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ON THE CHARACTERIZATION OF
COMPLEX RATIONAL APPROXIMATIONS

BY

DANIEL E. WULBERT

Abstract

An example is constructed showing that best uniform approximation (local
or global) from R.m(c) can not be characterized by linearization techniques or
by alternation properties of the error function.
A class of local best approximations are characterized, and used to demon-

strate approximation properties of R(C).

I. Introduction

Although uniform approximation from R’(C) is a classical area of analysis
(see J. Walsh, 1935 and the references there), there are still fundamental un-
settled questions. The difficulties come from the lack of an applicable character-
ization of best approximations. For R.m--the rational functions on [0, 1] which
have real coefficientsmapproximations are characterized, both by an extremal
alternation property of the error function, and by a linearization technique
which reduces the characterization to one for a linear space (definitions will be
given below). The characterizations are used, for example, to show that best
approximations are unique, that local best approximations are global, and to
identify the points of continuity of the best approximation operator (see
Cheney [1966]). For the complex rational function, R.(C), no such characteri-
zation exists. Even the fact that in R](C) there are two best approximations to
(x- 1/2)2 was only recently discovered (E. Saff and R. Varga [1977]).
Suppose now that f is a real continuous function, and r is a real function in

R,m(c). Several obvious stratagies to characterize r as a best approximation tof
(or a local best approximation) have attracted research. One is to find a lineari-
zation characterization. A second, is to find a characterizing extremal alterna-
tion property for the error function. Saff and Varga, for example, found two
alternation properties--one necessary, the other sufficient--for r to be a best
approximation. A third approach is to determine when r being a best approxi-
mation from R,(C) implies that r is a best approximation toffrom Re R,(C).
There are recent characterizations of approximations from Re R,(C); and
these, then, would apply to R’(C).

In this paper we will give an example of a real continuous function fand a
real rational (in fact, normal) function r in R.m(c) such that r is the unique best
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COMPLEX RATIONAL APPROXIMATIONS 141

approximation to f, but for 2 > 1, r is not a local best approximation to
2f+ (1 2)r. Such an example is not compatible with a characterization of the
form of any of the three above.
As part of the development of this paper we determine when a real normal

function r in R","(C) is a local best approximation to a real continuous function
f A set T(r) is constructed which has the property that r is a local best approxi-
mation to f if and only iff- r has zero as a best approximation from T(r).
Although T(r) is also nonlinear, for our purposes, it is more tractable than
R,(C). For example it shows that if r is a local best approximation tof, then r is
a strict local best approximation. This contrasts with the recent example found
by A. Ruttan [1977] of a continuum of complex best approximations form
Rm.(c) to a real continuous function.
A final example in this paper shows that, what seemed to be an anomaly in

Re R(C) approximation, appears again in R,(C) approximation. That is, there
is a real continuous function f and an r e R,"_ R,"(C) such that r is the unique
global best approximation to f from R,"(C); but, although (f- 2r) + r has the
same error function, f- 2r does not have -r as a local best approximation.
Some open problems are listed at the end.

Notation. We use C[0, 1] to represent the Banach space of real valued
continuous functions on the unit interval normed with the supremum norm.
The real and complex numbers are symbolized by R and C respectively. The
polynomials (polynomials with complex coefficient, resp.)ofdegree less than or
equal n are represented by ,(,(C), resp.). For a polynomial p, Op is the
degree of p. Put

(0.1) R" {p/q: p m, q ., q(x) 4:0 for 0 < x < 1}.

We can assume that if p/q R, then p and q have no common factors. We may
also assume that Ilql[- 1. We define R,(C)analogously by replacing . and, with m(C) and .(C). A rational function p/q in either R, or R.(C) is
called normal if Op m or if Oq n. For a function f,

(0.2) crit (f) {x" If(x)[ Ilfll} and Z(f) {x’f(x) 0}.

Let E C[0, 1], and f C[0, 1]. Then

(0.3) dist (f, E)- inf {}l f- mll’m E}.

A member m of E is termed a best approximation to f if

(0.4) IIf- mll- dist (f, e).

