = \{-\alpha_i\}_{i=1}^n$. Therefore, there is an element of W (realized as an element of Sl_{n+1}) that transforms $V_{-\alpha_1}$ into $V_{-\alpha_i}$; consequently, each $V_{-\alpha_i}$ has dimension 1. Since V_1 is an irreducible and nontrivial sl_{n+1} -module, $V_1^{\mathbf{b}} = (0)$. By the lemma in Section 3.1, we may represent a cohomology class in $H^1(\mathbf{n}^- + \mathbf{h}, V_1)$ by a cocycle f which is 0 on h. Therefore, $f(Y_i)$ is a vector of weight $-\alpha_i$, and f is determined by the family

$$\{f(Y_j)\in V_{-\alpha_j}\}_{j=1}^n.$$

 $H^{1}(\mathbf{n}^{-}+\mathbf{h}, V_{1})$ has dimension $\leq n$, since each $V_{-\alpha_{1}}$ has dimension 1.

3.3. LEMMA. Let V_1 be the irreducible sl_3 -module of highest weight $-\alpha_1$. The dimension of $V_{-\alpha_1}$ is 1 if $p \neq 3$.

Proof. Take the irreducible sl_{n+1} -module V of highest Sl_{n+1} -weight $\lambda_{j+1} + (p-2)\lambda_j + \lambda_{j-1} = p\lambda_j - \alpha_j$. The opposite involution w, which maps $(h_i)_i$ in **h** to $(h_{n+2-i})_i$, transforms the highest weight $p\lambda_j - \alpha_j$ into the lowest weight

$$w \cdot (p\lambda_j - \alpha_j) = \alpha_{n+1-j} - p\lambda_{n+1-j}.$$

The difference $(p\lambda_j - \alpha_j) - w \cdot (p\lambda_j - \alpha_j) = p(\lambda_j + \lambda_{n+1-j}) - (\alpha_j + \alpha_{n+1-j})$ restricts the possible weights of V to a certain range. For j = 1,

$$p(\lambda_1+\lambda_n)-(\alpha_1+\alpha_n)=(p-1)\alpha_1+p\alpha_2+p\alpha_3+\cdots+p\alpha_{n-1}+(p-1)\alpha_n$$

limits the possible Sl_{n+1} -weights of V to those of the form

$$\boldsymbol{\alpha} = (p\lambda_1 - \boldsymbol{\alpha}_1) - \sum_i a_i \boldsymbol{\alpha}_i,$$

 $0 \le a_1 < p, \ 0 \le a_i \le p \text{ for } 1 < i < n, \ 0 \le a_n < p, \text{ by } [1, A, 5.3].$

When n = 2, the possible weights of a vector v in V have the form $\alpha = (p\lambda_1 - \alpha_1) - (a_1\alpha_1 + a_2\alpha_2), 0 \le a_1, a_2 \le p - 1$. Since the sl_3 -weights are figured modulo p, v has sl_3 -weight $-\alpha_1$ if and only if α and $-\alpha_1$ are congruent modulo p, that is, if $a_1\alpha_1 + a_2\alpha_2 = 0$ as an sl_3 -weight. By the lemma of Section 2.3, α_1 and α_2 are independent over k if $p \ne 3$. Thus, the only vectors of sl_3 -weight $-\alpha_1$ in V_1 are those in the one-dimensional highest Sl_3 -weight space. This completes the proof of the lemma.

3.4. THEOREM. At the irreducible sl_3 -module V_1 of highest weight $-\alpha_1$, $H^1(sl_3, V_1)$ is isomorphic as an Sl_3 -module to the Frobenius power of the identity representation of Sl_3 on k^3 if the characteristic of k is not 3.

Proof. Proposition 3.2 and Lemma 3.3 establish this theorem.

3.5. Comparison of the cohomology of Sl_3 with that of sl_3 . The highest Sl_3 -weight of V_1 is $\lambda_2 + (p-2)\lambda_1$.

COROLLARY 1. The group cohomology $H^1(Sl_3, V_1)$ is zero if $p \neq 3$.

