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UNITS OF IRREGULAR CYCLOTOMIC
FIELDS

BY

LAWRENCE C. WASHINGTON

In an interesting series of papers, P. D6nes proved a number of results on
cyclotomic fields, especially concerning their units, under the unproved
assumption that the so called p-character of the Bernoulli numbers is finite.
By relating this p-character to p-adic L-functions, we prove its finiteness as
a consequence of the nonvanishing of the p-adic regulator. We then show
how the p-adic regulator and p-adic L-functions may be used to obtain
simple proofs of some of D6nes’ results. We also show that a formula of
D6nes is essentially the same as Leopoldt’s p-adic class number formula.
Finally, we give an application to the second case of Fermat’s Last Theorem.

Since the p-adic L-functions are essentially an embodiment of many of
the classical congruences for Bernoulli numbers (e.g., Kummer’s congru-
ences), several of our proofs can probably be translated back to the original
ones, which relied heavily on properties of Kummer’s logarithmic differen-
tial quotient. But the use of the theory of p-adic L-functions seems to be
much more natural and also leads to new interpretations of classical results,
in addition to being essential to the proof that the p-character is finite.

1. The p-character of the Bernoulli numbers

Throughout this paper we shall assume .p >-5. Let the Bernoulli numbers
be defined by

te
e_l B.,

so Bo 1, B1 1/2, B2 -, B3 "-0, etc. (D6nes [2]) defined the p-character of
the Bernoulli numbers to be the integers u2, u4,..., uo-3 defined by

B--O (modpz+l) for O_</<u,

B o,,, O (mod

where i= 2, 4 p- 3. If p is a regular prime, then u 0 for all i. We
shall show how these numbers relate to p-adic L-functions.

Let Zo be the ring of p-adic integers. I a Zo and p " a, then there is a
unique (p- 1)st root of unity to(a)Z such that to(a)-= a (mod p). We may
regard to as a p-adic valued Dirichlet character. Define (a)= a/to(a), so
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(a) 1 (mod p). As usual, we set to(b)=0 if p lb. Let Lp(s, X) denote the
p-adic L-function for the character ,X (see [7]).

LEMMA 1. Let be an even integer, 2 <_i<_ p-3, and let

Lo (1 s, toi) ao + als + as +" .
Then a,, Zo for all m >_ 0 and p a,. for m >- 1.

Proof. In [14] we show that

Lo(l_ s, to,)
-l-1 (7)(-)a=l i=0

where

Now

(a) o ((a)- 1).
=

The coefficient of s" in this expansion is of the form A/m! where p’IA
because (a)--- 1 (mod p). Since the exponent of p in m! is less than m/(p- 1),
we find that p.(p-2/(o- divides the coefficient of s". If m>_2 then
m(p-2)/(p-1)> 1. Since all coefficients are in Qo, we find that p2 must
divide the coefficient of s" for m _> 2. Consequently,

(a) 1 + s((a)- 1) (mod p2).

Similarly, using the fact that pB Zo (von Staudt-Clausen), we find that

Therefore,

o’= Bi 1-aa s (mod p2).

-1-1
Lo(1-s, toi) ’. to(a)(l+s((a)-l)) 1- s

pS

----1 toi (a)((a)-1-a) (mod p).
19 a=l

This last sum is dearly in Zo and contains no powers of s. This proves the
lemma. Q.E.D.

THEOREM 1. Let vp be the p-adic valuation normalized by vo(p) 1. Then
u,=vo(Lo(1, to))<% 2, 4, p-3.

Proof. If n---i (mod p-l), then Lp(1-n, to)=-(1-pn-1)B,/n (see [7]).
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Since ip =- (mod p 1) for j -> 0, we have

Lo (1 ip o ) -(1 p,o,-1) B
ip

We also have Lp(1-ip, o)=ao+a(ip)+...=-ao (mod pi+,), since p la.
for m-> 1. Therefore,

(1-piPJ-’)Bip,=--ipao (mod p2j+).

But ip 1 -> 2] + 1 and BioJZo (since p- 1 q" ip), so

Bo=--ipJao (mod p2j+x).

We now see that the finiteness of u is equivalent to the fact that ao
Lp(1, o): 0, which was proved by Brumer [1]; and .from the definition of u
it follows that u vo(Lo(1, o)). (Actually, Brumer proved that the p-adic
regulator R is nonzero, but the p-adic class number formula (see the
text preceding Lemma 4 below) shows that Rp0 implies
Lp(1, o’):0). Q.E.D.
Theorem 1 is the result D6nes needed to complete his proofs. However, it

is now clear why he was unable to prove it, since Brumer’s work depends on
p-adic analogues of Baker’s deep results on logarithms of algebraic num-
bers.