If there is a neighborhood U of m such that m is a best approximation (the
unique best approximation, resp.) to f from U E then m is a local best
approximation (strict local best approximation, resp.). An extremal alternation
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of length n for a real function f is a set of points 0 < x < x2 < < Xn -- 1
such that

(i) x, crit (f) and (ii) f(xi)= -f(x,+ 1).
Best approximations (local best approximations) from E are said to have a

linearization characterization if for each m E, there is a convex set K(m)
containing zero such that m is a best approximation (local best approximation,
resp.) to f if and only if 0 is a best approximation to f- m from K(m).

If g is a complex valued function and E is a set of complex functions, Reg
denotes the real part of g, and

(0.6) Re E {Reg" E}.
The imaginary parts are abbreviated similarly with Im.

Special notational conventions. It will be convenient for us to reserve certain
letters for specific meanings. We will use f to be a continuous real valued
function on [0, 1]. Let ro Po/qo be a normal function in Rm(c) which has real
coefficients. Put

(0.7) T {[Pqo Po 7
2 -iqo(Po- qof)]/q30"

P m+n, n, and 6 s m}"
We will use to represent a member of T so it will be written

(0.8) t= [Pqo Po 7
2 -iqo(Po- qo6)]/q,

where p, 7 and 6 are in the appropriate space of polynomials. Furthermore we
may assume that , is in the orthogonal complement of the span of q0 in ,. For
2 real,

(0.9) t {(22p)qo po(23))2 -iqo[Po(27)- qo(26)]}/q.
Similarly for ’m and fl ,, we will write

(0.10)

and

(0.11)

r
(Po + ) + i6

(qo + fl) + iT

(Po -- 220) "ra (qo + 22fl)+ i2,"

Basic computations. We will record below the result of some elementary
computations which are needed for reference.

(Po fl qo)(qo + fl) + Po 72 qo7
r0

(0.12)
qo[(qo + fl)2 + ),2]

i[(po)’ qo)(qo + fl)- (Pofl qot)7]+ qo[(qo -b fl)2 . )2]
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Also if x crit (f) and 9 is a function on [0, 1], then

(0.13) f(x 9(x _< f
if and only if 2f(x)Reg (x)>

The equivalence is also true if both inequalities are strict.

II. Characterization of approximation

1. LEMMA. If ro is a local best approximation toffrom R’(C), then 0 is a best
approximation to e f- ro from T.

Proofi Suppose that lie tll < Ilell. Then on crit (e)there must be an e > 0
for which (see line 0.13)

(1.1) 2e
Pqo Po 72 > IPq-py2]

This inequality must also hold on some neighborhood U of crit (e). If
1 > 2 > 0 then on this set U,

1.2 2e22 [pqo -qaoPO 2 > I]’4 [Pqo po y2

22 [p0 7 qo 6
+ q

On U we have that for sufficiently small 2,

(1.3) ]e- _< ile[l 222e [pqo -qpO72
Pqo--Po/2]2q03 + ,2 PoT- qo6.q

< Ilell 2 22: < (llell- 22,u)2 where ,u e/2llell.
Now choose and fl so that

(1.4) flPo qo P ,
and let

(1.5) rz

One can compute that

Po + 220 +
qo + i]’2 -’]-

(1.6) lim
2-0

ro-r +tz
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Hence from (1.3) and (1.6), we have that for all small ;L and all x 6 U,

(1.7) I(f- r)()l < Ilell,
For x q U there is also an e > 0 for which

1.8 I(f o)(x)l < e .
Since rz converges uniformly to ro we again have that for all sufficiently small 2,

(1.9) [(f- r)(x)l < Ilell.
We then of course have that for all sufficiently small 2,

(1.10) IIf- r < Ilf- ro II,
and the proof is completed. |

2. LENMA. Iff has zero as a local best approximation from T, thenf has an
extremal alternation of length at least n + m + 2.

Proof. (1/q)m+ T. |

3. LEMMA. If T has n + rn + 1 zeros then is the zero function.

Proof If t(x)= 0 then at x

(3.1) Pqo PO])2 0 and PoY qo6 0,

showing that

(3.2) p(x) ),(x)b(x).
So if has n + m + 1 zeros, p ),6 and

(3.3) -)’(PoY qo6)- iqo(PoY qo6) O. |

We also record for reference the following obvious fact.