Proof. Let Sl_3^1 be the kernel of the Frobenius morphism of Sl_3 . The exact sequence of group schemes $1 \rightarrow Sl_3^1 \rightarrow Sl_3 \rightarrow Sl_3/Sl_3^1 \rightarrow 1$ induces an exact sequence of cohomology spaces

$$1 \to H^{1}(Sl_{3}/Sl_{3}^{1}, V_{1}^{Sl_{3}^{1}}) \to H^{1}(Sl_{3}, V_{1}) \to H^{1}(Sl_{3}^{1}, V_{1})^{Sl_{3}^{1}}, \qquad (*)$$

by [4, Lemma 5.1], once one adds to that lemma the fact that the canonical map

$$H^1(Sl_3, V_1) \rightarrow H^1(Sl_3^1, V_1)$$

has its image in the Sl_3 -fixed part. The term $H^1(Sl_3/Sl_3^1, V_1^{Sl_3^1})$ is zero since $V_1^{Sl_3^1} = V_1^{Sl_3} = (0)$. Once we show that the term $H^1(Sl_3^1, V_1)^{Sl_3}$ is (0), we will know that $H^1(Sl_3, V_1)$ is (0).

There is a canonical injection $H^1(Sl_3^1, V_1) \hookrightarrow H^1(sl_3, V_1)$ which corresponds to the map

$$\operatorname{Ext}_{\operatorname{Sl}_1}(k, V_1) \to \operatorname{Ext}_{\operatorname{Sl}_2}(k, V_1)$$

that takes an Sl_3^1 -extension to its underlying differential extension. This map is a map of Sl_3 -modules, and so,

$$H^{1}(Sl_{3}^{1}, V_{1})^{Sl_{3}} \hookrightarrow H^{1}(sl_{3}, V_{1})^{Sl_{3}} = ((\mathrm{Id})^{(p)})^{Sl_{3}} = (0).$$

372

COROLLARY 2. $H^1(Sl_3, V_1 \otimes (\mathrm{Id}^{(p)})^*)$ is non-zero if the characteristic of k is not 3.

Proof. Theorem 3.4 and the corollary to Theorem 2.2 establish this corollary.

Remark. One can show that the dimension of $H^1(Sl_3, V_1 \otimes (\mathrm{Id}^{(p)})^*)$ is one if $p \neq 3$.

Remark. Theorem 3.4 holds with sl_4 in place of sl_3 if the characteristic of k is not 2. In fact, Lemma 3.3 may be easily established for sl_4 when $p \neq 2$.

Remark. If the characteristic of k is 3, $H^1(sl_3, V_1)$ also has a composition factor that is isomorphic to the trivial module k. This factor is the image of the one-dimensional module $H^1(Sl_3, V_1)$ under the canonical map from $H^1(Sl_3, V_1)$ to $H^1(sl_3, V_1)$. (See [5, Table 4.5] for the fact that $H^1(Sl_3, V_1)$ has dimension one when the characteristic of k is 3.)

3.6. Questions. (a) Is $H^1(sl_{n+1}, V_1)$ isomorphic as an Sl_{n+1} -module to the Frobenius power of the identity representation of the group if the characteristic of k does not divide n+1?

(b) More generally, is $H^1(L, V_i)$ irreducible except possibly if $p \mid \dim(h) + 1$? (V_i is the module given in Theorem 2.2.)

(c) At which irreducible modules other than those produced in Theorem 2.2 does L have non-zero one cohomology?

REFERENCES

- 1. A. Borel et al., Seminar on algebraic groups and related finite groups, Lecture Notes in Mathematics, Springer-Verlag, Heidelberg, 1970.
- G. HOCHSCHILD, On the cohomology groups of an associative algebra, Ann. of Math., vol. 46 (1945), pp. 58–67.
- Representations of restricted Lie algebras of characteristic p, Proc. Amer. Math. Soc., vol. 5 (1954), pp. 603–605.
- 4. J. SULLIVAN, Relations between the cohomology of an algebraic group and its infinitesimal subgroups, Amer. J. Math., vol. 100 (1978), pp. 995-1014.
- 5. E. CLINE, B. PARSHALL, L. SCOTT, Cohomology of finite groups of Lie type, I, Inst. Hautes Études Sci. Publ. Math., No. 45, 1975.

UNIVERSITY OF WASHINGTON SEATTLE, WASHINGTON