2. Units and the class number formula

In this section we show how several of D6nes’ results on units may be
obtained directly from the fact that the p-adic regulator is non-zero for the
field Q(o) of pth roots of unity. We also obtain a theorem of Pollaczek and
we give a new proof of a class number formula of D6nes.

Let : o be a primitive pth root of unity and let 1- . Note that any
element a of Z[]= Z[X] which is not in Z and is prime to p satisfies
a=a +hA (modAc/1) for some rational integers a,b, c with p Xab, and
where c:0 (mod p-1) is uniquely determined by a. Also, if a is real, c
must be even. This representation of a will be used several times in the
following, and it will always be implicitly assumed that a, b, c satisfy the
above conditions.

LEMMA 2. Let e:+l be a unit of Z[], and assume e--
a + bh, (modh+) with c_>2. Then logo e =-a-Xbh (mod +1), where logo
is the p-adic logarithm (see [7]).

Proof. Let N be the norm from Q(’) to Q. Then l=N(e)--
a0-1 (mod ). Since p-lq" c (so (he) is not a power of the ideal (p)) and
since ap-- 1 is a rational integer, a-l 1 (mod)tc/1). From

log (1 + x) x x2/2 +. + x/p
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we easily see that logo (1 + x)= x (mod hx) if h 21 x. Therefore,

and

1
logo (a)

P i lg (a-l) 0 (modhc+1)

logo (a + bX logo (a) + logo (1 + a bX --- a bX (mod h +1).

But (a + bX)/e -= 1 (mod X+I), so logo (a + bXC)-logo (e)--0 (mod
Q.E.D.

Remark. Any unit e of Z[] can be written in the form e e/ with e/

real. Since 1-a (mod 2) and the integer c/ for e/ must be even,
hence ->2, it follows that c 1 exactly when a0 (mod p), which is exactly
when e e/. Hence, the hypothesis of the lemma is equivalent to the
assumption that e is real and e +/-1.
The crucial step is the following lemma. It was proved by D6nes (under

the assumption of the finiteness of the p-character of the Bernoulli numbers)
using properties of Kummer’s logarithmic differential quotient. However,
the use of the p-adic regulator greatly simplifies the argument and yields a
complete proof of the result.

LEMMA 3. Let e be a unit of Z[] which is congruent to a rational integer
modulo a high power of ,k. Then e is the pth power of a unit of Z[] (the size

of the power of will be refined later (Corollary to Theorem 2), so we do not
give an explicit estimate here).

Proof. If e is not a pth power, then there exist units 82,..., 8(o-3)/2 such
that the group H generated by. e, e,..., e(o_a/2 has index [E" H] prime to
p, where E is the group of all units of Z[]. Since e is congruent to an
integer modulo a high power of , it follows from Lemma 2 that logo e,
hence Ro(e, e,..., e(o_3/) which is the regulator of H (see [7]), is divisible
by a high power of . But

Ro (e,..., e (p-3)/2) [E: H]Ro,

where Ro is the regulator for E. Since Ro/:0 (see [1]), we obtain a
contradiction. So e must be a pth power. Q.E.D.

THEOREM 2 (D6.nes [3]). There exists a basis {12, rl, lo-a} for the
real units modulo {+1} of Z[] such that

with c, i+(p-1)uf for some integer u>_O. Also,

uf--<u vo(Lo(1,

(Note that c =- (rood p- 1), so that c2, %-3 are distinct mod p- 1.)
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Proof. The proof of the existence of the units will be that given by
D6nes, but we include it for the sake of completeness.
Take any basis {a2, a4,..., ap_3} for the real units modulo {+1}. Let

ai ---/i + 3,h d’ (mod

Suppose d d (mod p 1), say d d + k(p 1) with k 0. If we replace
aby aiap for a suitable integer e we obtain a new basis with the d
corresponding to the new a strictly larger than the original d. is process
can be continued as long as the numbers d2,..., dp-a are not distinct
mod p- 1. Since each step increases these numbers, the process must stop,
since by Lemma 3 a unit with a large d is a pth power, hence cannot be a
basis element. We therefore eventually obtain the units .