4. LEMMA. If T and Im has n + m + 1 zeros, then is real.

5. LEMMA. IfO is a local best approximation toffrom T, then 0 is also a best
approximation on crit (f).

Proof Suppose that on crit (f), [If-t < Ilfll. Then

(5.1) 2fPq-p2 [Pq-p2 2 2

qo3
>

qo3
+ POqo2-q6

must be valid on some neighborhood U of crit (f). Also there is an e > 0 such
that for x q U,

(5.2) If(x) < Ilfll .
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For all 0 < 2 < 1 such that I[t < we have

(5.3)
if x U it is obvious that

(5.4)
and for points in U,

f- t < f

If(x) tx(x) < Ilfll

(5.5) If- tz 12 If 1 2f2
pqo po 72

qo3

+ 24 [Pqo Po 2
q +22[P)’-P6]2qo2

< Ilfll- 12f Pqo- ’2 lpqo-
qoa qo3

[Po)’ qo
q

By (5.1) this too is less than Ilfll. !

6. COROLLARY. If 0 is a local best approximation to f, from T, then 0 is a
global best approximation off.

7. LEMMA. Suppose that

(7.1)
1 _< Co sup {c: cfhas zero as a local best approximation from T}.

Then"

(a)
(b)

(c)

f has zero as a unique 91obal best approximation from T.
For each T there is an x crit (f) such that

(i) t(x) + 0 and (ii) 2f(x)(Re t)(x) <_ [(Im t)(x)] 2.

Zero is not a local best approximation to cf when c > Co.

Proof. We will first prove part (b). We note that cfhas zero as a local best
approximation for all c < Co, and in particular for all c < 1.
Now suppose there is a T such that

(7.2) 2f(x)(Re t)(x)> (Im t)(x)
for all x crit (f) Z(t). By Lemma 3, has at most n + m + 1 zeros so there
is a function in qo ,+, such that for x crit (f) Z(t),
(7.3) sgn 9(x) sgn f(x).
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Now consider

(7.4) t* g9 + t.

By our choice of 9 and we have the existence of an open neighborhood of
crit (f) Z(t), U, on which

(7.5) sgn (9 + t)= sgn f
independent of > 0.

Since crit (f)- U is compact, there is an e > 0 such that on crit (f)- U

(7.6) 2f(x) Re t(x)> [Im t(x)] 2 + e.

So if < e/II 9 II, then
(7.7) 2f(x) Re t*(x)> [Im t*(x)] 2.

Hence there is a c < 1 such that

(7.8) 2cf(x) Re t*(x)> Jim t*(x)] 2.

Furthermore for small 2,

(7.9) 2cf(x) Re t*(x)> 22[Re t*(x)]2 + [(Im t*)(x)] 2.

So from (0.13), 22 Re t* + i2 Im t* T is a better approximation to cf on
crit (f) than is zero. By Lemma 5, zero is not a local best approximation to cf
as hypothesised. This proves part (b).

Part (a)is immediate from (b)and (0.13).
The proof of part (c) follows the construction used in part (a). For let us

suppose that c > Co. We must have that there is a T such that

(7.10) 2cf(x)(Re t(x))(x)> [(Im t)(x)] 2

for all x crit (f) Z(t). After all, the denial of this fact says that cfhas zero as
a unique best approximation on crit (f) (and hence everywhere)contradicting
the hypotheses of (7.1). Now we use (7.10) to construct a function which is a
better approximation to cfthan is zero. This is done exactly as we used (7.2) to
produce a better approximation to f than was zero. We then apply Corollary
6. |

8. COROLLARY. If 0 is a local best approximation to f, from T, then it is the
unique 91obal best approximation to f

9. LEMMA. Iff-- ro has zero as a best approximationfrom T then ro is a strict
local best approximation to ffrom Rnm(c).

Proof Suppose that zero is a best approximation from T, but that also
there are r pj/q in R,m(c) such that r r0 and ]If- r0 < ]If- r0 ]]. We
begin by putting r in a particular form. Since r is bounded and [Iq may be
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assumed to be equal one, we can find a subsequence (which we assume we
already have) with converging numerators and denominators. Since ro is a
normal function and both qj and qo have norm one, we in fact have

(9.1) PjoPo and qqo.
Hence

(P0 + cg) + i6j(9.2) r (qo + flj)+ i7
where

(9.3)
and

(9.4)
Now let P denote the orthogonal projection of ’. onto the real span of {qo}.
Then of course

(9.5) qo + flj q" ij-" qo + Pflj + (I P)flj + iPj + i(I- P)j
so there are constants k and c and members j and of{qo}1 (the orthogonal
complement of real span {qo} in ) such that

(9.6) qo + flj + iTj (1 + kj + icj)qo + j + ij.

and kj 0 and cj O. Dividing both the numerator and the denominator by
1 + kj + ic we may now assume that the representation of rj given in (9.2)has
flj and y in {qo}+/-. (We note that now the denominators have norms approach-
ing one--but not necessarily equal one).