If Hna+ bh (mod h+), then c =min (q +(p- 1)vp(g)) and the index
giving the minimum is determined by ci (mod p-1). To prove that

u it therefore suffices to find a unit

(,) e +/h",(-)+ (mod h",(-l)++),

since then (p- 1)+ q +(p- 1)vp(g) q uf(p- 1)+ i.
Let e (-x)/2 (1--)/(1--), where r is an odd primitNe root modulo

p. en e is a real unit in Z[]. We may assume that

rP-l(modp+x) where M=max(vp((1,))), i=2,4,...,p3.

Let e Gal (Q()/Q be defined by g()= , and let

s 1 + gr-’ + g2r-2’ + + P-2r-(P-2)i (mod p+).

Define e ,. We claim that satisfies (,). D6nes proved this using
properties of Kummer’s logarithmic differential quotient. However, it is
perhaps easier to proceed as follows.

p--2

/=0

r-i’ logo (1- -"+)- r-’ logo (1- C-’)

p--1

(a)-’ logo (1--)- (a)-’ log, (1- -)
a=l

p--I

(i- (mod
a=l

since r’- 1 (rood pM+) implies m(r) r (rood pM+). NOW

(a)- log (1-

where () is a Gauss sum (see [7] or [15]). Stickelberger’s Theorem [8, p.
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94] implies that vp((o*)) 1-i/(p-1). Therefore, since o(r)* 1 (mod p),
we have

v( p
L(1, o’ )

+ v,(L, (1,
p-1

p_l,+u"

But 3 --- a + b (mod +) implies that v (log ) c](p- 1), by Lemma 2
(c - 2 since t is real). Therefore c + (p- 1)u. O.E.D.
CorollAry. Let M max v(/_ (1, o)), where 2, 4,..., p- 3, and let

e be a unit of []. If e is congruent to a rational integer modulo
is the pth power of a unit of [’].

Proof. We may assume e +1. Let

e= +ln--a+bX (modX+), with c_(M+l)(p-1).

Then as noted above, c min (c + (p- 1)v,(g)) Consequently, for each we
have

+ (p 1)uf - + (p 1)u < (M+ 1)(p 1) _< c -< c + (p 1)v, (g)
+ (p- 1)uf + (p- 1)vo (g,).

Therefore vo(g) >0 for each i, so e is a pth power. Q.E.D.

Remark. When p is a regular prime, then it easily follows from Kum-
mer’s congruences for Bernoulli numbers that M= 0, so we obtain a proof
of Kummer’s Lemma. Note that the proof in this case is independent of
Brumer’s result since M.=0 automatically implies that Lo(1,o))0 for
each i, hence Ro 0.
We can now modify r12,..., 10-3 to obtain the following result of

Pollaczek [11].

TnEOmM 3. There is a basis {a2, a ap_3} for the real units modulo
-’ is the pth power of a unit of Z[], where r is a{+/-1} of Z[] such that ai

fixed primitive root modulo p and tr Gal (Q()/Q) is determined by tr()

Proof. We first note that (r(hc) =- rch (mod
so

tr(a + bh)=-(a + bh)rc (a-) (mod he+x).

Let ci be as in the statement of Theorem 2, and suppose we have
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For typographical reasons let dk =c and rk =rak. Note that d
ik (mod p- 1).
From the above, we have

-r2--al-r2 (mod ha2+l)ll

Since d+ 1 > q for all i, it follows by the same reasoning as in the proof of
the corollary to Theorem 2 that -- must be a pth power, and since
d2=i2 (modp-1) it lollows that 7-’, for i=i2, is a pth power. Let
a=. Suppose we have a equaling a pth power for i= i2 i_2.
Let

[k--2

where h2,..., h_2 are to be determined. Let r, -r’. en, for i= i,

--rt h282 8k--2
for some unit /. By the above,

"-r rational integer (mod hdk+l).

.-rk isTherefore, since d + 1 > d for k < j < p 3, it follows that when l
expressed as a product of powers of cti2,..., a_, ,..., io_, the expo-
nents of the *l’s are divisible by p. Since rtk -- rk (mod p), the same holds for

7-’ with i=ik. Since 5i0 (mod p) or ] k, we may choose h2 h_2
so that the exponent o ct on the right hand side is divisible by p for
m 2,..., k- 2. Therefore ct-- is a pth power for i= i. Continuing, we
get the desired basis (ct2, ct_3} Q.E.D.

Remarks. We first note that the units t constructed above still satisfy a
congruence of the form ct -- m + nkq (mod kq+l), where q is as in Theorem
2.

Secondly, we note that the units ti essentially give a decomposition o the
units modulo pth powers with respect to the idempotents of the group ring
of the Galois group. The element s used in the proof of Theorem 2 is, up to
a constant factor and modulo p, one of these idempotents; so it is reasonable
to expect that the unit /- e, constructed in that proo is of the desired
form.