Claim. There are constants 2j such that

(9.7) (ajqo fljPo)(qo + flj) + (’jPo jqo)j

i{(PoTj- 3jqo)(qo + flj)- (poflj- qoa)}+
2j

has a subsequence which converges to the numerator of a nonzero member of
--T.

Proof of Claim. Let

(9.8) 2j max {x/, ,/11 ii, IIj [I, ll6j [I}.
We may assume that we already have a subsequence for which each of

(9.9) o,j flj 7 6
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converge to say ,/3, y and respectively. The functions of (9.7) then converge
to

(9.10) (Oqo flPo)qo + (PoY2 qo6) + iqo(Poy qo6).
This has the correct form. We have to show that it is not zero. Since r0 is a
normal function and y {q0}+/-, either the imaginary part is not equal zero (and
we are done) or both y and 6 are zero. If y and are zero the limit function is
(Oqo flPo)qo. Since fl is also in {q0} either this term is nonzero (and we are
done) or and /3 are also zero. However from our choice of 2j, not all the
functions ,/3, y and 6 are zero, and the limit function in (9.10) is not the zero
function.

This completes the proof of the claim and we can now finish the proof of the
lemma.

Proof of Lemma continued. From the claim there are 2j such that

(9.11) Re r 2- ro + Im r -2 ro

converges to a nonzero member of T, say h. Hence from Lemma 7 for j large
there is an x in the critical set of e f- ro for which

!

(9.12) 2e(x) Re |rj

Hence

(9.13)

ro

2e(x) Re (rj- ro)(X)< [Re (r- ro)(X)]2

+ [Im (rj- ro)(X)]2

which implies that

(9.14) I(f- ro / (to r))(x) z > f ro
We now collect the conclusions of the lemmas. We remind the reader that by

our notational conventions,f is a real valued function, and ro is a real, normal
function in R(C).

10. THEOREM. Thefollowin9 are equivalent:

(i)
(ii)
(iii)

ro is a local best approximation toffrom R.m(c).
zero is a best approximation tof- ro from T.
ro is a strict local best approximation to ffrom R.m(c).

Proof. That (i) implies (ii) is Lemma 1. Corollary 8 and Lemma 9 show that
(ii) implies (iii), and of course (iii)implies (i). |
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11. LEMMA. Suppose thatf has an extremal alternation of length n + rn + 2,
0 < Xo < xl < < X,+m/ < 1. Then there is a constant Co such that for any
nonzero function T and any 0 < c < Co,

[Icfll < sup {Icf(x)- t(x)I" 0 _<j _< n / rn + 1}.

Proofi If T is such that

(11.1) sgn Ret (x)4= -sgn f(x) and Re (t)is not identically zero

then 4= 0. Since Po and qo have no common factors, and since span {qo},
[llm (t)l[ > 0.(11.2)

Now let

(11.3) S {s T: sgn Res (xg)4 -sgn f(xg)
for O<j<n+m+ 1,

[IResll 1 and IIImsll <_x/2llfll}.
Since S is compact, we have from line (11.2) that there is a 0 < Co _< 1 such that

(11.4) inf {lllmsllZ: s s) > 2Co Ilfll.
Suppose, now, that T is such that for some 0 < c < Co,

(11.5) Ilcfll -> sup {[cf(xj)- t(xj)[ 0 <_j < n + m + 1}.
Let

(11.6) 2 (1/llRe tll) x/z.
Note that IIRe tll 4 0, since that and (11.5)would imply that also Im 0 on
{x}. By Lemma 3, would be zero everywhere. We have that for each point x,

(11.7) 2cfPq-p72[pq-p212IP-qb2qo3
>-

qo3
/

qo2

and so

(11.8) 2cf
(22p)qo Po(W],) [Po(27) qo(26)

q3 >-- q
Line (11.8) and our choice of 2 show that

(11.9)

So by (11.4),

(11.10)

1
[(22p)qo (2)2 iqo(Po(2)- qo(25))] S.t q-

Po(27)-
qo
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By our choice of 2 and c, (11.8) and (11.10) are not compatible. This contradicts
the existence of a T satisfying (11.5). |

12. PROPOSITION. The following are equivalent:

(i) ro is a best approximation toffrom R.
(ii) f- ro has an extremal alternation of length m / n / 2.
(iii) For all sufficiently small 2, ro is the unique best approximation to

2f+ (1- 2)ro from R"2(C).

Proof. Statements (i) and (ii) are equivalent from the classical theory. Since
R,m_R(C), (iii)implies (ii). We have to show that (ii)implies (iii). From
Lemma 11, 2f- 2ro has zero as the unique best approximation from T for all
sufficiently small 2. From Theorem 10, 2f + (1 2)r0 has r as a strict local best
approximation from R"2(C). By choosing ;L smaller yet we can insure that ro is,
in fact, the unique global best approximation. |

Hypothesis. We again remind the reader that by our notational conven-
tions from Section 1,f is a continuous real valued function, r0 is a real, normal
function in R,(C), and all functions are defined on the real interval [0, 1].

III. The nature of approximates

The two examples mentioned in the introduction are presented in this
section. The first example (Theorem 14)depends on the previous characteriza-
tion theorem. The example shows the following in R’(C)"

(i)

(ii)

(iii)

There is no linearization characterization of approximations (local or
global).
Extremal alternations alone can not characterize approximations
(local or global) when f and r are real.
r can be a best approximation tofwithout being a best approximation
from Re R,(C).

The second example (Proposition 23) presents an irregularity phenomenon
which occurs in Re R(C) approximations, but which we had not anticipated
for R"(C). The proof uses results from the Re R,(C) theory as well as the
characterization of the last section.

13. LEMMA. 2f has zero as a best approximationfrom T,for all ; > O, if and
only iff has zero as a best approximation from Re T.

Proof.
that

The sufficiency is obvious. For the necessity suppose T is such

(13.1) IIf- Re tll < Ilfll.
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Then on crit f,
(13.2) IRf-tlz- [[2fl -22fRe t+ I[tl[ 2.

Since f(x) Re t(x) > 0 on crit (f), we see that for large 2, is a better approxi-
mation than zero to 2f on the domain crit (f). The lemma now follows from
Lemma 5. |

14. THEOREM. For any m > 0 and n > 0 there is a continuous realfunctionf
and a real, normal r R’(C) such that r is the unique 91obal best approximation
to f; but for sufficiently laroe ,, r is not a local best approximation to

2f+ (1- 2)r.

Proof Let ro xm. Let s be any integer bigger than n/2 and less than or
equal n. Let p be the best approximation to xm+ z from m+," Then

(14.1) h Pqo Po /
has an extremal alternation {x} of length m + n + 2 where qo 1, Po xm, and
/ Xs.

Put # h + to. From Proposition 12, c# + (1 C)ro has ro as a unique best
approximation for all small c. But from Lemma 13, Theorem 10 and our choice
of h Re T, c# + (1 C)ro does not have ro as a local best approximation from
R’(C). |

Let ro Po/qO be a normal function in R. Let

(14.1) Z= Z,qo, R
t[Z(qo) R] w {- oe, oo}

For convenience we write

(14.2) 9(oe) for lim 9(x) and 9(-oo)

when these limits exist. Now let

if Oa < cb
if 8b < ta.

for lim O(x),
X---

(14.3) H {h k2n+max{Opo,Oqo }" sgn h(x)= -sgn po(x) for x Z}.

15. PROPOSITION. f has ro as a best approximationfrom Re R(C) ifand only
iff- ro has zero as a best approximation from H.

Proof This is a variant of a result from [23]. The proof is a multiple case,
bookkeeping argument using adaptations of the results Lemma 4-5, Theorem
4-7 and Lemma 4-6 from there. |

We will later need to use the fact that best approximations from Re RT,(C)are
unique [23].