Finally, we note that Pollaczek’s original proo may be considered more
elementary in that he does not need the validity of Leopoldt’s Conjecture
for Q(). However, it seems that there might be a possibility of using
Pollaczek’s units to construct the units o Theorem 2. This would give
another proof of Leopoldt’s conjecture or Q(), since the existence of these
latter units is easily seen to imply that the p-adic regulator does not vanish
(see the proof of Lemma 4).
We now show that a formula of D6nes is essentially the same as
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Leopoldt’s p-adic class number formula [7]

2(-3)/2hRp 0-3

d/ l-I Lo (1, o’), even

where h is the class number, Ro is the p-adic regulator, and d p(p-3)/2 is
the discriminant of Q()+, the maximal real subfield of

LEMM 4. vp(Rp)=vp(dl/2)+YZ u, where u is as defined in Theorem

Proof. Let =-a + bX, (mod hq+l) be as in Theorem 2. Then

r (n) =- a + brqX%

so by Lemma 2,

logp tr(rl)=-a?Ibrqhq (mod

Therefore, since {tr k =0, 1,..., 1/2(p-3)} restricts to Gal (Q()+/Q), we
have

i=2,4,...,p-3
Ro det (logo (trkrh)),

k 0, 1,. ,1/2(p- 5)]

=-- I"I a?tbihq det (rkC’)i,k (mod h

Now det (rkq) 1-Ii< (rc’ rq) (Vandermonde) which is 0 (mod p) since
ci q (mod p- 1). Also ai and b are prime to p. Therefore,

1 3 p-3
vo(Ro)= p_{ c,= p.{+ u,

Q.E.D.

THEOREM 4.
Q()+. Then

The following theorem of D6nes [4] now follows easily.

Let p be the exact power of p dividing class number h of

COROLLARY.

p-3

f= uf).
i=2

If Q() is properly irregular (i.e., p .r h), then u, uf for all i.

3. Fermat’s Last Theorem

In [12], Vandiver showed that if the class number of Q()+ is prime to p
and if B is not divisible by p3 for 2, 4,..., p 3, then the second case of
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Fermat’s Last Theorem is true for p. Using the corollary to Theorem 2, we
prove the following generalization.

THEOREM 5. Let p be an irregular prime and assume p does not divide the
class number of Q()+. Let n =max vo(Lv(1, tot)), where i=2, 4,..., p-3.
Then x + yO zn, p xy, p lz, (x, y, z)= 1 has no solutions in non-zero
rational integers.

Remark. n 1 for p < 125,000 (see [13]).

Proof. The proof is similar to that given by Vandiver; however, it seems
that perhaps another exposition would be desirable, so we include the
details.
Let K (1- )(1- -1). We shall show that

(1) to + 0p K"P
is impossible if to, O, are non-zero integers of Q()+ with to, O, pairwise
relatively prime; l is a real unit of Q(); and m>_1/2(p-1)(n+ 1)+p. The
case m =1/2(p-1)p" yields the theorem, since pO- and " then differ by a
unit; so we may let to = x, 0 y, and z/p.

Suppose (1) has a solution. Then
p--1

1-I +

the standard argument shows that the numbers to + a0, a 0 p- 1 are
congruent to 0 modulo (1- ) but are incongruent modulo (r). Since to + O is
real, to+0-=0(mod r). We find that the numbers (to+a0)/(1-), a=
1,..., p-1, and to + 0 are pairwise relatively prime algebraic integers; so
there exist ideals Ao Ao_I of Q() such that

=A, a=l,...,p-1 and (to + O) K m-(p-1)/2Ag’.

(Actually, we could have AP but this will not be needed.) Since

we have

to =--0 (mod

a -]\1-+/-] =-1 (mod

where h 1- . Note that & a-, where ti denotes the complex conjugate.
Also, ct is the pth power of an ideal, so Q(, ax/o)/Q() can only be ramified
at (h). However, since 2m-p>_p+l, a is a local pth power at (h).
Therefore, the extension is unramified at all primes. Assume the extension is
non-trivial. Let tr generate its Galois group: tr(cz/) a TM. Since fi =a-1,
it follows easily that tr commutes with complex conjugation. Therefore, the
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subfield of Q(, al/v) fixed by complex conjugation is Galois of degree p and
unramified over Q()/. But this is impossible since the class number of
Q()+ is prime to p. Consequently, we must have a/o Q(). So