16. LEMMA. Given a complex, nonreal number co and a complex number a
there is a real quadratic polynomial p such that [p(co)]2 a and [p(69)] 2 8.
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Proof. Let p(z) x//a(z o9) + v/a(z o9). |

17. LEMMA. If ao, ax, a. are real numbers with ao > 0 there is a p
and a O ,-x such that [p(x)]/ ao xz" + ax xz"-’ +’"+ a,x" + g(x).

Proof Let p(x) 7=o bx; we need to determine the coefficients bso that
the coefficient of xz"- in [p(x)] z is a. This is easily done inductively. For
example,

b, ao, b,- ax/2ao, b.- 2 a2 /2ao, etc.

18. LEMMA. HReqT={2.qo-Poy2"ye

Proof Let he H. From Lemma 16 there is a , e o such that
(y)2 + h 0 on the zero set of qo. From Lemma 17 there is a Y2 such that

(18.1) a[h + po( =)=] aqo + 2.,

where 2 n Oqo. Now put y Po Y 2. From our choice of yx,

(18.2) h + p qok

for some polynomial k. From our choice of 2, Ok 2n. So

(18.3) h=qok-poy2eRe(qT). I
19. LEMMA. Every real continuous function has a best approximation from

Re q T.

Proof Re qT is, in fact, boundedly compact. is follows from the
assumption that the polynomials are assumed to be in the orthogonal com-
plement of span {qo} (in .). For suppose

(19.1) Pqo Po

is bounded. Then either is bounded or

(19.2) (Pqo Po

converges to zero. But there is a subsequence so that Y/IY converges to say
*, and hence p/[l[I also converges to say p. Hence Pqo PoY2 0 but this is
not possible since qo is not a factor of y, and has no zeros in common with
Po.

20. LEMMA. closure H Re q T.

Proof From Lemmas 18 and 19, cl H g Re q T. Clearly the set

(20.1) {=.qo po=: ., z() Z(qo)= 0}
is both dense in Re q T, and contained in H.
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21. LEMMA. f has Pqo Po ])2 as a best approximation from Re q3o T/f
and only iff- has zero as a best approximation from {Pqo- Po /h: p 2n,
h}.

Proof. This is a consequence of a general linearization technique. For
example see [22, Lemma 15]. |

Now let r(x)= x"/1 R",(C). Let 2n+ be the Chebyshev polynomial of
degree 2n + 1.

22. LEMMA. 2n+ has zero as a best approximation from H.

Proof From Lemma 20 we can show zero is a best approximation from
Re T. From Lemma 19 there is some member which is a best approximation,
say p x"72. Since c2,+ has zero as a best approximation from 2., Y 4: 0.
From Lemma 21, c2,+ has zero as a best approximation from

(22.1)
But 2n+ itself belongs to this set. So zero could not .possibly be the best
approximation unless c2,+x- =0. But this is not possible since the
coefficient of x2"+ in .+ is positive and that of is not. |

23. PROPOSITION. There is a real continuous function f and a real normal
member r R,(C) such that

(1)
(2)

r is a unique 91obal best approximation off, but
-r is not a local best approximation tof- 2r.

Proof Let r, as above, be x"/1, and let

(23.1) f= c2,+ + r.

From Lemmas 22 and 15, 2f+ (1- 2)r has zero as a unique global best
approximation for all 2 > 0.
However (f- 2r) + r does not have zero as a best approximation from

(23.2) T(-r) {pl -(--xn)])2: p e 2., / e .}"
In fact c2.+x belongs to this set. By Lemma 13 there is a 2 such that
2(f- 2r) + (1 2)(-r) + r does not have zero as a best approximation from
T(-r). So by Theorem 11, -r is not a local best approximation to

(23.3) 2(f- 2r)+ (1 2)(-r)= [2f + (1 2)r] 2r. |

Open Problems. Letfbe a real continuous function on [0, 1]. Let r be a real
(and perhaps-normal) function in R."(C).

(1) If r is a best approximation tofis it the unique best approximation tof?
(Saff-Varga)
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(2) If r is a local best approximation tofis it a global best approximation ?
(3) If r is a local best approximation to cf + (1 c)r for all c > 0, then is r a

global best approximation to f?
(4) Suppose m n andf- r has an extremal alternation of length 2n + 2,

but none of length 2n + 3. Then there is a 20 such that for 0 < 2 < 20, r
is the best approximation to 2f+ (1 2)r =f from R(C). But when
2 > 20, r is not the local best approximation to f. Characterize 20.
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