(2) (+_0)(0)- (p) (as numbers of Q(,))

for some o e Q(). so

ki ]
(A"A-") (as ideals of Q())

and since A_, A,, it follows that A,A_, is an ideal of Q()+ (-a is
actually the index p- a). Since the class number of this field is prime to p,
we have A,A_, principal. Therefore,

(3)
k 1 " / k 1L ’" /

(P)P (as numbers of Q()),

where 0 is an integer from Q()+ and is a unit which must be real since
the left-hand side of the equation is also real. It follows easily from (2) and
(3) that

(4)
l-K"

where . is a real unit and 0. is an integer of Q().
Since Ao A0, it follows that

(5)

for some integer Oo in Q()+.
Using the fact that . _. since both are real, we obtain from (4) for

xa--" where is a unitindices a and -a, and from (5) that 0-0. ,. o,

from Q(K). Therefore,

(o. ’0-.) 0 (rood X-).
i=0

-/a0. K/a0-. (rood Xa) for some i. By chang-Consequently,
ing the choice of 0. and 0-. in (4), since 0. is only determined up to a power
of K, we may assume 0. 0-. (rood ). Also, since ( + K"0)/(1- K"), ( +
-"0)/(1-U"), and I are paiise relatively prime, 0., 0-., and I are
relatNely prime. Therefore, as before,

(6) 0.-O_.0 (modX-+)

and

=Ci i=1, p-l,
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for some ideal Ci of Q(). But the left-hand side of this last equation is real
(note that P-a); so we have

(a)n t
(a) which must also be real.for some integer /zi of Q()/ and some unit rl

From (6) we obtain Pa =- la)/x (mod A2"-2P). From (4),

o +0
1-

Since from (5),

(a)hp. p’+ 2m--2p)rl,p=--r/a(li i (mod h

it follows that

(7) (a)’p.
to rla(’q ) w (mod ,2m--2P),

Let b---+a (mod p). From (7), and from (7) with b in place of a, we obtain

for some t Q()+, and we may assume is an integer of Q()+. But the
pn/l_ st power of an integer of Q()/ is congruent to a rational integer
modulo h(0-1)("+1)+2. Since 2m-2p>_(p-1)(n+l) by the choice of m, it
follows that e mz (modp"/l), where z is a rational integer. By the
corollary to Theorem 2, e T for some unit % which may be assumed real
(since every unit is a power of times a real unit). Let p* (rla))-pa. Then

From this and the same equation for the index -a (note that (a) is real so it
corresponds to a and-a), we have

(8) o2+ (a + .-a)(o0 + 02= rl*(2-- .a ,-a)(O*)o
()P is a real unit and o* PP-a is an integer of Q()+.where 1* (rla (rl,

From (5),

(9) o2 +20 + 02 TI202m’-P+119p".
From (8) with indices a and b and from (9), it follows that (let P*O*- 0")

n*(,,,*) n*(o*)"
(1- ’a)(1- r-a)(1- r)(1- -)
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where 5 is a unit. Dividing by rib* and noting that ria*/ri* e2= /20, we
obtain

(2to*)p d-(--19")0 lR:2m-p(p)p",

where 1 is a unit which must be real since everything else is real. Since
2m-p > m, we have obtained an equation of the same form as (1).
Assume that in (1) has the minimal possible number of distinct prime

ideal factors, where m ranges over all permissible values. Since (po)= Ao
and ()"-l=Ao AI...Ao_ with the ideals Aa pairwise relatively prime,
we must have A 1 for a 1, p-1. Therefore, (to + :"0)/(1-) is a
unit for a 1 p- 1. Let

Then a is a unit with ac 1. By a well-known theorem, a must be a root of
unity: a +’. But from the above we have +’= a-= 1 (mod h2"-.) Since
2m-p> 1, it follows that a =+/-t= 1. A short calculation now yields
a= -, which is impossible since a0 (rood p). (Use the fact that to4:-0;
it is here that the trivial solution must be excluded.) This contradiction
proves the theorem. Q.E.D.

Remark. It seems that perhaps more direct relationships could be found
between Fermat’s Last Theorem and p-adic L-functions, maybe using
Stickelberger’s theorem.

Also, it should be noted that Inkeri [6] has proved that x" + yO" z" has
no nontrivial solutions for n sufficiently large, with no assumptions on the
class number, and Morishima [10] has proved our Theorem 5 but with a
different value of n, namely 3t+2 where t= vo(h(Q(p))). Empirically this
value is larger, but it may be estimated more easily. It should be interesting
to investigate the relations between these results.

Finally, we mention that similar results have been proved in the first case
(p;c xyz) (see [5], [9], [16]).
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